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    I N T R O D U C T I O N 

 Sensing force is ubiquitous in cellular life, with uses 

ranging from protection from osmotic shock in bacteria 

( Levina et al., 1999 ) to the appreciation of the softest 

touch on human skin ( Johansson and Vallbo, 1979 ). 

Among medically relevant modes of force transduction 

in humans are fl ow regulation in the kidney, blood pres-

sure regulation in vasculature, hearing, proprioception 

in musculature, nociception, and cutaneous touch. 

Each of these processes is likely to involve many mole-

cules that have proven diffi cult to identify, possibly due 

to their rarity. In contrast, genetic analysis of touch in 

 Caenorhabditis elegans  has proven fruitful for identifying 

the molecular components of mechanotransduction 

machinery, including four membrane proteins (MEC-2, 

MEC-4, MEC-6, and MEC-10). These proteins form 

amiloride-sensitive, Na + -selective sensory mechanotrans-

duction channels in the touch receptor neurons (TRNs) 

responsible for detecting low-intensity touches in  C. ele-
gans  ( O ’ Hagan et al., 2005 ). In  Xenopus  oocytes, these 

proteins also form amiloride-sensitive Na +  channels 

( Chelur et al., 2002 ;  Goodman et al., 2002a ). 

 MEC-4 and MEC-10 are pore-forming subunits that be-

long to the superfamily of degenerin/epithelial sodium 

channel (DEG/ENaC) ion channel proteins that are 

conserved in metazoans. DEG/ENaC proteins are pre-

  Abbreviations used in this paper: DEG, degenerin; ENaC, epithelial 

sodium channel; HDL, high-density lipoprotein; PHB, prohibitin 

homology; PON, paraoxonase; TRN, touch receptor neuron. 

dicted to share a common topology consisting of two 

transmembrane helices, intracellular N and C termini, 

and a large extracellular domain ( Kellenberger and 

Schild, 2002 ). Recent structural data confi rm this topol-

ogy ( Jasti et al., 2007 ). MEC-2 and MEC-6 are auxiliary 

subunits required for channel function in vivo ( O ’ Hagan 

et al., 2005 ). Replacing the wild-type alanine at the dege-

nerin ( d)  position in MEC-4 (A713) or MEC-10 (A673) 

with residues larger than cysteine induces TRN degener-

ation in vivo ( Driscoll and Chalfi e, 1991 ;  Huang and 

Chalfi e, 1994 ) and increases channel open probability in 

 Xenopus  oocytes ( Brown et al., 2007 ). The  d  position is at 

the extracellular end of the second transmembrane do-

main and its side chain interacts with the fi rst transmem-

brane domain of the adjacent subunit ( Jasti et al., 2007 ). 

This structural observation is consistent with our fi nding 

that mutations at the  d  position in MEC-10 can both en-

hance and suppress gain-of-function mutations in MEC-4 

( Brown et al., 2007 ). Taking advantage of the increased 

open probability in mutants, we study gain-of-function 

mutants of both MEC-4 and MEC-10 with an alanine to 

threonine substitution at the  d  position. For clarity, we 

refer to these mutants as MEC-4d and MEC-10d and to 

heteromeric channels as MEC-4d/10d channels. 
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     The ion channel formed by the homologous proteins MEC-4 and MEC-10 forms the core of a sensory mechano-
transduction channel in  Caenorhabditis elegans . Although the products of other  mec  genes are key players in the bio-
physics of transduction, the mechanism by which they contribute to the properties of the channel is unknown. 
Here, we investigate the role of two auxiliary channel subunits, MEC-2 (stomatin-like) and MEC-6 (paraoxonase-
like), by coexpressing them with constitutively active MEC-4/MEC-10 heteromeric channels in  Xenopus  oocytes. 
This work extends prior work demonstrating that MEC-2 and MEC-6 synergistically increase macroscopic current. 
We use single-channel recordings and biochemistry to show that these auxiliary subunits alter function by increas-
ing the number of channels in an active state rather than by dramatically affecting either single-channel properties 
or surface expression. We also use two-electrode voltage clamp and outside-out macropatch recording to examine 
the effects of divalent cations and proteases, known regulators of channel family members. Finally, we examine the 
role of cholesterol binding in the mechanism of MEC-2 action by measuring whole-cell and single-channel cur-
rents in MEC-2 mutants defi cient in cholesterol binding. We suggest that MEC-2 and MEC-6 play essential roles in 
modulating both the local membrane environment of MEC-4/MEC-10 channels and the availability of such chan-
nels to be gated by force in vivo. 
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606  MEC-2 and MEC-6 Enable DEG/ENaC Channel Activity 

appear to associate with cholesterol-rich, detergent-

resistant membrane fractions ( Sedensky et al., 2004 ). 

 With a short cytoplasmic N terminus and a single 

transmembrane domain, the majority of the MEC-6 

protein is extracellular ( Chelur et al., 2002 ). In its ex-

tracellular domain, MEC-6 is homologous to human 

paraoxonase (PON1), an enzyme that hydrolyzes or-

ganophosphates and has a role in preventing heart dis-

ease through its association with high-density lipoprotein 

(HDL) particles ( Draganov et al., 2000 ). By structural 

and functional criteria, several residues in PON1 are 

believed to be important for enzymatic activity ( Harel 

et al., 2004 ;  Yeung et al., 2005 ). Only one of these resi-

dues is conserved in MEC-6, N143, suggesting that MEC-

6 lacks enzymatic activity. Association between PON1 

and HDL particles is believed to involve two amphi-

pathic helices, one of which is proposed to extend hy-

drophobic aromatic residues into the lipid interface 

( Harel et al., 2004 ). This domain, including a series of 

aromatic residues arranged along one side of the helix, 

is conserved in MEC-6 (unpublished data) and may fa-

cilitate association between MEC-6 and the outer leafl et 

of the plasma membrane. Wild-type MEC-6 is required 

for proper localization of the channel complex in vivo 

but not in oocytes ( Chelur et al., 2002 ). Thus, MEC-6 

has at least two roles, only one of which is recapitulated 

in heterologous cells. 

 Among known regulators of ENaC activity are various 

serine proteases. There is a growing body of evidence that 

proteases can modify ENaC activity in diverse ways (for 

review see  Planes and Caughey, 2007 ). For example, furin 

seems to be involved in post-translational processing in 

the endoplasmic reticulum ( Hughey et al., 2004 ), mem-

brane-bound channel-activating proteases (CAPs) regu-

late the channel after insertion into the membrane ( Vallet 

et al., 2002 ), and soluble proteases such as trypsin activate 

channels dwelling in a near-silent state ( Caldwell et al., 

2004 ), though it has been suggested that this activation 

may be indirect ( Bengrine et al., 2007 ). 

