Sarcoplasmic reticulum fragments (S.R.F.) were isolated from skeletal and heart muscles. These fragments were found to take up Ca++ very actively from media. When monophasic square waves were passed through the S.R.F. suspension, the Ca++ uptake by S.R.F. was decreased. When the suspension was stimulated electrically after the Ca++ was taken up by S.R.F., the initiation and the cessation of the stimulation were followed by the release and re-uptake of Ca++ by S.R.F., respectively. The degree of inhibition of the Ca++ uptake as well as of the Ca++ release by electrical stimulation was dependent on the voltage and the frequency of stimulation. The presence of inorganic phosphate or oxalate modified the influence of electrical stimulation on the release and the uptake of Ca++ by S.R.F. Attempts were made to observe the release of Ca++ by electrical stimulation from unfractionated sarcoplasmic reticulum remaining in myofibers, and the interaction of the released Ca++ with myofibrils in vitro. For this purpose, the glycerol-extracted fiber was selected as a muscle model, since it contains both sarcoplasmic reticulum and myofibrils. It was found that electrical stimulation of skeletal and heart glycerol-extracted fibers resulted in the contraction of fibers. It appeared that the contraction of glycerol fibers by electrical stimulation was caused by the Ca++ release from sarcoplasmic reticulum by stimulation.

This content is only available as a PDF.
You do not currently have access to this content.