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    I N T R O D U C T I O N 

 Mast cells of hematopoietic origin play a central role 

in infl ammatory responses by releasing numerous sub-

stances that modulate immune responses ( Metcalfe et al., 

1997 ). Fusion of large secretory granules (SGs) to the 

plasma membrane underlies degranulation of mast cells, 

and much experimental effort has focused on the regu-

lation of this exocytotic process ( Burgoyne and Morgan, 

2003 ;  Sagi-Eisenberg, 2007 ). In addition to exocytosis of 

SGs, another type of fusion that does not result in clear 

stepwise changes of membrane capacitance (non-SG) 

was reported in rat peritoneal mast cells twenty years ago 

( Almers and Neher, 1987 ). While the step size of non-SG 

events is not readily resolved by capacitance recording, 

the increase of cell capacitance mediated by such fusion 

events can be of very large magnitude ( Almers and Neher, 

1987 ). The sources of membrane involved in non-SG fu-

sion as well as the underlying fusion mechanisms remain 

rather enigmatic. Data from chromaffi n cells indicate 

that non-SG fusion requires relatively high Ca ( � 100 

 μ M) and is ATP dependent, but neurotoxin insensitive. 

Non-SGs in chromaffi n cells are not likely to represent 

acetylcholine-containing synaptic-like  microvesicles ( Xu 
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et al., 1998 ), and it is striking that non-SG fusion can 

also be massive in CHO and 3T3 cells ( Coorssen et al., 

1996 ), as well as BHK and HEK293 cells (Yaradanakul 

et al., 2008), and as described in some detail in this ar-

ticle, in RBL, MEF, and INS-1 cells. The prevalence of 

large-scale Ca-activated non-SG fusion processes in both 

secretory and nonsecretory cell lines suggests that the 

non-SG fusion may be important for cell survival. Since 

the non-SG pool can exceed 50% of the total surface 

membrane area and the requirements for cytoplasmic 

Ca are rather high (Yaradanakul et al., 2008), it seems 

reasonable that this membrane pool is involved in wound 

repair of the plasma membrane. 

 Present understanding of membrane fusion relies 

strongly on studies of transmitter/hormone release 

from neurons ( Sakaba et al., 2005 ;  Bronk et al., 

2007 ) and endocrine cells ( Burgoyne and Morgan, 

2003 ), and the homo typic fusion of yeast vacuoles 
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     We have compared Ca-dependent exocytosis in excised giant membrane patches and in whole-cell patch clamp 
with emphasis on the rat secretory cell line, RBL. Stable patches of 2 – 4 pF are easily excised from RBL cells after 
partially disrupting actin cytoskeleton with latrunculin A. Membrane fusion is triggered by switching the patch 
to a cytoplasmic solution containing 100 – 200  μ M free Ca. Capacitance and amperometric recording show that 
large secretory granules (SGs) containing serotonin are mostly lost from patches. Small vesicles that are retained 
(non-SGs) do not release serotonin or other substances detected by amperometry, although their fusion is re-
duced by tetanus toxin light chain. Non-SG fusion is unaffected by  N -ethylmaleimide, phosphatidylinositol-4,5-
bis-phosphate (PI(4,5)P 2 ) ligands, such as neomycin, a PI-transfer protein that can remove PI from membranes, 
the PI(3)-kinase inhibitor LY294002 and PI(4,5)P 2 , PI(3)P, and PI(4)P antibodies. In patch recordings, but not 
whole-cell recordings, fusion can be strongly reduced by ATP removal and by the nonspecifi c PI-kinase inhibi-
tors wortmannin and adenosine. In whole-cell recording, non-SG fusion is strongly reduced by osmotically in-
duced cell swelling, and subsequent recovery after shrinkage is then inhibited by wortmannin. Thus, membrane 
stretch that occurs during patch formation may be a major cause of differences between excised patch and 
whole-cell fusion responses. Regarding Ca sensors for non-SG fusion, fusion remains robust in synaptotagmin 
(Syt) VII � / �  mouse embryonic fi broblasts (MEFs), as well as in PLC � 1, PLC  � 1/ � 4, and PLC � 1 � / �  MEFs. 
Thus, Syt VII and several PLCs are not required. Furthermore, the Ca dependence of non-SG fusion refl ects a 
lower Ca affi nity (K D   � 71  μ M) than expected for these C2 domain – containing proteins. In summary, we fi nd 
that non-SG membrane fusion behaves and is regulated substantially differently from SG fusion, and we have 
identifi ed an ATP-dependent process that restores non-SG fusion capability after it is perturbed by membrane 
stretch or cell dilation. 

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/132/1/51/1913405/jgp_200709950.pdf by guest on 18 January 2026



52  Characterization of Nonsecretory Vesicle Fusion 

have found that partial disruption of the actin cytoskel-

eton facilitates the formation of stable patches from 

some cell types and preserves more fusion-capable vesi-

cles in patches from all cell types tested. Nevertheless, 

our experience is that SGs are easily lost from excised 

patches, presumably because they are not docked in a 

stable fashion at the plasma membrane in RBL cells. 

The non-SG fusion is much more robust, and we de-

scribe here several fundamental characteristics of this 

type of fusion, including its dependence on ATP and 

Ca. The results defi ne clear differences between non-

SG and SG fusion processes and provide new insights 

into the physical basis of non-SG fusion. 

 M AT E R I A L S  A N D  M E T H O D S 

 Cell Culture 
 Adherent RBL-2H3 cells were cultured in Dulbecco ’ s modifi ed Ea-
gle ’ s medium (DMEM, Mediatech) supplemented with 15% FBS. 
Cells were plated on uncoated Petri dishes 1 – 2 d before experi-
ments and collected by treating them with 0.25% trypsin/EDTA 
solution. Serotonin and 5-hydroxytryptophan (0.2 mM each) were 
also added to cells for amperometric recording 1 d before the ex-
periments to increase the formation of SGs ( Williams et al., 1999 ; 
 Mahmoud and Fewtrell, 2001 ). After treatment with trypsin, the 
cells were resuspended in the culture medium and left in the CO 2  
incubator for 30 min. Cells were then treated with latrunculin A 
(50 – 100 ng/ml) at 37 ° C for 5 min before experiments, as this treat-
ment clearly facilitated the formation of giant excised patches with 
fusion-competent vesicles. Mouse embryonic fi broblasts (MEFs) 
were cultured in DMEM supplemented with 10% FBS and peni-
cillin-streptomycin. They were plated on cell culture dish 1 – 2 d 
before experiment and collected as stated above. The Syt VII – defi -
cient MEF cell line was provided by T. S ü dhof (University of Texas 
Southwestern [UTSW] Medical Center at Dallas), the PLC � 1- and 
PLC � 1/ � 4-defi cient MEF cell lines were provided by K. Fukami 
 (Tokyo University, Tokyo, Japan), and the PLC � 1-defi cient cell line 
was provided by G. Carpenter (Vanderbilt University, Nashville, TN) 

 Solutions 
 Unless otherwise stated, the patches were excised into a solution 
containing (in mM) 140 NaCl, 1 MgCl 2 , 0.3 EGTA, 20 HEPES, 
pH 7.3. ATP and GTP were added at fi nal concentration of 
2.4 and 0.3, respectively. Membrane fusion was triggered by the 
same solution with 0.5 CaCl 2  (i.e., 0.2 mM free Ca), usually with-
out ATP and GTP. For whole-cell recording with RBL cells, both 
the cytoplasmic and extracellular solutions contained (in mM) 
40 NaCl, 90  N -methyl- d -glucamine (NMG), 1 MgCl 2 , 0.01 EGTA, 
10 HEPES, pH 7.3 adjusted with MES. Relatively large-diameter 
pipette tips (4 – 6  μ m i.d.) were employed in whole-cell record-
ing to allow fast exchange of the cytoplasm via pipette perfusion. 
Using this low conductance solution, the cell time constants 
(30 – 60  μ s) were large enough to use square wave perturbation for 
capacitance measurements, as described subsequently. A solution 
with 0.2 mM free Ca, highly buffered with nitrilotriacetic acid, was 
infused into the cell to induce membrane fusion. The complete 
composition was (in mM) 15 NaCl, 90 NMG, 3 MgCl 2 , 5 CaCl 2 , 
10 nitrilotriacetic acid, 10 HEPES, pH 7.3 (adjusted with MES). 
All free Ca values given in this article were calculated with WEB-
MAXC (http://www.stanford.edu/~cpatton/maxc.html) ( Patton 
et al., 2004 ). Other solutions employed were FVPP solution ( Huang 
et al., 1998 ), a phosphatase inhibitor cocktail (110 NaCl, 5 NaF, 0.1 
Na 3 VO 4 , 2 EDTA, 10 Na 4 P 2 O 7 , 20 HEPES), EDTA buffer solution 

( Ostrowicz et al., 2008 ). In these cases, the SNARE 

(soluble  N -ethylmaleimide – sensitive factor attachment 

protein receptor) proteins are clearly implicated to ini-

tiate fusion, and in general are thought to do so by asso-

ciating and perturbing the two membranes involved. 