 Here, we use mutations at the  d  position to render 

channels constitutively active in  Xenopus  oocytes and use 

single-channel, macropatch, and whole-cell recording to 

investigate the mechanism by which the auxiliary subunits 

MEC-2 and MEC-6 enhance channel activity. We explore 

the roles of MEC-2 and MEC-6 in block by divalent ions, 

sensitivity to proteases, single-channel properties, and 

surface expression. Finally, we demonstrate that MEC-2 

and MEC-6 have a role in promoting an active state of the 

channel and show that this activity is lost in MEC-2 mu-

tants defi cient in cholesterol binding. 

 M AT E R I A L S  A N D  M E T H O D S 

 Molecular Biology 
 Constructs encoding full-length MEC-4d and MEC-10d as well as 
myc-tagged MEC-4d were propagated in SMC4 bacteria (American 

 Defects in the genes encoding MEC-2 and MEC-6, 

which are coexpressed with MEC-4 and MEC-10 in TRNs 

( Lai et al., 1996 ;  Chelur et al., 2002 ;  Goodman et al., 

2002a ), suppress degeneration ( Chalfi e and Wolinsky, 

1990 ;  Huang and Chalfi e, 1994 ), suggesting that these 

proteins might be critical for channel function. Consis-

tent with this idea, MEC-2 and MEC-6 dramatically 

enhance macroscopic currents carried by heteromeric 

MEC-4d/10d channels in  Xenopus  oocytes without in-

creasing the expression of either protein in the plasma 

membrane. Together, MEC-2 and MEC-6 increase mac-

roscopic current by more than 100-fold ( Chelur et al., 

2002 ;  Goodman et al., 2002a ). It is not known how these 

auxiliary proteins achieve their remarkable effect with-

out increasing surface expression. All available evidence 

suggests that the effects of MEC-2 and MEC-6 on cur-

rent are similar in wild-type and degenerin mutant 

channels ( Chelur et al., 2002 ;  Goodman et al., 2002a ). 

Under this assumption, we use mutant channels with 

increased open probability to facilitate measurement of 

the effects of auxiliary subunit coexpression. 

 Like some other prohibitin-homology (PHB) domain 

proteins (SMART database; http://smart.embl-heidel-

berg.de), MEC-2 is associated with the inner leafl et of 

the plasma membrane and does not cross the bilayer 

( Huang et al., 1995 ). In its central PHB domain, MEC-2 

is 65% identical to human stomatin and 62% identical to 

SLP-3. In mice, both stomatin and SLP-3 are expressed 

in the cell bodies and nerve terminals of dorsal root gan-

glion sensory neurons ( Mannsfeldt et al., 1999 ;  Wetzel et 

al., 2007 ). Loss of stomatin reduces the response of a 

single class of somatosensory neurons to mechanical 

stimuli ( Martinez-Salgado et al., 2007 ). SLP-3 is required 

in several classes and also plays a critical role in texture 

discrimination ( Wetzel et al., 2007 ). MEC-2 binds the N-

terminal domain of MEC-4 through its central PHB do-

main ( Zhang et al., 2004a ). MEC-2 is palmitoylated and 

binds cholesterol directly ( Huber et al., 2006 ). The dou-

ble-cysteine mutant MEC-2 (C140/174A) is no longer 

palmitoylated and has reduced cholesterol-binding ac-

tivity ( Huber et al., 2006 ). MEC-2(P134S), which recapit-

ulates the  u274  allele of the  mec-2  gene, fails to bind 

cholesterol in vitro, but localizes to the plasma mem-

brane in HEK293T cells and binds to DEG/ENaC pro-

teins ( Huber et al., 2006 ). Considered together with the 

fi nding that  mec-2(u274)  animals are touch insensitive, 

these data suggest that cholesterol binding is required 

for normal MEC-2 activity. Both palmitoylation and cho-

lesterol binding are likely to fi ne tune the association 

between MEC-2, the pore-forming subunits MEC-4 and 

MEC-10, and the plasma membrane and may recruit 

specialized lipid microdomains to the vicinity of the 

MEC-4 channel. MEC-2 is not the only PHB protein 

likely involved in  C. elegans  touch sensation. UNC-24 is 

coexpressed with MEC-2 in the TRNs ( Zhang et al., 

2004a , b ) and several PHB proteins, including UNC-24, 
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all-points histograms derived from leak-subtracted records that were 
4.7 min long on average. We corrected for nonspecifi c leak currents 
by fi tting a line to time intervals in which all channels were closed 
and subtracting the result from the data. 

 MEC-4 Surface Expression 
 Analysis of surface protein closely followed methods described 
previously ( Chillaron et al., 1997 ;  Goodman et al., 2002a ). Between 
100 and 150 intact oocytes were selected 4 d after cRNA injection, 
placed in a Petri dish coated with agarose (1% wt/vol in OR-2) and 
washed three times in OR-2 medium (82.5 mM NaCl, 2.5 mM KCl, 
1 mM MgCl 2 , 5 mM HEPES adjusted to pH 7.6 with NaOH). Sur-
face proteins were labeled by incubating oocytes in OR-2 medium 
containing membrane-impermeant reagent EZ-Link Sulfo-NHS-
LC-Biotin (Pierce Chemical Co., 16 mg/ml) for 10 min. The reac-
tion was stopped by adding 2 ml of 500 mM glycine, pH 7.5 (1 min), 
and washed in 500 mM glycine (three times) and fresh OR-2 
(three times). Equal numbers of intact oocytes from each experi-
mental condition were selected and transferred to microcentri-
fuge tubes and homogenized by gentle trituration in lysis buffer, 
LyB (10  μ l per oocyte; 2% Nonidet P-40, 150 mM NaCl, 2 mM 
CaCl 2 , 20 mM Tris-HCl, pH 7.4, plus 1 protease inhibitor cocktail 
tablet [Roche Applied Science] into 10 ml of lysis buffer before 
use). The homogenate was centrifuged twice (1,000  g , 10 min, 
4 ° C) to remove the yolk platelets. The supernatant was sonicated 
(2 min), centrifuged (1,000  g , 10 min, 4 ° C), and dialyzed over-
night at 4 ° C against streptavidin buffer (SAv buffer: 0.3% Nonidet 
P-40, 500 mM NaCl, 1 mM CaCl 2 , 1 mM MgCl 2 , 10 mM Tris-HCl, 
pH 8) in Slide-A-Lyzer Dialysis Cassettes (3.5K MWCO, Pierce 
Chemical Co.). The homogenate was centrifuged (1,000  g , 10 min, 
4 ° C) and biotinylated proteins were isolated using streptavidin-
agarose beads (Thermo Scientifi c). Beads were recovered by cen-
trifugation (833  g ), washed in SAv buffer (three times). Protein 
was eluted by boiling beads in Laemmeli buffer and 2-mercapto-
ethanol for 2 min. Proteins were separated by SDS-PAGE (100 – 130 
oocyte equivalents per lane). Myc-tagged MEC-4d was detected in 
Western blots using an HRP-conjugated c-Myc antibody (9E10, 
Santa Cruz Biotechnology, 1:500 dilution in PBS-T [137 mM NaCl, 
2.7 mM KCl, 10 mM Na 2 HPO 4 , 1.8 mM KH 2 PO 4 , 0.1% Tween-20] 
with 5% nonfat dry milk). HRP was detected using chemilumines-
cence (ECL plus, GE Life Sciences) and blots were visualized with 
a CCD-based luminometer (Fluorchem 8800 with Multiimage light 
chamber chemiluminescent fi lter, Alpha Innotech). Digital im-
ages were used to determine the relative amounts of protein by 
densitometry in ImageJ (NIH). 

