Tetrodotoxin (TTX) binding was measured in muscles which were either in normal condition or which had been "detubulated" by glycerol-induced osmotic shock. In both cases the binding of TTX was found to saturate at high TTX concentrations. Maximum binding in normal fibers was 35 pmol/g wet weight, and that figure was reduced to 16 pmol/g after glycerol treatment. The dissociation constant for binding to the surface membrane was 3 nM, which is the range of values obtained by electrophysiological measurements of the effect of TTX on the maximum rate of rise of the action potential. The results suggest that the dissociation constant in the transverse tubules may be higher than that in the surface. Control experiments indicate that the effects of glycerol treatment are limited to the accessibility of the receptors to the toxin and result in no alteration of the affinity of the binding site. TTX receptors in the transverse tubules may be recovered after glycerol treatment by homogenization of the fibers. The measurements suggest that the density of sodium channels in surface membrane is about 175/muM2 and that in the transverse tubular membrane is 41-52/mum2.

This content is only available as a PDF.
You do not currently have access to this content.