As introduced in an accompanying article (Yaradanakul 

et al., 2008), phosphoinositides and their derivatives 

are presently thought to importantly modify SNARE-

dependent fusion processes ( De Matteis and Godi, 2004 ). 

Evidence from PC12 cells suggested that formation 

of phosphatidylinositol 4,5-bisphosphate (PI(4,5)P 2 ) 

microdomains at syntaxin clusters can activate the exo-

cytotic sites ( Aoyagi et al., 2005 ). PI(4,5)P 2  appears to 

be required for  “ priming ”  of vesicles in pancreatic  �  

cells ( Olsen et al., 2003 ) and the yeast vacuole fusion 

process ( Mayer et al., 2000 ), and it regulates the releas-

able vesicle pool size in chromaffi n cells ( Milosevic 

et al., 2005 ). In dense core vesicle fusion, PI(4,5)P 2  

acts via the calcium-dependent activator protein for 

secretion (CAPS) to regulate vesicle recruitment and 

increase the initial rate of fusion ( Loyet et al., 1998 ; 

 Grishanin et al., 2004 ;  Jockusch et al., 2007 ;  Speidel 

et al., 2008 ). Furthermore, PI(4,5)P 2  is suggested in a 

liposome – liposome fusion system to promote fusion 

directly via its interaction with the neuronal Ca sensor, 

synaptotagmin (Syt) I ( Bai et al., 2004 ). Finally, PLCs, 

which cleave PI(4,5)P 2  to produce diacylglycerol (DAG) 

and inositol triphosphate (IP 3 ), are implicated to regu-

late some vesicle fusion processes ( Fukami et al., 2001 ; 

 Jun et al., 2004 ), and, in general, the conversion of large 

phospholipid head groups to smaller ones is expected 

to favor fusion of phospholipid vesicles. Other phospho-

inositides, such as phosphatidylinositol 3,4,5-triphosphate 

(PIP 3 ) and phosphatidylinositol 3-phosphate (PI(3)P) 

also play important roles in membrane traffi cking, 

including events leading up to fusion ( Lindmo and 

Stenmark, 2006 ). For example, inhibition of a class IA 

PI(3) kinase (PI(3)K), which produces PIP 3 , reduces 

 receptor-mediated degranulation in mast cells ( Ali et al., 

2004 ). PI(3)K-C2 � , which produces mainly PI(3)P, is 

also required for the ATP-dependent priming of SGs in 

neurosecretory cells ( Meunier et al., 2005 ). 

 From the various methods used to monitor mem-

brane fusion, membrane capacitance measurements 

give the highest signal and temporal resolution, and the 

development of improved excised patch models to ana-

lyze and manipulate fusion would have important ex-

perimental advantages of high resolution recording 

with free access to the cytoplasmic membrane side. Ef-

forts to date have used chromaffi n cells ( Dernick et al., 

2003 ) and the insulin-secreting INS-1 cells ( MacDonald 

et al., 2005 ). In the present study, we describe the use 

of giant excised membrane patches (pipette diameter 

 � 10 – 15  μ m, patch size  � 2 – 4 pF) to attempt to preserve 

more fusion-capable vesicles in a confi guration that al-

lows free access to the cytoplasmic side. In short, we 
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divided into two parts and fi tted separately to exponential func-
tions. For curve fi tting, the steady-state current ( I  �    =  b  in  Fig. 1 A ) 
was determined as the asymptote of current from the averages of 
three consecutive data sections of equal length ( A ,  B , and  C ;  Fig. 
1 B  dashed sections): 

   b
B AC
B C A

=
−
− −

2

2
.    (2) 

 This equation is the solution for the asymptote,  b , of the 
three simultaneous functions,  A   =   b   +   Y*e -t/ �   ,  B   =   b   +   Y*e -(t+x)/ �   , and 
 C   =   b   +   Y*e  � (t+2x)/ �   . The steady-state current was then subtracted 
from the trace, and the data range from the peak current to 
a point located at  � 3 �  (estimated as peak current times  e   � 3 ;  Fig. 
1 B,  solid section) was used for fi tting via linear regression to de-
termine the slope and intercept at zero time, namely  � 1/ �  and 
ln (a  �  b) , respectively. 

 Our routine to calculate cell capacitance ( Cm ), membrane 
resistance ( Rm ), and access resistance ( Ra ) can be derived as 
follows. Membrane voltage ( V  (t) ) approaches a steady state ( Vss ), 

   Vss
VcRm

Ra Rm
=

+
,    (3) 

 as a function of the command voltage,  Vc  (peak-to-peak step = 
 2Vc ), with a time constant,  � , of  Cm/(1/Ra + 1/Rm) . For square 
wave perturbation, membrane voltage during the pulse is given by 
the exponential function, 

   V fVss Vss f et
t

( )
/ ,= − + +( ) −( )−1 1 τ    (4) 

 where  f  is the fraction of  Vss  across the membrane at the end of 
the voltage step of duration,  � . Solving for  f  with  t   =    �  , 

   f
e
e

=
−
+

−

−
1

1

Δ

Δ

/

/
,

τ

τ
   (5) 

 and membrane voltage at the beginning of the voltage step is 

   V
fVcRm

Ra Rm( ) .0 =
−

+
   (6) 

 From the steady-state current, 

   b
Vc

Ra Rm
=

+
,    (7) 

(140 NaCl, 2 EDTA, 20 HEPES), and protein dialysis solution 
(140 NaCl, 0.3 EGTA, 0.3 ZnSO 4 , 20 HEPES, 2  � -mercaptoetha-
nol). For whole-cell experiments presented in  Fig. 7 , the standard 
solutions described previously (Yarandanakul et al., 2008) were 
employed. For  Fig. 8 , results in panel A employed the standard 
solution with 70 mM LiOH substituted for NMG. The cytoplasmic 
solution was modifi ed by addition of 200 mM sucrose and dilu-
tion by 30% to generate the hyper- and hypoosmotic solutions, 
respectively. In Fig. 8 B, the standard solutions were employed 
with NMG (aspartate) reduced by 80 mM to generate the hypoos-
motic extracellular solution. The control solution was generated 
by adding 160 mM sucrose to this solution. In Fig. 8 C, the solu-
tion given above for RBL cells was employed. Hyperosmotic cyto-
plasmic solution was generated by addition of 200 mM sucrose, 
and hypoosmotic extracellular solution was generated by deletion 
of 80 mM NMG. 