 MEC-2 Expression 
 10 intact oocytes were selected 4 d after cRNA injection and ho-
mogenized by gentle trituration in LyB with protease inhibitor (see 
above). The homogenate was centrifuged (1,000  g , 10 min, 4 ° C) 
and separated by SDS-PAGE (two oocyte equivalents per lane). 
MEC-2 was detected by Western blotting with anti-MEC-2 rabbit pri-
mary ( Zhang et al., 2004a ) and HRP-conjugated secondary (Santa 
Cruz Biotechnology), blocked, washed and visualized with the same 
reagents as for MEC-4 Western blots (above). 

 Cholesterol Depletion 
 Immediately after injection, oocytes were divided into two groups. 
The control group was incubated in L-15 supplemented with gen-
tamicin (144  μ M) and amiloride (300  μ M). The experimental 
group was also treated with methyl- � -cyclodextrin (5 mM) and 
pravastatin (250  μ M). Amiloride-sensitive currents were measured 
4 – 6 d later. Between 5 and 17 oocytes in each group were tested. 

 Reagents 
 Except as noted above, chemicals were obtained from Sigma-Al-
drich. Amiloride was diluted from 0.1 M stock solutions in DMSO. 

Type Culture Collection accession no. PTA-4084) as previously 
described ( Goodman et al., 2002a ;  Brown et al., 2007 ). Constructs 
encoding full-length, wild-type MEC-2 and MEC-6 were propa-
gated in XL1-Blue. MEC-2 mutants were obtained by in vitro mu-
tagenesis (Quik-Change Kit, Invitrogen). 

 Heterologous Expression 
 Capped cRNAs were synthesized in vitro (mMESSAGE mMA-
CHINE T7 kit, Ambion) and quantifi ed spectroscopically.  Xeno-
pus laevis  oocytes were isolated and injected with 50 nl of cRNA 
solution. Except where indicated, we injected equal amounts of 
MEC-4d, MEC-10d, and MEC-2 cRNA and one tenth that amount 
of MEC-6 cRNA. (Larger amounts of MEC-6 cRNA induce a non-
specifi c, amiloride-insensitive current that complicates analysis 
[ Chelur et al., 2002 ].) Oocytes were maintained at 18 ° C in modi-
fi ed L-15 medium supplemented with gentamicin (144  μ M) and 
amiloride (300  μ M) until recording. 

 Injection conditions were modifi ed according to the experi-
mental goal. For whole-cell recordings or macropatches with 
many active channels, 2.5 – 5 ng of MEC-4d cRNA was injected. For 
single channel recordings, both the amount of cRNA injected 
and days of incubation were optimized to maximize the chance of 
obtaining single-channel patches. With MEC-2 and MEC-6 pres-
ent, less cRNA and shorter incubations were required to obtain a 
similar channel density. For single-channel recordings, conditions 
were (a) for MEC-4d/10d alone, 5 – 10 ng each, 4 – 10 d; (b) for 
MEC-4d/10d + MEC-2, 2 – 5 ng each, 2 – 4 d; (c) for MEC-4d/10d + 
MEC-6, 1 – 2 ng each, 3 – 6 d; (d) for MEC-4d/10d + MEC-2 + MEC-6, 
0.25 – 1 ng each, 1 – 2 d. 

 Electrophysiology: Whole-Cell Recording 
 Membrane current was measured by two-electrode voltage-clamp 
(OC-725C, Warner Instruments, LLC) at room temperature (21 –
 24 ° C). Electrodes (1 – 4 M Ω ) were fabricated on a horizontal 
puller (P-97; Sutter Instruments) and fi lled with 3 M KCl. Ana-
logue signals were fi ltered at 200 Hz (8-pole Bessel fi lter) and 
sampled at 1 kHz. A 60-Hz notch fi lter was used to minimize line 
noise. Oocytes were superfused with control saline containing (in 
mM) Na-gluconate (100), KCl (2), MgCl 2  (2), CaCl 2  (1), and Na-
HEPES (10), adjusted to pH 7.4 with NaOH. The amplitude of 
amiloride-sensitive current was measured as the difference be-
tween current measured at  � 85 mV in the absence and presence 
of 300  μ M amiloride. For protease experiments, 200  μ g/ml chy-
motrypsin was added to control saline. 

