Combined ion flux and electrophysiological measurements have been used to characterized active transport of potassium by cells of Neurospora crassa that have been moderately starved of K+ and then maintained in the presence of millimolar free calcium ions. These conditions elicit a high-affinity (K1/2 = 1-10 microM) potassium uptake system that is strongly depolarizing. Current-voltage measurements have demonstrated a K+-associated inward current exceeding (at saturation) half the total current normally driven outward through the plasma membrane proton pump. Potassium activity ratios and fluxes have been compared quantitatively with electrophysiological parameters, by using small (approximately 15 micron diam) spherical cells of Neurospora grown in ethylene glycol. All data are consistent with a transport mechanism that carries K ions inward by cotransport with H ions, which move down the electrochemical gradient created by the primary proton pump. The stoichiometry of entry is 1 K ion with 1 H ion; overall charge balance is maintained by pumped extrusion of two protons, to yield a net flux stoichiometry of 1 K+ exchanging for 1 H+. The mechanism is competent to sustain the largest stable K+ gradients that have been measured in Neurospora, with no direct contribution from phosphate hydrolysis or redox processes. Such a potassium-proton symport mechanism could account for many observations reported on K+ movement in other fungi, in algae, and in higher plants.
Skip Nav Destination
Article navigation
1 May 1986
Article|
May 01 1986
A potassium-proton symport in Neurospora crassa.
A Rodriguez-Navarro
M R Blatt
C L Slayman
Online ISSN: 1540-7748
Print ISSN: 0022-1295
J Gen Physiol (1986) 87 (5): 649–674.
Citation
A Rodriguez-Navarro, M R Blatt, C L Slayman; A potassium-proton symport in Neurospora crassa.. J Gen Physiol 1 May 1986; 87 (5): 649–674. doi: https://doi.org/10.1085/jgp.87.5.649
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora.
J Gen Physiol (September,1982)
Evidence for a Proton–Protein Symport Mechanism in the Anthrax Toxin Channel
J Gen Physiol (February,2009)
Electrical Properties of Neurospora crassa : Effects of external cations on the intracellular potential
J Gen Physiol (September,1965)
Email alerts
Advertisement