 Recording Software 
 Capacitance measurement software, Capmeter 6, was developed 
in MATLAB using its data acquisition toolbox (R2006b; The 
MathWorks). Three major on-line functions were developed: (1) 
a software lock-in amplifi er, (2) routines for continuous cell pa-
rameter determination via square wave voltage perturbation, and 
(3) data smoothening and deglitching routines. To synchronize 
the timing of analogue output and input, a 1-mV trigger signal 
was added to the sine or square wave, usually at 100 Hz. For the 
lock-in amplifi er function, the phase-sensitive detector of the pro-
gram multiplied the current with either an in-phase or an orthog-
onal reference signal. The direct-current (DC) component of the 
product was extracted by averaging to cancel the non-DC noise. 
The double of the DC component was assigned to  X  or  Y  where 
the in-phase or the orthogonal reference signal was employed, re-
spectively. The optimal phase angle,  	 , was determined by small 
changes of the optimally adjusted capacitance compensation of 
the patch clamp as follows: 

   θ θ= −
−
−

⎛
⎝⎜

⎞
⎠⎟0

0

0

arctan ,
X X
Y Y

   (1) 

 where  	  0  (and  X  0 ,  Y  0 ) and  	  (and  X ,  Y ) represent values before 
and after changing capacitance compensation, respectively. 

 For square wave perturbation (time-domain method; see  Fig. 1 ), 
continuous square pulses were applied, and current transients 
were recorded and analyzed on-line using Capmeter 6.  The aver-
age current (i.e., the DC component) was fi rst calculated and 
subtracted from the total current. The resulting trace was then 

 Figure 1.   Method to determine whole-cell capac-
itance via square wave perturbation. For whole-
cell recording from cells with time constants  > 50 
 μ s, square pulses were employed at 0.5 kHz with 
an amplitude of 20 mV. Model current is shown 
in A. Peak current,  a , and the projected steady-
state current,  b , were determined as described in 
Materials and methods. (B) Half of the current 
from a typical recording (dots) with the fi tted 
exponential function used to determine cell pa-
rameters is shown. The asymptote of current was 
determined using the averages of three equally 
spaced data sections (dashed sections) according 
to Eq. 2, given in Materials and methods. The as-
ymptote was subtracted and the data range from 
the peak to a point located at  � 3 � , estimated as 
peak current times  e   � 3   , was used to determine the 
exponential constants via linear regression of the 
log of the decaying current transient (solid line).   
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 Patch Amperometry 
 The setup was connected according to  Dernick et al. (2005)  with 
some modifi cations. In brief, two Axopatch-1D amplifi ers were 
used. One of the headstages was connected to the bath for capaci-
tance recording, the other one was connected to the carbon elec-
trode for recording the amperometric current, and the patch 
pipette was the ground. The carbon electrodes were made from 
7- μ m carbon fi bers (C005711; Goodfellow Corporation) and 
quartz capillaries (Polymicro Technologies). Flowable silicone 
windshield/glass sealer (Permatex) was used to insulate the car-
bon fi ber, and the tip was cut to expose the carbon surface before 
installing ( Fig. 2 A ). The carbon electrode was installed through 
the infusion line of the pipette holder and connected to the am-
plifi er using 3 M KCl and Ag/AgCl wire. The electrode was moved 
as close as possible to the patch membrane and a holding poten-
tial of 0.7 V was applied. The amperometric signals were low-pass 
fi ltered at 5 kHz by the amplifi er and digitally fi ltered again by av-
eraging signals acquired in a time period of 1 ms using Capmeter 
1 and then digitized at 500 Hz. 

 Recombinant Proteins and Antibodies 
 The wild-type and mutant (E234Q) GST-tetanus toxin light chain 
fusion constructs were provided by T. S ü dhof. Recombinant pro-
teins were purifi ed from bacteria, BL21, according to the manu-
facture ’ s protocol (GE Healthcare). Proteins were eluted from 
the beads using reduced glutathione and then dialyzed against 
buffer containing ZnSO 4  (toxin fi nal concentration, 200 nM). 
Anti-PI(4,5)P 2  antibody (1:50) was provided by K. Fukami. Anti-
PI(3)P (1:100) and anti-PI(4)P (1:100) antibodies were purchased 
from Echelon Biosciences. The PI-transfer protein (140  μ g/ml) 
was generously provided by V.A. Bankaitis (The University of 
North Carolina, Chapel Hill, NC). 

 Data Analysis 
 Except for experiments done with MEFs, all experiments were 
performed in a one control vs. one test result pattern. For excised 
patch records, the capacitance traces were well described by a 
monoexponential function with a small linear drift component: 

   Y b a e ctkt= + −( ) +−1 ,    (12) 

 where  a  represents the theoretical maximal amplitude,  k  is the 
rate constant used in statistical analysis, and  c  represents the 
slow component. For patches with  a   <  0, the amplitude of zero 
was assigned. To calculate the ratio of active patches, we used a 
threshold of 50 fF to defi ne active and inactive ( a   <  50 fF) patches. 
We mention that we were not able to determine the capacitance 
of excised patches routinely, so that normalization of results to 
patch size is impossible. Also, we mention that methodologically 
induced capacitance changes during solution changes are in the 
range of a few tens of femtofarad (see  Fig. 3 A ). Thus, we typically 
calculated a ratio of active patches for a group of experiments, 
as well as the average capacitance changes, and rate constants 
were collected and compared from the patches that met the  
“ active ”  criterion. 

 For whole-cell experiments, phase-sensitive detection was also 
used off-line to improve the signal-to-noise performance of the 
exponential fi tting routine with square wave perturbation, as fol-
lows. The phase angle was determined at which  C , the absolute 
capacitance determined by the exponential analysis, and  Y  had 
the highest cross-correlation. Off-line phase angle adjustment was 
done using equations, 

   X X Yadj = +cos( ) sin( )θ θ    (13) 

   Y X Yadj = − +sin( ) cos( )θ θ    (14) 

 and the peak current, 

   a
Vc V

Ra
=

− ( )
,

0    (8) 

 the solutions for  Rm, Ra , and  Cm  are 

   Rm
Vc a b
b a fb

=
−( )
+( ) ,    (9) 

   Ra
Vc
b

Rm= − ,    (10) 

   Cm
Ra Rm

= +⎛
⎝⎜

⎞
⎠⎟τ

1 1
.    (11) 

 Our algorithm was verifi ed by using it to retrieve cell parameters 
from model cell simulations using the MATLAB component, 
Simulink, as well as our own routines. In the absence of noise and 
a fi lter function, the algorithm retrieved simulated cell parame-
ters with errors of  � 1 ppm. With cell parameters that would be 
considered experimentally unacceptable (e.g., 200 pF, a  Ra  of 20 
M Ω , a  Rm  of 50 M Ω , and voltage oscillation at 200 Hz), the algo-
rithm still retrieved the parameters with an accuracy of 99.9%. 

 Signals were usually acquired at 100 kHz, and digital fi ltering 
was performed by averaging signals in an adjustable time window. 
Data were usually digitized at 100 Hz and a running mean/me-
dian fi lter was applied to the digitized data when data smooth-
ening/deglitching was desired. Program Capmeter 1 was used 
with the hardware lock-in amplifi er, serving as a plain data re-
corder with digital fi ltering and data smoothening/deglitching 
functions. The programs are available for download at http://
capmeter.googlepages.com. 

 Patch Clamp and Data Acquisition 
 We used National Instruments board PCI-6052E to generate the 
command potential and collect signals, and we used an Axopatch-
1D (Molecular Devices) for patch clamp. Electrode tips were 
dipped in molten hard dental wax (Kerr Corporation) before cut-
ting and polishing to reduce stray capacitance. For excised patches, 
electrodes with  � 15  μ m inner diameters were employed. The giant 
patch was excised by essentially aspirating the cell into a second 
pipette with a sharp, unpolished edge ( Hilgemann and Lu, 1998 ). 
The patches were positioned in front of a temperature controlled 
( � 30 ° C) solution outlet immediately after excision. Membrane fu-
sion was triggered by moving the patch to a solution outlet contain-
ing 0.2 mM free Ca. Capacitance and conductance were measured 
using the Lindau-Neher method ( Lindau and Neher, 1988 ). Sine 
waves generated by Capmeter 6 with 20 mV peak-to-peak amplitude 
at 2 kHz were applied to the cell. The current output from the 
patch clamp was low-pass fi ltered at 10 kHz. When sine wave pertur-
bation was employed, the optimal phase angle was determined as 
described above. When patch amperometry was employed, a hard-
ware lock-in amplifi er (SR830; Stanford Research Systems) was em-
ployed, as it allowed a higher signal-to-noise ratio at oscillation 
frequencies  > 3 kHz. Sine waves with V rms  of 20 mV at 10 kHz were 
usually employed. The signals were recorded by Capmeter 1. 