 Electrophysiology: Outside-Out Patches 
 Vitelline membranes were removed from oocytes manually fol-
lowing incubation in a hypertonic solution composed of (in mM) 
NMDG-aspartate (220), MgCl 2  (1), EGTA (10), KCl (2), HEPES 
(10), and amiloride (0.3), adjusted to pH 7.4 with NMDG. Pi-
pettes (2 – 8 M Ω ) were pressure polished ( Goodman and Lockery, 
2000 ) and fi lled with a calcium-buffered saline solution contain-
ing (in mM) Na-gluconate (100), NaCl (2), CaCl 2  (2), Na 2 EGTA 
(5), and HEPES (10), adjusted to pH 7.4 with NaOH. External 
solutions were identical to pipette solution, except where Ca 2+  
(1 – 10 mM), Mg 2+  (1 – 10 mM), or amiloride (50  μ M) were added. 
Where divalent ions were added, Na 2 EGTA was omitted from ex-
ternal solutions. Single-channel and macropatch currents were 
recorded in an outside-out confi guration with a patch-clamp am-
plifi er (WPC-100 E.S.F.; Bioscience Tools), fi ltered ( F  c  = 1 – 5 kHz, 
4-pole Bessel fi lter), and digitized at a rate that was at least three 
times the fi ltering frequency. Pulse/Pulsefi t or Patchmaster soft-
ware (HEKA Electronics Inc.) was used to control data acquisi-
tion; Igor Pro (Wavemetrics) and QuB Software (The Research 
Foundation of the State University of New York; http://www.qub
.buffalo.edu) were used for single-channel data analysis. Single-
channel conductance and open probability were calculated from 
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 R E S U LT S 

 To measure the effects of MEC-2 and MEC-6 on open 

probability ( P  o ), single channel conductance ( � ), and 

open- and closed-state dwell times, we excised outside-out 

patches from  Xenopus  oocytes injected with the cRNA en-

coding MEC-4d/10d alone, with MEC-2, with MEC-6, and 

with both MEC-2 and MEC-6. In all cases, we observe 

channels that are constitutively active and blocked by 

micromolar concentrations of amiloride. Channels with 

these characteristics are never observed when MEC-4d is 

omitted ( n  = 18 patches, unpublished data) or in control 

cells injected with water ( n  = 14 patches, unpublished 

data). This is consistent with results in vivo ( O ’ Hagan 

et al., 2005 ) and in whole-cell voltage clamp ( Goodman 

et al., 2002a ) and demonstrates that MEC-4 is necessary 

for channel formation. It is also suffi cient: oocytes express-

ing only MEC-4d express both macroscopic amiloride-

sensitive currents ( Goodman et al., 2002b ) and single 

amiloride-sensitive channels ( n  = 1, unpublished data). 

 Neither MEC-2 nor MEC-6 Affects Average  P  o  nor Dwell 
Times in the Open or Closed State 
 Single channels of the four heteromeric channel com-

plexes studied in this report exhibited similar characteristics 

 Statistics and Curve Fitting 
 Curve fi tting was performed with nonlinear least-squares regres-
sion in Igor Pro (Wavemetrics). Statistical comparisons were per-
formed as Student ’ s  t  test assuming unequal variances and analysis 
of variance (ANOVA). ANOVA results are expressed as  F ( a , b ) =  c , 
 P  =  d  where  a  and  b  are the degrees of freedom between and within 
groups,  c  is the  F  value, and  d  is the probability in insignifi cance. 

 Dwell-Time Analysis 
 Open and closed channel dwell times were generated from sin-
gle-channel idealizations determined using QuB. All single-
channel patches were used to generate average dwell times,  �  open  
and  �  closed ; only patches with more than 1,000 events were used 
to generate histograms of dwell times. Dwell times were con-
verted into histograms with logarithmic bins and plotted with a 
square-root ordinate and fi t with a sum of exponentials, as previ-
ously described ( Sigworth and Sine, 1987 ). At small dwell times, 
some bins contain no even multiple of the sampling interval and 
are empty as an artifact of logarithmic binning. To lessen this ef-
fect for display purposes, histograms were smoothed across adja-
cent bins. 

 Online Supplemental Material 
 The online supplemental material (Figs. S1 and S2) is available at 
http://www.jgp.org/cgi/content/full/jgp.200709910/DC1). Fig. S1 
compares dose – response curves for blockade by amiloride in the 
presence and absence of divalent cations. Fig. S2 shows the surface 
expression of myc-tagged MEC-4d channels in the presence and 
absence of MEC-2 and MEC-6. 

 Figure 1.   Single-channel record-
ings from outside-out patches. (A) 
MEC-4d/10d only. (B) MEC-4d/10d 
+ MEC-2. (C) MEC-4d/10d + MEC-6. 
(D) MEC-4d/10d + MEC-2 + MEC-6. 
In A – D, two sections are shown: the 
left demonstrates the sensitivity of the 
channel to amiloride (50  μ M), while 
the right shows the channel behav-
ior in control saline.  V  hold  =  � 150 mV. 
Closed and open states are labeled  C  
and  O  respectively and indicated by 
solid lines. To the right of each record 
is an all-points histogram of the same 
trace; dotted lines represent Gaussian 
fi ts to each peak. Open probability (E) 
and single-channel conductance (F) 
of patches containing a single chan-
nel. Data are summarized in  Table I . 
Closed triangles represent the example 
patches shown in A – D. Bars indicate 
mean values for each isoform. Number 
of patches indicated in parentheses. 
*, signifi cantly different from MEC-
4d/10d (P  <  0.01).   
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creased by 30% (P  <  10  � 5 ) ( Fig. 1  and  Table I ). While 

robust and reproducible, this difference in  �  2  would ac-

count for only  � 1% of the observed  � 40-fold increase 

in whole-cell current ( Goodman et al., 2002a ) and  NP O   
(see below) produced by MEC-2. 

 MEC-2 and MEC-6 Increase  NP O   
 Based on these fi ndings, we predicted that MEC-2 and 

MEC-6 would enhance  NPo  in multichannel patches. 

Since  N  is the number of active channels in the patch 

(rather than the total number of proteins), such an ef-

fect is compatible with biochemical evidence showing 

that neither MEC-2 nor MEC-6 increase surface ex-

pression of MEC-4 or MEC-10 (see  Chelur et al., 2002 ; 

 Goodman et al., 2002a;  and Fig. S2). Membrane patches 

from cells coinjected with 5 – 10 ng of cRNA encoding 

MEC-4d and MEC-10d rarely contained more than one 

channel. Thus, in the absence of MEC-2 and MEC-6, 

 NP o   is  < 1. Consistent with our prediction, coinjecting 

MEC-2 increases  NP o   to 33  ±  6 ( n  = 6), coinjecting MEC-

6 gives  NP O   = 61  ±  24 ( n  = 7), and coinjecting both auxil-

iary subunits gives NP O  = 718  ±  202 ( n  = 10). Thus, 

coinjecting MEC-2 and MEC-6 cRNA increases current 

to an even greater extent than predicted from whole-

cell reports (200 – 400-fold) ( Chelur et al., 2002 ;  Good-

man et al., 2002a ). 

