Zou, H., L.M. Lifshitz, R.A. Tuft, K.E. Fogarty, and J.J. Singer. The Journal of General Physiology. Volume 114, No. 4, October 1999. 575–588.

Page 577

Due to an editorial error, rate constant units in the first column, last paragraph, were printed incorrectly. The affected paragraph appears (corrected) here:

For the simulations, the following parameters were used: channel opening of 600 ms with a 1.2-pA Ca²⁺ current; initial free intracellular Ca²⁺ concentration of 100 nM; total endogenous stationary buffer concentration of 230 μM and total fluo-3 concentration of 50 μM; an on-rate of 80 $(\mu M \cdot s)^{-1}$ for fluo-3 and 100 $(\mu M \cdot s)^{-1}$ for the stationary buffer; an off-rate of 90 s^{-1} for fluo-3 and 100 s^{-1} for the stationary buffer. tionary buffer (yielding a K_d of 1.13 μM for fluo-3 and 1 μM for the stationary buffer); a diffusion constant of 2.5×10^{-6} cm²/s for Ca²⁺ and 2.2×10^{-7} cm² /s for free and Ca²⁺-bound fluo-3. The effects of plasma membrane pumps and leaks were negligible and no other intracellular activity (e.g., Ca²⁺-induced Ca²⁺ release, Ca²⁺ uptake) was included. Diffusion, rate and dissociation constants, and the concentration of stationary buffer are from Smith et al. (1998) or Kargacin and Fay (1991).