 For whole-cell recording, with  � 5  μ m inner diameter pipette 
tips, membrane fusion was initiated via perfusion of Ca-contain-
ing (nitrilotriacetic acid-bufferd) solution through a quartz capil-
lary with a 40  μ m outlet, manipulated within the patch pipette 
to a distance of 50 � 100  μ m from the cell opening ( Hilgemann 
and Lu, 1998 ). Square wave 20 mV (peak-to-peak) perturbation at 
0.5 kHz was employed in all experiments presented in this article 
for whole-cell capacitance recording, with cell parameters deter-
mined by Capmeter 6 as described above. 

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/132/1/51/1913405/jgp_200709950.pdf by guest on 18 January 2026



  Wang and Hilgemann 55

 R E S U LT S 

 Distinct Vesicle Populations in RBL Cells 
 To study serotonin secretion in RBL cells, carbon elec-

trodes were prepared as described in Materials and 

methods and mounted in a quartz tube with a Ag/AgCl 

electrode that could be inserted into the patch pipette 

( Fig. 2 A ) to detect the released serotonin.  In the cell-

attached confi guration, application of 2  μ M calcium 

ionophore, A23187, induced massive membrane fusion 

that was detected as an increase of membrane capaci-

tance ( Fig. 2 B ). Two types of vesicle populations were 

observed; one is the secretory granule (SG) pool ac-

companied with big capacitance steps and amperomet-

ric spikes; the other one observed here at the end of the 

trace contains vesicles of much smaller size that are evi-

dently not fi lled with serotonin (non-SG pool). The ca-

pacitance steps of SG fusion were in the range of tens of 

fF, indicating that the diameters of the SGs were in the 

submicro- to micrometer range, consistent with values 

reported by most ( Spudich and Braunstein, 1995 ) but 

not all investigators ( Smith et al., 2003 ). 

 The whole-cell capacitance traces were fi tted with a delayed 
monoexponential function: 

   C b a e e ctk t n k t= + − ⋅ − +− −
( ) ( ) ,1 11 2    (15) 

 where  a  and  b  represent the vesicle pool size and the initial 
cell capacitance, respectively. The constants  k 1   and  n  reproduce 
reasonably the observed delays, and the constant  k  2  is the rate 
constant used for statistical comparison. The Ca-activated con-
ductance increase was used as a reference for determining the 
 t 0   point. 

 For all bar graphs in which the amplitude and ratio of active 
patches are presented, numbers in the bars give the total number 
of patches; for other panels, numbers represent the numbers of 
valid data after removing outliers with Grubbs ’  test. Statistical sig-
nifi cance was determined by Student ’ s  t  test. All error bars in fi g-
ures represent SEM. 

 Online Supplemental Material 
 The programs used to determine and monitor cell electrical pa-
rameters are included as online supplemental material (available 
at  http://www.jgp.org/cgi/content/full/jgp.200709950/DC1 ) 
together with instructions to run the programs. Zip fi les are in-
cluded for two programs employed in this article, Capmeter1 and 
Cameter6. These fi les can be downloaded independently for use 
with Matlab and National Instruments acquisition equipment. 

 Figure 2.   Amperometric and capacitance measurement in RBL cells. (A) Schematic illustration of the intra-patch pipette carbon elec-
trode. Carbon electrodes were prepared to allow facile insertion and manipulation in the patch pipette holder employed. (B) In the 
cell-attached confi guration, 2  μ M of calcium ionophore, A23187, triggers profuse exocytosis. Two distinct vesicle pools are observed. 
One is the secretory granule (SG) pool with large-amplitude capacitance steps and amperometric spikes upon stimulation. The other 
pool (at the end of the trace) contains vesicles of much smaller size that do not release serotonin (non-SG pool). (C) Amperometric 
recording of SG fusion in an  � 20  μ m (diameter) excised patch. (D) Expansion of C. In most cases, SGs are lost from membrane patches 
during the excision procedure. Occasionally, when SGs are preserved, fusion gives rise to capacitance steps of tens of fF, indicating that 
the diameter of the granules is close to micrometer range. A typical fusion event with fusion pore dilation is marked between two broken 
lines. A gradual increase of capacitance, transient increase of conductance, and the amperometric foot-signal is observed. Here and in 
all subsequent fi gures, numbers given between axis ticks indicate the tick interval.   
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to manipulate the cytoplasmic membrane side. Capaci-

tance traces were fi tted as described in Materials and 

methods ( Y  in  Fig. 3 B ), defi ning patches with capaci-

tance increases smaller than 50 fF as inactive (see  Fig. 3 

A , left), and patches with more robust non-SG fusion as 

active patches (see  Fig. 3 A , right).  Notably, the exocy-

totic response often appeared to be followed by an en-

docytotic response, even in the presence of Ca, when 

ATP was present on the cytoplasmic side (see  Fig. 3 A ) 

 To test whether the non-SG fusion is SNARE depen-

dent, we treated the patches with tetanus toxin (TeTx) 

light chain at a concentration of 200 nM for 2 min. As 

shown in  Fig. 3 C , both the amplitude and the ratio of 

active RBL patches were decreased signifi cantly by treat-

ment with the wild-type toxin, compared with the inac-

tive mutant form, indicating that the fusion is indeed 

SNARE dependent. Notably, however, the treatment of 

patches with 1 mM  N -ethylmaleimide (NEM) did not 

block non-SG fusion (Table I), implying that SNARE cy-

cling, which is blocked by NEM ( Xu et al., 1999 ), is not 

required for non-SG fusion in excised patches.  As men-

tioned in the Introduction, it is reported that non-SG 

fusion in bovine chromaffi n cells is toxin insensitive 

( Xu et al., 1998 ). A simple explanation for the discrep-

ancy to our data is that RBL and chromaffi n cells use 

different sets of SNAREs for non-SG fusion, and the 

SNAREs accounting for non-SG fusion in chromaffi n 

cells are toxin resistant. Another possibility is that the 

SNAREs of non-SGs in chromaffi n cells are complexed, 

such that neurotoxins cannot cleave them ( Chen et al., 

2001 ). As described later, in whole-cell recordings 

with RBL cells, the amplitudes of non-SG fusion usually 

 Empirically, we found that treating the cells with la-

trunculin A facilitated both the formation of giant ex-

cised patches and the preservation of non-SGs on the 

patches. Nevertheless, our success rate to preserve SGs 

in the RBL giant patches was prohibitive for routine 

studies, perhaps because the SGs are not predocked at 

the membrane in RBL cells ( Smith et al., 2003 ) in a sta-

ble fashion and/or because the docking is disrupted by 

membrane suction. We also attempted to develop the 

INS-1 cell line and bovine chromaffi n cells for excised 

giant patch studies. Our experiences with the INS-1 

cells were similar to those reported for RBL cells. Batch-

to-batch variability was even greater, and we were not 

able to identify a reliable line. Bovine chromaffi n cells 

readily allowed seal formation with large-diameter pi-

pettes, but excised giant patches were not stable with 

signifi cant solution fl ow, thereby greatly limiting their 

use. In short, the giant patch approaches did not facili-

tate, in our hands, excised patch analysis of SG fusion 

processes. Occasionally, high resolution recordings 

were indeed obtained with clear capacitance steps and 

amperometric spikes as shown in  Fig. 2 (C and D)  for 

RBL patches. The fact that only non-SGs were preserved 

on the great majority of excised patches implies that the 

non-SGs are in close vicinity to the plasma membrane 

and might be associated with the membrane physically. 