 Calcium Blocks and Permeates Heteromeric MEC-4d/10d 
Channels 
 In initial single-channel recordings, we observed only 

brief openings suggestive of fast, fl ickering blockade 

(unpublished data), which was reduced when divalent 

cations were removed from recording solutions. To 

test if this block was indeed due to Ca 2+  and Mg 2+  ions, 

we systematically varied the concentration of divalent 

to one another ( Fig. 1 ), including subconductance states 

similar to those reported previously for homomeric 

MEC-4 channels ( Brown et al., 2007 ).  While we observed 

a range of  P  o  values for each channel complex, average 

values for  P  o  showed no signifi cant dependence on the 

presence or absence of MEC-2, MEC-6, or both proteins 

( Fig. 1 E  and  Table I ).  

 We also examined channel kinetics and performed 

dwell-time analyses. We did not observe any MEC-2 –  or 

MEC-6 – dependent changes in the average open- or 

closed-state lifetimes (Tables II and III). Regardless of 

the channel isoform being studied, all single-channel 

dwell-time histograms demonstrated the existence of 

multiple closed and open states.  Fig. 2  shows dwell-time 

histograms of open and closed times for a sample patch 

containing MEC-4d/10d + MEC-2 + MEC-6. Most (8/12) 

patches required three open and three closed states to 

generate satisfactory fi ts.  The remaining four patches 

required either only two open or two closed states to 

generate an adequate fi t. In each case, fi t quality was ex-

amined by measuring sum-squared error (SSE) as a 

function of the number of states. Generally, SSE de-

creased signifi cantly upon addition of a second and a 

third state, but was insensitive to the addition of a fourth, 

fi fth, or sixth state (unpublished data). Similar to aver-

age lifetimes, dwell times of individual states extracted 

from fi ts to histograms do not demonstrate any signifi -

cant dependence on the presence or absence of auxil-

iary subunits ( Tables II  and  III ).  

 MEC-2, but not MEC-6 Increases Single Channel 
Conductance 
 We did observe one signifi cant effect on single channel 

properties; with MEC-2 present, the single-channel con-

ductance of the larger subconductance state ( �  2 ) is in-

 TA B L E  I 

 Single-Channel Properties of MEC-4d/10d Channels and Effects of Auxiliary Subunits 

                                  �  1  (pS)  P  o1  �  2  (pS)  P  o2  <  �  >  (pS)  P  o 

MEC-4d/10d 19.3  ±  4.3 (11) 0.38  ±  0.27 (11) 29.3  ±  4.9 (11) 0.42  ±  0.33 (11) 17.0  ±  6.8 (11) 0.72  ±  0.20 (11)

+MEC-2 ND ND 38.3  ±  1.6 (8) a NA 31.8  ±  7.2 (8) a 0.79  ±  0.26 (8)

+MEC-6 ND ND 30.2  ±  5.7 (6) NA 24.9  ±  6.1 (6) a 0.72  ±  0.42 (6)

+MEC-2 +MEC-6 23.1  ±  2.5 (5) 0.46  ±  0.27 (5) 36.3  ±  1.6 (5) a 0.42  ±  0.29 (5) 25.6  ±  5.3 (5) a 0.89  ±  0.04 (5)

 P o   ANOVA:  F (3,26) = 2.06, P = 0.13.  �  ANOVA:  F (3,24) = 9.3, P  <  0.0005.

 a P  <  0.01 by one-way  t  test compared to MEC-4d/10d.

 TA B L E  I I 

 Closed-State Dwell Times of Single MEC-4d/10d Channels and Effects of Auxiliary Subunits 

  <  �  c  >  (ms)  P c1    �  c1   (ms)  P c2    �  c2   (ms)  P c3    �  c3   (ms)

MEC-4d/10d 81  ±  21 (11) 0.66 (3) 0.92 (3) 0.21 (3) 15 (3) 0.12 (1) 180 (1)

+MEC-2 54  ±  30 (7) 0.83 (3) 0.88 (3) 0.10 (2) 6.8 (2) 0.06 (2) 88 (2)

+MEC-6 37  ±  10 (4) 0.66 (2) 1.2 (2) 0.22 (2) 10 (2) 0.12 (2) 86 (2)

+MEC-2 +MEC-6 52  ±  36 (5) 0.69 (4) 1.8 (4) 0.13 (3) 6.6 (3) 0.18 (4) 147 (4)

Average closed-time,  <  �  c  > , ANOVA:  F (3,22) = 0.59, P = 0.63
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610  MEC-2 and MEC-6 Enable DEG/ENaC Channel Activity 

and 2 mM Mg 2+  (Fig. S1, available at http://www.jgp.org/

cgi/content/full/jgp.200709910/DC1). 

 We also examined whether MEC-2 or MEC-6 alter 

block by Ca 2+ . Both MEC-2 and MEC-6 decrease the ap-

parent affi nity for Ca 2+  ions ( Fig. 3 ). If Ca 2+  is a perme-

ant blocker, then increasing external [Ca 2+ ] should shift 

the reversal potential to more positive potentials. Con-

sistent with this idea and with prior work demonstrating 

that MEC-4 channels are Ca 2+  permeable ( Bianchi et al., 

2004 ), currents recorded in 10 mM Ca 2+  reversed +1.8  ±  

0.2 mV ( n  = 5) more positive than those recorded in 

nominally 0 mM Ca 2+ . This small shift is consistent with 

 �  E rev   estimated using the Goldman-Hodgkin-Katz cur-

rent (see  Lewis, 1984 ), assuming the measured Ca 2+  per-

meability  P  Ca / P  Na  = 0.22 ( Bianchi et al., 2004 ). Channels 

containing only MEC-4d/10d were not analyzed since 

patches contained too few channels for analysis. 

 Protease Activates MEC-4-dependent Channels 
Independently of MEC-2 and MEC-6 
 Both native and expressed ENaCs can be activated by 

proteases ( Planes and Caughey, 2007 ). It is not known 

whether proteases can also activate MEC-4/10 channels. 

We investigated this by applying chymotrypsin, a serine 

protease known to activate ENaCs ( Chraibi et al., 1998 ), 

to MEC-4d/10d channels expressed in oocytes. As shown 

in  Fig. 4 , chymotrypsin application increases amiloride-

sensitive currents in whole oocytes.  The slight shift of 

reversal potential toward zero is likely due to sodium 

loading of the cell, and is observed on similar time-

scales when no protease is applied (unpublished data). 

Chymotrypsin increased current by approximately two-

fold in the presence and absence of MEC-2 and MEC-6, 

indicating that neither auxiliary protein affects sensitiv-

ity to proteases. These data indicate that the mecha-

nisms by which protease and MEC-2/MEC-6 increase 

current are distinct. 

