1. The same number of SH groups reduces ferricyanide in surface films of egg albumin as in albumin denatured by urea, guanidine hydrochloride, Duponol, or heat, provided the ferricyanide reacts with films while they still are at the surface and with the denatured proteins while the denaturing agent (urea, heat, etc.) is present.
2. The SH groups of a suspension of egg albumin made by clumping together many surface films react with ferricyanide in the same sluggish and incomplete manner as do the groups in egg albumin denatured by concentrated urea when the urea is diluted or in albumin denatured by heat when the solution is allowed to cool off.
3. The known change in configuration of the egg albumin molecule when it forms part of a surface film explains why SH groups in the film react with ferricyanide whereas those in native egg albumin do not. In the native egg albumin molecule groups in the interior are inaccessible to certain reagents. A film is so thin that there are no inaccessible groups.
4. Because of the marked resemblance in the properties of egg albumin in surface films and of egg albumin after denaturation by the recognized denaturing agents, it may be supposed that the same fundamental change takes place in denaturation as in film formation—indeed, that film formation is one of the numerous examples of denaturation. This would mean that in general the SH groups of denatured egg albumin reduce ferricyanide and react with certain other reagents because they are no longer inaccessible to these reagents.