 Non-SG fusion is SNARE Dependent but NEM Insensitive 
in Excised Patches 
 The physical characteristics of non-SGs are not well es-

tablished, and we therefore used the giant patch ap-

proach to analyze this process in some detail, in particular 

 Figure 3.   Non-SG fusion is 
SNARE dependent. (A) Two 
typical recordings from ex-
cised patches are shown. In 
the left panel, the amplitude 
is smaller than 50 fF, which 
is close to the artifact caused 
by moving the patch. There-
fore, this patch is designated 
 “ inactive. ”  In the right panel, 
robust non-SG fusion ( > 50 fF) 
is observed in an  “ active ”  
patch. (B) The same trace is 
fi tted to a mono-exponential 
function (rate constant,  k ) 
with a linear  “ creep ”  compo-
nent ( c ). (C) Incubation of 
patches with 200 nM tetanus 
toxin light chain (TeTx) for 
2 min blocks fusion while the 
mutant toxin (E234Q) has no 
effect, indicating that non-SG 
fusion is SNARE dependent.   
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et al., 2008), and we describe here that ATP-hydrolyzing 

processes clearly support non-SG fusion in excised 

patches. In some cases, the absence of ATP caused com-

plete failure of fusion, and the ability to fuse was re-

stored when ATP and GTP were added back to the 

solution (see  Fig. 4 A ).  That ATP is the critical factor for 

restoration of fusion was verifi ed in several experiments 

in which ATP was applied without GTP ( Fig. 3 A, Fig. 4 

B , and unpublished data). Further experiments sup-

ported the notion that ATP hydrolysis is essential to 

maintain fusion because the nonhydrolyzable ATP ana-

logue, AMP-PNP (2 mM), did not substitute for ATP 

( Fig. 4 B ). 

 Since the decrease of fusion after removal of ATP, and 

with substitution by AMP-PNP, takes much longer than 

expected for washout of ATP from the patch, ATP-hy-

drolyzing reactions clearly are not part of the fi nal fusion 

process. The ATP mechanism(s) that supports fusion in 

the longer term could involve the phosphorylation of 

exceed 50% of the basal cell capacitance ( Figs. 6 and 7 ). 

Non-SG fusion in chromaffi n whole-cell recordings is 

usually substantially smaller in absolute and relative 

terms ( Xu et al., 1998 ), indicating that its non-SG pool 

is much smaller and possibly already primed and there-

fore toxin resistant. 

 ATP Hydrolyzing Processes Support Non-SG Fusion 
 It is well documented that ATP is required by the NSF 

(NEM-sensitive factor) to disassemble the cis-SNARE 

complex in the SNARE cycle ( Whiteheart et al., 1994 ; 

Jahn et al., 2003), and that the addition of Vam7p (a 

soluble SNARE) bypasses the requirement of ATP in the 

yeast vacuole fusion system (Thorngren et al., 2004). 

Since non-SG fusion in excised patches is NEM insensi-

tive (Table I), one might expect that the non-SG fusion 

would be ATP independent. In whole-cell recording, re-

placement of ATP with a nonhydrolyzable analogue was 

found to signifi cantly reduce non-SG fusion (Yarandanakul 

 TA B L E  I 

 Effects of Various Reagents on Non-SG Fusion in Excised Patches 

Paired control/testing condition Amplitude (fF) Ratio of active patches  a  Rate constant(1/s) a,   b  

mean  ±  SEM ( n ) mean  ±  SEM ( n ) mean ± SEM ( n )

TeTx E234Q 209.2  ±  60 (9) 0.89  ±  0.11 (9) 0.3  ±  0.04 (7)

TeTx WT 10.9  ±  8.4 (10)  d  0.1  ±  0.1 (10)  e  0.36 (1)

ATP/GTP 160.8  ±  42.2 (18) 0.67  ±  0.11 (18) 1.52  ±  0.27 (12)

NEM/ATP/GTP 138.5  ±  43.7 (18) 0.5  ±  0.12 (18) 1.01  ±  0.21 (9)

ATP 119.8  ±  31.8 (12) 0.58  ±  0.15 (12) 0.8  ±  0.11 (7)

AMP-PNP 35.3  ±  9.4 (13)  c  0.15  ±  0.1 (13)  c  1.04  ±  0.27 (3)

Mg 2+  buffer 53.3  ±  19.9 (10) 0.3  ±  0.15 (10) 1.12  ±  2e-3 (2)

EDTA 168.6  ±  70.7 (10) 0.8  ±  0.13 (10)  c  1.5  ±  0.34 (8)

EDTA 1min 221.3  ±  106.2 (5) 0.8  ±  0.2 (5) 0.72  ±  0.11 (4)

neomycin/EDTA 102.4  ±  38.5 (5) 0.8  ±  0.2 (5) 0.47  ±  0.1 (3)

FVPP 1min 267.3  ±  61 (8) 1 (8) 0.75  ±  0.29 (8)

PIP 2 Ab/FVPP 118.3  ±  25.6 (7) 0.86  ±  0.14 (7) 1.12  ±  0.3 (6)

FVPP 2min 78.2  ±  39 (6) 0.5  ±  0.22 (6) 0.32  ±  0.09 (2)

PIP 2 Ab/FVPP 128.9  ±  40.4 (6) 0.67  ±  0.21 (6) 0.68  ±  0.17 (4)

Mg 2+  buffer 93.1  ±  44.2 (13) 0.38  ±  0.14 (13) 1.08  ±  0.35 (5)

neomycin 71  ±  22.9 (14) 0.29  ±  0.13 (14) 0.62  ±  0.21 (5)

Mg 2+  buffer 103.1  ±  47.3 (14) 0.43  ±  0.14 (14) 0.92  ±  0.19 (6)

PIP 2 Ab 92.6  ±  46.8 (14) 0.43  ±  0.14 (14) 1.17  ±  0.13 (5)

ATP 76.6  ±  16.9 (14) 0.64  ±  0.13 (14) 1.06  ±  0.23 (9)

staurosporine/ATP 50.3  ±  13.8 (15) 0.47  ±  0.13 (15) 1.25  ±  0.34 (7)

ATP 62.2  ±  13.5 (20) 0.6  ±  0.11 (20) 0.83  ±  0.17 (11)

wort/adeno/ATP 6.9  ±  3.1 (21)  e  0.05  ±  0.05 (21)  e  0.88 (1)

ATP 47.3  ±  26.4 (8) 0.38  ±  0.18 (8) 1.04  ±  0.32 (3)

LY294002/ATP 159.1  ±  70.9 (7) 0.57  ±  0.2 (7) 1.49  ±  0.19 (4)

ATP 104.9  ±  75.1 (4) 0.5  ±  0.29 (4) 1.87  ±  0.51 (2)

PI-TP/ATP 202  ±  50.4 (4) 1 (4) 1.28  ±  0.46 (4)

TeTx, tetanus toxin light chain, 200 nM; NEM,  N -ethylmaleimide, 1 mM; AMP-PNP, 2 mM; neomycin, 500  
 M; PIP 2 Ab, 1:50; staurosporine, 200 nM; wort, 

wortmannin, 4  
 M; adeno, adenosine, 0.5 mM; LY294002, 100  
 M; PI-TP, PI-transfer protein, 140  
 g/ml.

 a Counts patches with amplitude  ≥ 50 fF.

 b Outliers are removed using Grubbs ’  test.

 c P < 0.05.

 d P < 0.01.

 e P < 0.001.
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tion did not block non-SG fusion. Furthermore, appli-

cation of anti-PI(4,5)P 2  antibodies in FVPP solution did 

not block fusion (Table I), although the concentrations 

of antibody employed potently blocked PI(4,5)P 2 -sens-

tive currents in excised patches (e.g., outward Na/Ca 

exchange current, unpublished data). These results 

suggest that neither the synthesis nor the hydrolysis of 

PI(4,5)P 2  can be a requirement for non-SG fusion. As 

shown in Table I, no protecting effect of these agents 

was observed when they were applied in a magnesium-

containing solution. Clearly, magnesium-dependent hy -

drolysis of PI(4,5)P 2  cannot be the mechanism of 

rundown of the fusion process. 