 MEC-2 and MEC-6 Promote Channel Activity without 
Increasing Surface Expression 
 By contrast with their dramatic effects on whole-cell cur-

rent ( Chelur et al., 2002 ;  Goodman et al., 2002a ), MEC-

2 and MEC-6 have only modest effects on single-channel 

currents ( Table I ,  Fig. 1 ,  Table II , and  Table III ). We 

considered two possible explanations. First, auxiliary 

proteins could increase the total number of channels at 

ions and measured the extent of current inhibition. 

In macropatches excised from oocytes coexpressing 

MEC-4d/10d + MEC-2 + MEC-6, both Ca 2+  and Mg 2+  

inhibit current with millimolar affi nity ( Fig. 3 ).  Like 

blockade by amiloride ( Chelur et al., 2002 ;  Goodman 

et al., 2002a ), block by divalent ions is voltage depen-

dent ( Fig. 3 ), a result that suggests that divalent ions 

act as open-channel blockers. Divalent ions and amilo-

ride bind to different sites, however, since inhibition by 

amiloride was unaffected by the presence of 1 mM Ca 2+  

 Figure 2.   Example dwell-time histograms of single channel re-
cordings. (A) Dwell-time histogram of the closed states of a single 
MEC-4d/10d + MEC-2 + MEC-6 channel. (B) Dwell-time histo-
gram of the open states of the same channel as in A. For optimal 
visual estimation of fi t quality ( Sigworth and Sine, 1987 ), dwell 
times are accumulated into logarithmic bins and displayed with 
a square-root ordinate. Solid lines are fi ts to the data with the 
sum of three exponential functions, dotted lines represent each 
exponential component.   

 TA B L E  I I I 

 Open-State Dwell Times of Single MEC-4d/10d Channels and Effects of Auxiliary Subunits 

  <  �  o  >  (ms)  P o1    �  o1   (ms)  P o2    �  o2   (ms)  P o3    �  o3   (ms)

MEC-4d/10d 250  ±  60 (11) 0.26 (3) 2.2 (3) 0.40 (3) 37 (3) 0.33 (3) 180 (3)

+MEC-2 340  ±  210 (7) 0.29 (3) 1.7 (3) 0.29 (3) 13 (3) 0.43 (3) 110 (3)

+MEC-6 490  ±  140 (4) 0.29 (2) 7.9 (2) 0.40 (2) 79 (2) 0.31 (2) 1200 (2)

+MEC-2 +MEC-6 240  ±  84 (5) 0.38 (4) 1.8 (4) 0.17 (3) 14 (4) 0.45 (4) 300 (4)

Average open-time,  <  �  o  >  ANOVA:  F (3,22) = 0.58, P = 0.64.
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the fraction of membrane-inserted MEC-4d protein that 

carries current. 

 MEC-2 Palmitoylation and Cholesterol-binding Activity Are 
Required for Channel Activation 
 We also interrogated the mechanism by which MEC-2 

activates channels. Specifi cally, we tested which aspects 

of MEC-2 function were required for its current-en-

hancing effect. As shown in  Fig. 6 , we targeted three 

residues involved in cholesterol binding: P134, C140, 

and C174. Replacing the wild-type cysteine with ala-

nine at amino acids 140 and 174 eliminates palmi-

toylation and reduces cholesterol binding ( Huber et al., 

2006 ).  Replacing the proline at 134 with serine reca-

pitulates the  mec-2(u274)  allele, which causes touch in-

sensitivity in vivo ( Zhang et al., 2004a ) and abolishes 

cholesterol binding in vitro ( Huber et al., 2006 ). We 

found that coinjection of the palmitoylation mutant 

MEC-2(C140/174A) produces currents larger than those 

in the absence of MEC-2, but smaller than those re-

corded with wild-type MEC-2. Coinjection of MEC-

2(P134S) produces none of the current enhancement 

provided by wild-type MEC-2 ( Fig. 6 ); amiloride-sensi-

tive currents were indistinguishable from those recorded 

in the absence of MEC-2. Currents produced by the 

triple mutant MEC-2(P134S, C140/174A) were indis-

tinguishable from those produced by single mutant 

MEC-2(P134S) ( Fig. 6 ). 

the oocyte membrane. Prior work showing that neither 

MEC-2 ( Goodman et al., 2002a ) nor MEC-6 ( Chelur et al., 

2002 ) increases surface expression makes this expla-

nation unlikely, however. Nonetheless, it is formally pos-

sible that surface expression increases when both MEC-2 

and MEC-6 are present. We tested this idea by compar-

ing the amount of myc-tagged MEC-4d expressed in the 

plasma membrane in the presence and absence of both 

MEC-2 and MEC-6. We found that addition of MEC-2 

and MEC-6 did not produce a detectable change in the 

amount of myc-tagged MEC-4d protein in the plasma 

membrane (Fig. S2). 

 Second, the auxiliary proteins could act by increasing 

the fraction of active membrane-inserted channels. 

That is, in the absence of these subunits, active chan-

nels are rare, but exhibit properties similar to those 

bound to MEC-2 and MEC-6. To demonstrate this di-

rectly, we injected varying amounts of cRNA encoding 

MEC-2 along with constant amounts of cRNA encoding 

MEC-4d/10d and MEC-6. We measured current and 

surface protein levels in parallel and found that while 

surface protein level does not change detectably, cur-

rent increases with the amount of MEC-2 cRNA ( Fig. 5 ).  

Since MEC-2 cannot form channels by itself ( Goodman 

et al., 2002a ), has a modest effect on single-channel 

conductance, and has no effect on steady-state open 

probability, this fi nding demonstrates that increasing 

the amount of MEC-2 enhances current by increasing 

 Figure 3.   Block by divalent cations. (A) 
Macroscopic  I - V  curve of an outside-out 
patch coexpressing MEC-4d/10d, MEC-2, 
and MEC-6 exposed to varying Ca 2+  con-
centrations. (B) Dose – response curves for 
blockade by Ca 2+  and Mg 2+  at  � 100 mV. 
The smooth curve is fi t to the average 
values assuming a Hill coeffi cient of 1:   
I I X Ki= + + −

max( [ ] ’)1 2 1   . Measured  K i   ’  was 
12.9 mM for Ca 2+ , 7.0 mM for Mg 2+ . (C) 
Apparent Ca 2+  inhibition constant,  K  i  ’  as a 
func tion of auxiliary subunits.  V  hold  =  � 60 mV. 
(D) Voltage dependence and variation 
of block affi nity. Each line represents a 
single patch, with  K  i  

 ’   measured at  � 60 
and  � 100 mV.   
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612  MEC-2 and MEC-6 Enable DEG/ENaC Channel Activity 

(P  <  0.01). These data emphasize the importance of 

cholesterol binding for the modifi cation of channel 

biophysics by MEC-2. 

