Magleby, K.L.

The Journal of General Physiology. Volume 121, No. 2, February 2003. 81–96.

Page 88.

In Table I of the original paper, the units of the low affinity site concentrations were incorrect. The corrected table appears below.

TABLE I Ca²⁺ and Mg²⁺ Regulatory Mechanisms for Slo1 BK Channels

Mutation site	Ion	$K_{\rm D\ closed}$	$K_{\rm D\; open}$	Location	V equivalent ^a	References
					mV	
High affinity	Ca^{2+}					
Ca ²⁺ bowl		3.5–4.5 μΜ	0.6–2.0 μΜ	RCK2?	60–80	Schreiber and Salkoff, 1997; Bian et al., 2001; Braun and Sy, 2001; Bao et al., 2002; Xia et al., 2002
M513		3.5–3.8 μΜ	0.8–0.9 μΜ	RCK1	70-80	Bao et al., 2002
D362/D367		$17.2 \pm 4.0~\mu\text{M}$	$4.6\pm1.0~\mu\text{M}$	RCK1	60-80	Xia et al., 2002
D81				S0-S1	10-30	Braun and Sy, 2001
Low affinity	$\mathrm{Ca^{2+}/Mg^{2+}}$			RCK1	\sim 60	
E374/E399	Mg^{2+}				60-70	Shi et al., 2002
	Ca^{2+}	$4.1\pm3.5~\mathrm{mM}$	$1.8\pm1.2~\mathrm{mM}$		50-70	Xia et al., 2002
		2.3-3.1 mM	0.5– $0.9 mM$		50-70	Zhang et al., 2001
	Mg^{2+}	9–22 mM	2–6 mM		70	Zhang et al., 2001
		15 mM	3.6 mM		75	Shi and Cui, 2001
High affinity	Ca^{2+}					
$\Delta 896 - 903 + M513I$					\sim 125	Bao et al., 2002
D(897-901)N + D362A/D367A					\sim 140	Xia et al., 2002
D895N + D81N					$\sim \! 80$	Braun and Sy, 2001

Downloaded from http://rupress.org/jgp/article-pdf/123/4/469/1732042/jgp1234469.pdf by guest on 03 December 2025

All sequence numbers are adjusted to the sequence with EMBL/GenBank/DDBJ accession no. L16912 (Butler et al., 1993) from Nucleotide in PubMed with the numbering starting at the second M (MDALI). The mutations that identify each site and identifying sequence are: The Ca2+ bowl is defined by Sequence I in the text. Various mutations in this region that greatly reduce Ca2+ sensitivity typically include one or more of the five consecutive aspartates (D897–901), such as D(897–901)N or D897–898 deleted, or the D895N which changes the D two residues before the string of aspartates. M513I identified by MRSFIK. D362A/D367A identified by DFLHKD. D81N identified by DEKEE. E399A identified by EFYQG.

^aV equivalent is the shift required in the voltage to maintain the same Po of 0.5 after the indicated mutations in the presence of 10–100 µM Ca²⁺; for the high affinity sites and 10 mM $\mathrm{Ca^{2+}}_{i}$ or $\mathrm{Mg^{2+}}_{i}$ for the low affinity sites.