 Non-SG Fusion Is Probably Phosphoinositide Independent 
 Since the ATP mechanism does not appear to involve 

PI(4,5)P 2 , we used other inhibitors to probe potential 

phosphorylation targets. As shown in Table I, treating 

the patches with staurosporine, a broad-spectrum pro-

tein kinase inhibitor, was not able to block fusion. Inter-

estingly, treating the patches with high concentrations 

of wortmannin (4  μ M) and adenosine (0.5 mM), which 

inhibit multiple classes of PI(3)Ks and PI(4)Ks ( Balla 

et al., 2008 ), signifi cantly decreased non-SG fusion ( Fig. 5 ), 

implying that PI(3)P and/or PI(4)P might be respon-

sible for the ATP dependency.  Therefore, we tested for 

roles of individual lipids by applying specifi c antibodies 

in whole-cell recording experiments before triggering 

fusion via Ca infusion. Impressively, neither anti-PI(3)P 

nor anti-PI(4)P antibody was able to block or slow down 

non-SG fusion, and a combination of both antibodies 

was also ineffective ( Fig. 6 ).  It seems unlikely that PIP 3  is 

involved because another PI(3)K inhibitor, LY294002, 

also did not block fusion in excised patches (Table I). 

In fact, pretreatment of the cells with a submicromolar 

concentration of wortmannin, which blocks PIP 3  pro-

ducing PI(3)K, and treatment with genistein, an inhibi-

tor of tyrosine kinases that are typically  activated in this 

target proteins/lipids and/or the use of ATP in other 

types of energy-dependent reactions, as in the case of 

NSF. In favor of the former idea, we could preserve the 

fusion capability in the absence of ATP by adding EDTA 

to the solution (see Table I). Since magnesium is the 

only divalent ion in our recording solution, we hypoth-

esized that ATP is used to phosphorylate one or more 

targets, and that activity of the counteracting phospha-

tases would be magnesium dependent. 

 ATP-dependent Generation of PI(4,5)P 2  Is Not Critical 
 As mentioned earlier, PI(4,5)P 2  has been implicated in 

multiple aspects of fusion processes, and we therefore 

tested if the role of ATP is to maintain PI(4,5)P 2  in the 

excised patches and, as well, if the cleavage of PI(4,5)P 2  

is required for triggering membrane fusion. Applica-

tion of a very high concentration of neomycin (500  μ M) 

to bind PI(4,5)P 2  ( Eberhard et al., 1990 ), and probably 

other anionic phospholipids, in a magnesium-free solu-

 Figure 4.   ATP hydrolysis is required for supporting non-SG fusion. (A) Without ATP, Ca 2+  application fails to trigger exocytosis in this 
patch, but exocytosis was restored by placing the patch in ATP/GTP-containing solution for an additional minute. (B) AMP-PNP cannot 
preserve fusion, indicating that the hydrolysis of ATP is required to support non-SG fusion.   

 Figure 5.   Non-SG fusion in excised patches is wortmannin/
adenosine sensitive. Incubation of patches with the PI-kinase in-
hibitors wortmannin (wort; 4  μ M) and adenosine (0.5 mM) sig-
nifi cantly decreases the average fusion magnitudes and the ratio 
of active patches.   
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curred with a time constant of 26  ±  3.1 s ( n  = 5). In cells 

that were perfused with 5  μ M wortmannin and 0.5 mM 

adenosine for 2 min, the average increase was 114  ±  

5.2%, and the time constant was 30  ±  3.1 s ( n  = 6).  Fig. 

7 B  shows the equivalent results for whole-cell BHK re-

cording using NCX1 to initiate membrane fusion. In 

these experiments, we tested adenosine (0.5 mM) alone, 

as well as the same adenosine/wortmannin combina-

tion used in RBL cells. After 2 min cytoplasmic infusion 

of the respective solutions, the peak exchange currents 

were modestly reduced ( � 20%), at just the level of sig-

nifi cance, but the percent increment of cell capacitance 

upon activating exchange currents ( � 65% in these ex-

periments) was unchanged by either treatment. 

 Non-SG Fusion in Whole-Cell Recording Is Blocked by 
Cell Swelling 
 The lack of a signifi cant effect of these treatments in 

whole-cell recordings suggested that a mechanism be-

comes important to maintain fusion capability in the 

excised patch, which is not critical under the usual con-

ditions of whole-cell recording. We reasoned that me-

chanical forces, exerted on the membrane during seal 

formation and patch excision, might disrupt the fusion 

machinery, and ATP-hydrolyzing processes would then 

become essential to restore the fusion capability. In 

other words, membrane stretch and/or distention (i.e., 

fl attening of invaginations) might be an important fac-

tor, and accordingly we tested whether cell swelling 

might mimic effects of seal formation and excision.  Fig. 

8  describes two sets of results, one from BHK cells and 

pathway ( Galetic et al., 1999 ), failed to block non-SG 

fusion in whole-cell recording (unpublished data). 

 We also used a PI transfer protein ( Mousley et al., 

2007 ) to remove PI from excised patches to test if there 

is any role of PIs at all in non-SG fusion. As shown in 

Table I, fusion was not inhibited by a concentration that 

we found to inhibit the ATP-dependent stimulation of 

Na/Ca exchange current in excised patches, a process 

determined to refl ect phosphorylation of PI  ( Nasuhoglu 

et al., 2002 ). All of these negative results support the 

conclusion that non-SG fusion is PI independent. The 

actual targets and the specifi city of wortmannin and 

adenosine in this study must therefore be questioned, 

and as described next there is an important difference 

between excised patches and whole-cell responses in 

this regard. 

 Wortmannin/Adenosine Insensitivity of Non-SG Fusion in 
Whole-Cell Recording 
 The pronounced inhibition of non-SG fusion in excised 

patches by the wortmannin/adenosine combination 

was unexpected, as we had tested these agents in whole-

cell recording of Ca-induced fusion in BHK fi broblasts 

and found no effect. Therefore, we reexamined this is-

sue in whole-cell recordings from both RBL cells and 

from BHK cells, as shown in  Fig. 7 .  Individual records 

from RBL cells are shown in  Fig. 7  A with the composite 

statistics for the dataset. Pipette perfusion of solution 

containing 200  μ M free Ca, as in  Fig. 6 , was initiated 2 

min after opening cells. In control cells, the average in-

crease of cell capacitance was 119  ±  12%, and it oc-

 Figure 6.   Non-SG fusion is 
not blocked by antibodies 
against PI(3)P and PI(4)P. 
In whole-cell recording, anti-
bodies (1:100 dilution) were 
added to the cytoplasmic 
(pipette) solution, which was 
dialyzed into cells for 5 min 
before Ca 2+  was infused to 
trigger fusion. (A) A typical 
record from an RBL cell. The 
Ca 2+ -activated conductance 
rise was used to defi ne the  t 0   
point. (B) The rise of capaci-
tance was well described by 
the delayed monoexponen-
tial function given in the fi g-
ure. The variable  k 2   is the rate 
constant used for statistical 
analysis. The number of the 
data points was reduced to 
highlight the fi tted curve. An-
tibodies against PI(3)P (C), 
PI(4)P (D), and both (E) fail 
to block non-SG fusion.   

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/132/1/51/1913405/jgp_200709950.pdf by guest on 18 January 2026



60  Characterization of Nonsecretory Vesicle Fusion 

cells for 2 min in hypoosmotic solution and then moved 

them back into isoosmotic solution for 2 min before acti-

vating exchange currents. During the protocol, swelling 

and shrinkage of cells was clearly visible. As shown for 

post-swelling, the fusion response was partially restored. 

In a fourth experimental group, we tested whether the 

restoration of fusion might be blocked by wortmannin. 

Using the same protocol to allow restoration of fusion, 

inclusion of 5  μ M wortmannin in the pipette solution 

signifi cantly decreased the recovery of fusion responses 

after swelling (P  <  0.05). From three observations, we 

did not fi nd the adenosine/wortmannin combination 

to be more effective (unpublished data). Overall, these 

whole-cell results support the notion that membrane 

perturbation and/or stretch strongly inhibits non-SG 

fusion, and that biochemical processes are required to 

restore fusion capability. 