 The inability of MEC-2 isoforms containing the P134S 

mutation to enhance macroscopic current cannot be 

explained by a lack of protein, since mutant MEC-2 iso-

forms were readily detected in whole-cell lysates. ( Fig. 6 ). 

As shown previously ( Huber et al., 2006 ), wild-type 

MEC-2 appeared as a doublet near the predicted mo-

lecular weight. The P134S mutation altered the relative 

intensity of the two bands. Though the molecular basis 

for this observation is unclear, one appealing possibility 

is that cholesterol-modifi ed MEC-2 is the dominant 

 Since MEC-2 increases single-channel conductance, 

 � , we also examined if the mutant form of MEC-2 re-

tained the ability to increase  � . In six patches excised 

from oocytes expressing MEC-4d/10d + MEC-2(P134S, 

C140/174A) + MEC-6, the single channel conductance 

was similar to that of channels lacking MEC-2, and sig-

nifi cantly different from channels with wild-type MEC-2 

 Figure 4.   Activation by extracellular chymotrypsin. (A) Example 
time course of chymotrypsin-evoked current increase in an oo-
cyte expressing MEC-4d/10d + MEC-2 + MEC-6.  a  and  b  indicate 
when the curves shown in B were collected. Current amplitude 
was measured every 4 s at  � 85 mV. (B) Whole-cell  I - V  relationship 
before ( a ) and during chymotrypsin application ( b ). In all cases, 
chymotypsin-evoked current was blocked by amiloride (300  μ M). 
(C) Chymotrypsin-evoked increase in the amiloride-sensitive cur-
rent in the presence and absence of MEC-2 and MEC-6.   

 Figure 5.   Surface expression and current amplitude as a func-
tion of MEC-2 cRNA. (A) Surface expression of myc::MEC-4d in 
oocytes coexpressing myc::MEC-4d, MEC-10d, MEC-2, and MEC-
6 (top). The amount of MEC-2 cRNA is indicated below each 
lane;  U  indicates uninjected (control) oocytes. Relative surface 
expression as a function MEC-2 cRNA (bottom), normalized to 
density with 1 ng MEC-2 cRNA per oocyte. Data represent the 
results of three independent Western blots. Nonspecifi c bands 
are observed in all blots and are visible in uninjected cells. (B) 
Amiloride-sensitive currents recorded from oocytes analyzed in 
parallel with those used for Western blotting in A. Stars indicate 
signifi cance P  <  0.01 (Student ’ s  t  test). Smooth line is fi t to the 
data according to:  I  =  I 0   + ( I  max   �   I 0  )(1 + [MEC-2 cRNA]/EC 50 )  � 1 . 
The EC 50  is 2.8 ng,  I O   = 0.48  � A.   
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the MEC-2 and MEC-6 auxiliary subunits are permissive 

regulators of MEC-4 sensory mechanotransduction 

channels both in heterologous cells and in vivo. Consis-

tent with this model, MEC-2 is required for force-depen-

dent gating in vivo ( O ’ Hagan et al., 2005 ). The in vivo 

role of MEC-6 is more complex, since it is also required 

for channel localization ( Chelur et al., 2002 ). 

 This study also demonstrates the existence of multi-

ple closed and open states in constitutively active chan-

nels. How these states might be involved in the regulation 

and activity of the channel is not yet clear, but the analy-

sis does reveal a complexity of gating. Except for a MEC-

2 – dependent 30% increase in  � , MEC-4d/10d channel 

behavior is qualitatively and quantitatively similar in the 

absence or presence of MEC-2, MEC-6, or both MEC-2 

and MEC-6. 

 Divalents and the MEC-4 Sensory Transduction Channel 
 We have shown that the divalent ions Ca 2+  and Mg 2+  

block channels formed by the MEC-4 complex in a volt-

age-dependent manner. A voltage-dependent block of 

similar affi nity has been reported in certain mutant ver-

sions of ENaC ( Schild et al., 1997 ) and in the related 

acid-sensing ion channels (ASICs) ( Waldmann et al., 

1997; de Weille and Bassilana, 2001 ). 

 One interesting consequence of block by divalent 

ions is that a signifi cant fraction of current in whole-cell 

isoform and, like cholesterol-bound Hedgehog protein 

( Porter et al., 1996 ), migrates more quickly than the iso-

form lacking cholesterol. 

 These fi ndings suggest that cholesterol binding en-

hances channel activity and imply that depleting mem-

brane cholesterol should decrease current. To test this, 

we treated oocytes expressing MEC-4d+ MEC-2 with a 

cholesterol synthesis inhibitor (pravastatin) and a cho-

lesterol chelator (methyl- � -cyclodextrin). This dual treat-

ment was designed to mitigate differences in membrane 

cholesterol between animals as well to deplete membrane 

cholesterol. In cells harvested from one animal (out of 

six), this treatment signifi cantly decreased (P  <  0.005) 

amiloride-sensitive current compared with untreated 

control cells harvested from the same animal: 24.6  ±  2.5 

 � A ( n  = 17) vs. 41.3  ±  4.7  � A ( n  = 14). These results, 

while suggestive, are inconclusive and suggest that sen-

sitivity to this treatment depends on an unknown factor 

that varies between animals. 

 D I S C U S S I O N 

 What Defi nes an Active MEC-4 Channel Complex? 
 Here we present data showing that MEC-2 and MEC-6 

govern transitions between an unavailable or silent state 

and one in which MEC-4d/10d channels are available 

to be activated. Based on these data, we propose that 

 Figure 6.   Characterization of cholesterol-
binding mutants of MEC-2. (A) Alignment 
of selected PHB family members. MEC-
2 and UNC-24 are coexpressed in vivo. 
MEC-2 is also represented schematically 
on the right. In yellow, P134, required for 
cholesterol binding. In green, C140 and 
C174 required for palmitoylation ( Huber 
et al., 2006 ). (B)  I - V  relationship of chan-
nels lacking MEC-2, containing MEC-2 
double mutant, and MEC-2 triple mutant. 
MEC-2(P134S) single mutant currents 
are essentially indistinguishable from the 
triple mutant and are omitted for clarity. 
(C) Average currents recorded from MEC-
2 mutant-expressing cells (top). Bars are 
mean  ±  SEM. Sample size is indicated in 
parentheses below each bar.  † , P  <  0.005, 
compared with the absence of MEC-2; *, 
P  <  10  � 6  compared with wild-type MEC-2. 
Western blot of MEC-2 isoforms (bottom). 
For clarity, lanes corresponding to each 
isoform are aligned with the data in A. All 
lanes were from the same blot (with identi-
cal contrast manipulation). Similar results 
were obtained in a total of three indepen-
dent experiments. (D) Single-channel ac-
tivity from an outside-out patch of a cell 
expressing triple mutant MEC-2. These 
data were used to measure single-chan-
nel conductance. Solid lines indicate zero, 
one or both channels open; all-points his-
togram is shown on the right.   
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could affect the inner vestibule and account for the 

