The zebrafish has emerged as a very relevant animal model for probing the pathophysiology of human skeletal muscle disorders. This vertebrate animal model displays a startle response characterized by high-frequency swimming activity powered by contraction of fast skeletal muscle fibers excited at extremely high frequencies, critical for escaping predators and capturing prey. Such intense muscle performance requires extremely fast properties of the contractile machinery but also of excitation–contraction coupling, the process by which an action potential spreading along the sarcolemma induces a change in configuration of the dihydropyridine receptors, resulting in intramembrane charge movements, which in turn triggers the release of Ca2+ from the sarcoplasmic reticulum. However, thus far, the fastest Ca2+ transients evoked by vertebrate muscle fibers has been described in muscles used to produce sounds, such as those in the toadfish swim bladder, but not in muscles used for locomotion. By performing intracellular Ca2+ measurements under voltage control in isolated fast skeletal muscle fibers from adult zebrafish and mouse, we demonstrate that fish fast muscle fibers display superfast kinetics of action potentials, intramembrane charge movements, and action potential–evoked Ca2+ transient, allowing fusion and fused sustained Ca2+ transients at frequencies of excitation much higher than in mouse fast skeletal muscle fibers and comparable to those recorded in muscles producing sounds. The present study is the first demonstration of superfast kinetics of excitation–contraction coupling in skeletal muscle allowing superfast locomotor behaviors in a vertebrate.
Skip Nav Destination
Article navigation
Article|
Excitation–Contraction Coupling|
June 29 2022
Superfast excitation–contraction coupling in adult zebrafish skeletal muscle fibers
Romane Idoux
,
Romane Idoux
1
Institut de Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5261, INSERM U1315, Faculté de Médecine Rockefeller, Lyon, France
Search for other works by this author on:
Sandrine Bretaud
,
Sandrine Bretaud
2
Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5242, Lyon, France
Search for other works by this author on:
Christine Berthier
,
Christine Berthier
1
Institut de Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5261, INSERM U1315, Faculté de Médecine Rockefeller, Lyon, France
Search for other works by this author on:
Florence Ruggiero
,
Florence Ruggiero
2
Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5242, Lyon, France
Search for other works by this author on:
Vincent Jacquemond
,
Vincent Jacquemond
1
Institut de Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5261, INSERM U1315, Faculté de Médecine Rockefeller, Lyon, France
Search for other works by this author on:
Bruno Allard
1
Institut de Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5261, INSERM U1315, Faculté de Médecine Rockefeller, Lyon, France
Correspondence to Bruno Allard: bruno.allard@univ-lyon1.fr
Search for other works by this author on:
Romane Idoux
1
Institut de Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5261, INSERM U1315, Faculté de Médecine Rockefeller, Lyon, France
Sandrine Bretaud
2
Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5242, Lyon, France
Christine Berthier
1
Institut de Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5261, INSERM U1315, Faculté de Médecine Rockefeller, Lyon, France
Florence Ruggiero
2
Institut de Génomique Fonctionnelle de Lyon (IGFL), École normale supérieure de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5242, Lyon, France
Vincent Jacquemond
1
Institut de Physiopathologie et Génétique du Neurone et du Muscle (PGNM), Université de Lyon, Université Claude Bernard Lyon 1, Centre National de la Recherche Scientifique UMR 5261, INSERM U1315, Faculté de Médecine Rockefeller, Lyon, France
Correspondence to Bruno Allard: bruno.allard@univ-lyon1.fr
This work is part of a special issue on excitation–contraction coupling.
Received:
March 21 2022
Accepted:
June 15 2022
Online Issn: 1540-7748
Print Issn: 0022-1295
Funding
Funder(s):
Centre National de la Recherche Scientifique
Funder(s):
Institut National de la Santé et de la Recherche Médicale
Funder(s):
Association Française contre les Myopathies
- Award Id(s): project 4.1.1
Funder(s):
Fondation pour la Recherche Médicale
- Award Id(s): project ECO201806006866
Funder(s):
Agence Nationale de la Recherche
- Award Id(s): project FishandCol6
© 2022 Idoux et al.
2022
This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms/). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 International license, as described at https://creativecommons.org/licenses/by-nc-sa/4.0/).
J Gen Physiol (2022) 154 (9): e202213158.
Article history
Received:
March 21 2022
Accepted:
June 15 2022
Citation
Romane Idoux, Sandrine Bretaud, Christine Berthier, Florence Ruggiero, Vincent Jacquemond, Bruno Allard; Superfast excitation–contraction coupling in adult zebrafish skeletal muscle fibers. J Gen Physiol 5 September 2022; 154 (9): e202213158. doi: https://doi.org/10.1085/jgp.202213158
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Sign in via your Institution
Sign in via your Institution
212
Views
0
Citations
Suggested Content
Intracellular calcium movements during relaxation and recovery of superfast muscle fibers of the toadfish swimbladder
J Gen Physiol (April,2014)
Small Ca2+ releases enable hour-long high-frequency contractions in midshipman swimbladder muscle
J Gen Physiol (December,2017)
Structural and functional properties of ryanodine receptor type 3 in zebrafish tail muscle
J Gen Physiol (February,2015)
Advertisement