  Fig. 8 C  presents the equivalent experiments for RBL 

cells with membrane fusion induced by pipette perfu-

sion of cytoplasmic solution with 200  μ M free Ca, as 

in  Figs. 6 and 7 . Results for hyperosmotic cytoplasmic 

solution (with 200 mM added sucrose) and for hypoos-

motic extracellular solution (with NMG reduced by 

80 mM) are very similar to results with BHK cells. Mem-

brane fusion responses are reduced by 74 and 75%, 

respectively. Thus, the high sensitivity of the non-SG fusion 

process to inhibition by cell swelling is verifi ed across 

two cell lines and with different protocols to induce 

membrane fusion. 

 Synaptotagmin VII and PLCs Are Not Required for 
Non-SG Fusion 
 The non-SG pool in RBL cells can almost double the to-

tal surface membrane area ( Fig. 7 A and Fig. 8 C ), and 

it seems likely that this pool will become involved in the 

wound repair of the plasma membrane. Lysosomes have 

been suggested to be the major vesicles that undergo 

Ca-dependent exocytosis in nonsecretory cells ( Jaiswal 

et al., 2002 ) and in wound repair ( Chakrabarti et al., 

2003 ). Furthermore, it is suggested that the Ca sensor 

in lysosomal fusion is the synaptotagmin VII (Syt VII) 

( Chakrabarti et al., 2003 ). To test if Syt VII is important 

for non-SG fusion, we examined membrane fusion in 

mouse embryonic fi broblasts (MEFs) because, like RBL 

cells, they also have robust non-SG fusion, and knock-

out lines are available. As shown in  Fig. 9 B , non-SG 

fusion was still robust in  syt7  knockout MEFs (six 

observations).  Unlike results with RBL cells, it was nota-

ble that non-SG fusion in MEFs often involved fusion of 

large vesicles ( Fig. 9 , arrowheads). Whether such large 

vesicles can be lysosomes is unclear, but it is evident that 

both types of fusion are still robust when  syt7  is ablated. 

We conclude that Syt VII cannot be an important Ca 

sensor for non-SG fusion. 

 Relevant to the potential importance of phosphoino-

sidites, phospholipases, and alternative possible Ca sensors, 

one from RBL cells, both demonstrating strong in-

hibition of non-SG fusion by cell swelling.  We note that 

different BHK batches were employed in the two datas-

ets in A and B, and that, as often was the case, the aver-

age capacitance responses were substantially different in 

different batches. 

 In  Fig. 8 A , cell swelling was induced in BHK cells by 

using a cytoplasmic solution with addition of 200 mM 

sucrose, and shrinkage was induced by using a cytoplas-

mic solution diluted by 30%. Exchange currents were 

activated 2 min after opening cells and cell shape 

changes had clearly occurred. As shown in the top bar 

graphs, the peak exchange currents were not signifi -

cantly affected. Cell swelling was associated with a 76% 

decrease of the fusion response (P  <  0.01), whereas cell 

shrinkage with hypoosmotic cytoplasmic solution was 

without effect. 

 Next, we tested whether cell swelling by hypoosmotic 

extracellular solution also reduces membrane fusion. 

As shown in  Fig. 8 B , placement of cells in extracellu-

lar solution with NMG reduced by 80 mM (hypoosmotic 

outside) for 2 min before activating exchange current 

caused an 85% decrease of membrane fusion. To exam-

ine whether the effect of swelling is reversible, we placed 

 Figure 7.   Non-SG fusion in whole-cell recording is wortmannin/
adenosine insensitive. (A) Typical whole-cell capacitance records 
and composite statistics for RBL cells during cytoplasmic infusion 
of 200  μ M Ca with control cytoplasmic solution (top) and with 
5  μ M wortmannin and 0.5 mM adenosine (bottom). Differences 
are not signifi cant. (B) Exchange current densities (top) and ca-
pacitance responses (bottom) for BHK cells in which membrane 
fusion was activated by outward Na/Ca exchange current with 
control cytoplasmic solution (left bar graph), with 0.5 mM adeno-
sine (middle bar graph), and with 5  μ M wortmannin and 0.5 mM 
adenosine (right bar graph) are shown.   
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cient was  � 3. We stress, however, that Hill coeffi cients 

determined for non-SG fusion in BHK cells were also in 

the range of 2 (Yaradanakul et al., 2008). It is reported 

that the Hill coeffi cient and [Ca] 1/2  of Syt VII is  � 3.6 

and  � 0.9  μ M, respectively, in a liposome binding assay 

( Wang et al., 2005 ). Therefore, these results further 

support a conclusion that Syt VII is not likely to be the 

sensor for non-SG fusion. 

 D I S C U S S I O N 

 In this article, we have described some efforts over sev-

eral years to maintain and to monitor Ca-dependent 

exocytosis in giant excised patches. While nonsecretory 

vesicle fusion could be routinely monitored, in our 

hands neurotransmitter release was seldom maintained 

in the excised patches. Even in the case of non-SG fusion, 

we found it necessary to pretreat cells with agents that 

disrupt cytoskeleton to maintain fusion. That membrane 

we tested whether this type of membrane fusion in MEF 

cells was affected by deletion of three PLCs. No evident 

differences were found for membrane fusion episodes 

recorded using MEFs and excised patches from MEFs 

with deletion of PLC � 1, PLC � 1, and both PLC � 1 and 

PLC � 4 versus a control MEF cell line ( n   >  3 for all obser-

vations, unpublished data). 

 Ca Dependence of Non-SG Fusion in Excised RBL Patches 
 To further characterize the Ca-sensing machinery of 

non-SG fusion, we triggered fusion with different con-

centrations of free Ca in excised patches from RBL cells. 

The concentration – response data for free Ca versus 

rate of fusion shows a Hill coeffi cient of  � 2, an appar-

ent  K D   of  � 71  μ M, and a maximal rate constant of  � 2.1 

s  � 1  ( Fig. 10 ).  We point out that the two data points at 

low Ca concentrations were weighted to force the fi t 

through these points. Without weighting, these points 

were not well described by the fi t, and the Hill coeffi -

 Figure 8.   Non-SG fusion in whole-cell 
recordings is strongly inhibited by cell 
swelling. (A and B) Bar graphs give ex-
change current densities (top) and ca-
pacitance responses (bottom) for two 
batches of BHK cells in which mem-
brane fusion was activated by outward 
Na/Ca exchange current. (A) Effects 
of cytoplasmic osmolarity on fusion 
responses. The left bar graphs give re-
sults for isoosmotic solution, the mid-
dle bars for cytoplasmic solution with 
200 mM sucrose, and the right bars for 
cytoplasmic solution diluted 30% with 
distilled water. (B) Effects of extracel-
lular osmolarity on fusion responses. 
From left to right the bar graphs are 
with (1) standard extracellular solu-
tion for 2 min after cell opening, (2) 
standard extracellular solution with the 
NMG-aspartate concentration reduced 

by 80 mM for 2 min after cell opening, (3) standard solution reapplied for 2 min after applying hypoosmotic solution for 2 min, and (4), 
as in (3) with 5  μ M wortmannin in all cytoplasmic solutions. (C) Capacitance responses of RBL cells for pipette perfusion of cytoplasmic 
solution with 200  μ M free Ca. The left bar graph indicates the response magnitude for control cells, the middle graph for cells swollen 
with hyperosmotic cytoplasmic solution (200 mM sucrose) for 2 min, and the right bar for cells swollen with extracellular solution in 
which the NMG concentration was reduced by 80 mM.   

 Figure 9.   Synaptotagmin VII 
is not required for non-SG 
fusion. Whole-cell recordings 
from wild type (wt; A) and  syt7  
knockout (B) mouse embry-
onic fi broblasts (MEFs). Fusion 
remains robust in  syt7  knock-
out MEFs. Unlike results with 
RBL cells, non-SG fusion in 
MEFs often involves fusion of 
large vesicles (arrowheads).   
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sponses were robust and highly reliable in the same cell 

batch. Also, individual cell batches were encountered in 

which fusion did not run down in the absence of ATP 

and EDTA (unpublished data), while the loss of fusion 

over time in ATP-free solution was highly reliable in 

other batches. For these reasons, all experiments were 

done in a one control vs. one test result pattern, as 

pointed out in Materials and methods, and results can 

only be compared with data collected at the same time 

using the same batch of cells. 