ability of MEC-2 to increase single channel conduc-

tance is a stretch of negatively charged amino acids 

(297 – 314) that could potentially concentrate Na +  ions 

near the pore. In support of this idea, three glutamate 

residues (E297, E299, and E314) are mutated to lysine 

in three  mec-2  alleles ( u318 ,  e1514 , and  u217 , respec-

tively) that disrupt touch insensitivity in vivo ( Zhang 

et al., 2004a ). 

 Could Accessory Proteins Regulate 
Membrane Environment? 
 Membrane environment is intimately tied to channel 

function, with particular regard to proteins that sense 

force ( Anishkin and Kung, 2005 ). This is most obvious 

in channels that can be activated by membrane stretch 

alone, such as MscL and MscS, but could be equally im-

portant in the activation of channels by force delivered 

through other modalities. Several recent models pro-

pose methods to couple membrane properties such as 

curvature, thickness, and fl uidity to force activation 

( Markin and Sachs, 2004 ;  Moe and Blount, 2005 ). The 

cocrystallization of head groups of detergent molecules 

in the recent ASIC1 structure ( Jasti et al., 2007 ) provides 

evidence that hydrophobic molecules, including lipids, 

may also bind channels directly. 

 An appealing possibility is raised by the cholesterol 

and fatty acid binding properties of MEC-2 and the im-

portance of these properties for function. MEC-2 can 

easily be conceived as having a strong role in regulating 

the membrane environment of the channel, either by 

localizing the complex to regions of high cholesterol or 

by directly recruiting cholesterol to the area of the mem-

brane surrounding the channel. This hypothesis is 

supported by the observation that MEC-2 oligomerizes 

( Zhang et al., 2004a ;  Huber et al., 2006 ) and our fi nding 

that MEC-2 enhances channel activity in a dose-depen-

dent manner. MEC-2 may alter membrane environment 

as a function of the quantity of protein present by in-

creasing cholesterol concentration proportionately. This 

could be a consequence of cholesterol ’ s putative role in 

local thickening and stiffening of the bilayer and shifting 

the lateral pressure profi le ( Cantor, 1999 ;  Gandhavadi 

et al., 2002 ;  Niemela et al., 2007 ). 

 The membrane environment is potentially a unifying 

mechanism for the roles of MEC-2 and MEC-6. While 

nothing is known about the affi nity of MEC-6 for choles-

terol or other membrane components, paraoxonases are 

known to be associated with HDL particles ( Draganov 

et al., 2000 ) and PON1 has one nontransmembrane he-

lix proposed to mediate lipid interaction via aromatic 

amino acids ( Harel et al., 2004 ). This helix is likely pre-

sent in MEC-6, and several of the highlighted aromatic 

amino acids are conserved; we propose that this helix 

may enhance lipid association in MEC-6 as well. While it 

remains highly speculative, the modes of action and 

recordings has likely been blocked by divalents in con-

trol recording solutions. Also, due to the difference in 

divalent affi nity between channels with and without 

MEC-2 and MEC-6 ( Fig. 3 ), a larger fraction of current 

would be blocked in cells lacking MEC-2 and MEC-6. 

This would have led to an underestimate of current in 

these cells and accounts for some fraction of the in-

crease in macroscopic current ascribed to MEC-2 and 

MEC-6. If this difference in affi nity for block by diva-

lent ions was the only effect of MEC-2 and MEC-6, co-

expression of the auxiliary subunits would increase cur-

rent by 50%. As this maneuver increases current by 

 � 100-fold ( Chelur et al., 2002 ), a difference in divalent 

block only accounts for a small fraction of the effect of 

auxiliary subunits. 

 The Role of MEC-10 in the Complex 
 Several lines of evidence point to MEC-10 as an inhibi-

tory unit of the sensory transduction channel. First, 

MEC-10 – induced neurodegeneration is a weaker phe-

notype that can be suppressed by many alleles of other 

 mec  genes ( Huang and Chalfi e, 1994 ). Second, while 

MEC-10 is not required for MEC-4 channel activity in 

oocytes, coexpressing MEC-10 decreases macroscopic 

current ( Goodman et al., 2002a ). However, the effect 

of MEC-10 on single-channel properties seems to be 

small or nonexistent. Comparing our present results 

for channels composed of MEC-4d/10d and MEC-2 to 

values previously reported for channels composed only 

of MEC-4d and MEC-2, we fi nd  �  2  (38.3 pS vs. 38.0 pS) 

and  P  o  (0.79 vs. 0.86) to be very similar. Taken together, 

these results indicate that MEC-10 may regulate the 

MEC-4 channel complex activity by a similar mecha-

nism to that proposed for MEC-2 and MEC-6, that is, 

by controlling the number of channels accessible for 

activation. However, the synergistic current enhance-

ment given by MEC-2 and MEC-6 is largely indepen-

dent of the presence of MEC-10 ( Goodman et al., 2002a ; 

 Chelur et al., 2002 ), suggesting that these effects work 

in parallel. 

 The Interaction between MEC-2 and the Channel Pore 
 MEC-2, which cannot form channels on its own and is 

associated only with the inner leafl et of the plasma 

membrane, modifi es the MEC-4 channel pore. Two 

lines of evidence support this conclusion. First, MEC-2 

decreases the affi nity of the MEC-4 channel for two 

open channel blockers: amiloride ( Chelur et al., 2002 ) 

and divalent ions (this study). Second, MEC-2 signifi -

cantly increases single-channel conductance. These ef-

fects could refl ect a long-range conformational change 

in the channel pore produced by MEC-2, cholesterol 

binding, or both. Alternatively, they could indicate that 

MEC-2 directly modifi es the inner vestibule of the chan-

nel. Additional studies will be required to distinguish 

among these possibilities. One region of MEC-2 that 
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