 Our overall interpretation is that in the routine whole-

cell confi guration nearly all available vesicles eventually 

fuse to the plasma membrane, as there are no inactive 

cells, and the percentage increase of cell area so impres-

sively large in relation to the number of docked vesicles 

observed   (Yaradanakul et al., 2008). Since the fusion 

process is strongly inactivated by cell swelling, it seems 

likely that membrane stretch, or fl attening of invagi-

nations, disrupts the fusion machinery with restoration 

requiring ATP-dependent processes of an unknown 

 nature. Remodeling of cytoskeleton is an attractive but 

unproved possibility. Our results on rundown in patches 

( Fig. 4  and Table I) are consistent with ATP being used 

to phosphorylate one or more targets that maintain the 

fusion capability, whereby dephosphorylation evidently 

occurs by a magnesium-dependent phosphatase. In this 

regard, it is known that the enzymatic activities of tyro-

sine phosphatases vary with culture conditions and ages 

( Pallen and Tong, 1991 ;  Cool and Blum, 1993 ). It would 

not be surprising if activities of the kinases, as well as 

other phosphatases, also vary among batches of cells 

and the length of time after isolation. Unless AMP-PNP 

is added to the pipette solution, the ATP dependency 

of non-SG fusion in whole-cell recordings is usually not 

signifi cant (Yaradanakul et al., 2008). Thus, the excised 

patch model naturally produces many more sources 

of variability that do not exist in the intact cells. This is 

at once an advantage for identifying important partial 

mechanisms of fusion, and its regulation, and a dis-

advantage because the reproducibility of experiments is 

signifi cantly decreased. 

 ATP Sensitivity of Non-SG Fusion 
 Results from this article further support our conclusion that 

neither PI(4,5)P 2  nor its metabolism signifi cantly modu-

late non-SG fusion, when the trigger Ca concentration is 

high (Yaradanakul et al., 2008). Depletion of PI(4,5)P 2  

at the plasmalemma does not block non-SG fusion in M1 

receptor-expressing BHK cells (Yaradanakul et al., 2008), 

and we have shown here that multiple PI(4,5)P 2  ligands, 

namely neomycin and PI(4,5)P 2  antibodies, do not af-

fect Ca-induced fusion in the excised patches from RBL 

cells. While the antibodies employed might not have 

suffi cient affi nity to block very high-affi nity functions 

of phosphoinositides in fusion, we expect that the high 

concentration of neomycin employed (500  μ M) would 

stretch and distention may readily disrupt fusion has 

been verifi ed in whole-cell recording with both BHK 

and RBL cells. We discuss fi rst the methodological and 

experimental problems encountered and then the data-

sets on non-SG fusion. 

 Membrane Fusion in Excised Giant Membrane Patches 
 In principle, the giant patch methods should facilitate 

multiple types of fusion studies. Excised patches allow 

free access to the cytoplasmic side for a wide range of 

possible manipulations by exogenous factors, including 

proteins. Nevertheless, after several years we have not 

been able to establish conditions that allow routine re-

cordings of neurotransmitter release in excised patches, 

including efforts with several cell types. For example, 

bovine chromaffi n cells readily allowed seal formation 

with large-diameter pipettes, but excised patches are 

not stable with signifi cant solution fl ow, thereby greatly 

limiting their use. Overall, our experience is that the 

ability to induce neurotransmitter release is very easily 

lost or destroyed during excision procedures, and we 

did not overcome this limitation for routine work. Given 

the strong inhibition of fusion by cell swelling docu-

mented in  Fig. 8 , we strongly suspect that mechanical 

factors are of most importance, but it also remains 

 possible that important soluble factors are lost from 

the patches. 

 Nonsecretory Fusion in Excised Patches 
 In this article, we have described that non-SG mem-

brane fusion is both robust and massive in several cell 

lines when studied by whole-cell voltage clamp, while 

responses in excised patches showed a large degree of 

variability. Specifi cally, we found that the ratio of active 

patches varied substantially from batch to batch of cells, 

as well as with the length of time after isolation. Some-

times, no fusion at all was observed in excised patches 

from an entire batch of cells, although whole-cell re-

 Figure 10.   Ca dependence of non-SG fusion in excised patches 
from RBL cells. The concentration – response data are best de-
scribed by a Hill equation with a slope coeffi cient of 2.0, a  K m   of 
71  μ M, and a maximal rate constant of 2.1 s  � 1 .   
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SNARE dependent, it is not NEM sensitive in excised 

patches. Second, while this type of fusion is ATP depen-

dent, it is not phosphoinositide sensitive. Thus, the ATP 

sensitivity comes about by a novel mechanism that might 

prove to be relevant to other types of membrane fusion. 

Third, the non-SG vesicles are presumably predocked at 

the plasmalemma to remain attached to excised patches, 

and in this regard more detailed ultrastructural analysis 

will be of paramount importance for further progress. 

Fourth, the Ca dependence of this mechanism is un-

likely to represent the function of the putative Ca sensor, 

Syt VII. And fi nally, the non-SG fusion mechanism is 

strongly inhibited by cell swelling and, presumably, 

membrane stretch. Together, these results have estab-

lished multiple, potentially novel directions for future 

studies of non-SG fusion, which is likely to be an impor-

tant partial reaction of the ubiquitous membrane wound 

repair response. 
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ion phospholipids, and thereby inhibit their functional 

role. Only one positive result concerning phosphoino-

sitides was obtained, namely that non-SG fusion was 

blocked by the combined application of wortmannin 

and adenosine. However, both reagents can have non-

specifi c effects. At high concentrations, wortmannin in-

hibits mitogen-activated protein kinase (MAPK) ( Ferby 

et al., 1996 ) and myosin light chain kinases (MLCK) 

( Nakanishi et al., 1992 ). Since non-SG fusion is not 

blocked by staurosporine (Table I), although staurospo-

rine blocks the activities of MLCK, MAPK might be an 

interesting target to be tested in future work. 

 In conclusion, it does not seem surprising that non-SG 

membrane fusion, which is probably used for cell wound 

repair, is regulated in a substantially different fashion 

from the release of neurotransmitters, and the ATP de-

pendence of non-SG fusion likely represents a unique 

regulatory mechanism that comes into play after me-

chanical perturbation of the fusion system. 

 Wound Repair and Non-SG Fusion 
 While we infer that the membrane fusion process exam-

ined in this study is related to the membrane wound 

response, the membrane compartment(s) involved in 

non-SG fusion are still enigmatic. In addition to lyso-

somes, a novel organelle, named the enlargosome, is 

proposed to mediate membrane repair ( Borgonovo 

et al., 2002 ). Fusion of the enlargosome in rat PC12 cells 

is TeTx insensitive, which is different from non-SG fu-

sion in RBL cells as described here. However, it has also 

been reported that the wound repair machinery is TeTx 

sensitive in other model systems ( Togo et al., 1999 ), and 

as mentioned earlier, non-SG fusion is toxin insensitive 

in bovine chromaffi n cells ( Xu et al., 1998 ). One evi-

dence supporting the notion of wound repair by non-

SG fusion comes from the low Ca sensitivity of the Ca 

sensor, which is relevant to the ongoing debate about 

the role of Syt VII in membrane repair ( McNeil and 

Kirchhausen, 2005 ). Syt VII is reported to be a high af-

fi nity Ca sensor in SGs of PC12 cells ( Wang et al., 2005 ). 

The low Ca sensitivity of non-SG fusion could in princi-

ple ensure that these vesicles are not affected by normal 

Ca signaling in the cell, and that they would fuse with 

the plasmalemma only when bulk Ca infl ux comes from 
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 In addition to establishing a new approach to study 
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perience, the time-domain method is especially useful 
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dreds of microseconds in cardiac myocytes). With these 

approaches, we have delineated several new characteris-

tics of non-SG fusion. First, while this type of fusion is 
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