Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-4 of 4
Stefan Bauer
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Stefanie Jöckel, Gernot Nees, Romy Sommer, Yang Zhao, Dmitry Cherkasov, Hiroyuki Hori, Gundi Ehm, Markus Schnare, Marianne Nain, Andreas Kaufmann, Stefan Bauer
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2012) 209 (2): 235–241.
Published: 06 February 2012
Abstract
Foreign RNA serves as pathogen-associated molecular pattern (PAMP) and is a potent immune stimulator for innate immune receptors. However, the role of single bacterial RNA species in immune activation has not been characterized in detail. We analyzed the immunostimulatory potential of transfer RNA (tRNA) from different bacteria. Interestingly, bacterial tRNA induced type I interferon (IFN) and inflammatory cytokines in mouse dendritic cells (DCs) and human peripheral blood mononuclear cells (PBMCs). Cytokine production was TLR7 dependent because TLR7-deficient mouse DCs did not respond and TLR7 inhibitory oligonucleotides inhibited tRNA-mediated activation. However, not all bacterial tRNA induced IFN-α because tRNA from Escherichia coli Nissle 1917 and Thermus thermophilus were non-immunostimulatory. Of note, tRNA from an E. coli knockout strain for tRNA (Gm18)-2′- O -methyltransferase (trmH) regained immunostimulatory potential. Additionally, in vitro methylation of this immunostimulatory Gm18-negative tRNA with recombinant trmH from T. thermophilus abolished its IFN-α inducing potential. More importantly, Gm18-modified tRNA acted as TLR7 antagonist and blocked IFN-α induction of influenza A virus–infected PBMCs.
Includes: Supplementary data
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2006) 203 (2): 481.
Published: 21 February 2006
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2006) 203 (2): 265–268.
Published: 30 January 2006
Abstract
Immunological defense depends on the ability of the innate immune system to recognize invading microbes as foreign and thus eliminate them. The Toll-like receptors (TLRs) help detect foreign invaders by sensing various pathogen-associated molecules, including microbial RNA and DNA. At present, it is unclear whether and how the immune system distinguishes between microbial and self nucleic acids, as host-derived RNA and DNA also stimulate TLRs. In addition, recent studies have revealed the existence of TLR-independent pathways that are activated in response to microbial and host nucleic acids.
Journal Articles
Jörg Vollmer, Sibylle Tluk, Claudia Schmitz, Svetlana Hamm, Marion Jurk, Alexandra Forsbach, Shizuo Akira, Kindra M. Kelly, Westley H. Reeves, Stefan Bauer, Arthur M. Krieg
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2005) 202 (11): 1575–1585.
Published: 05 December 2005
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the production of autoantibodies to certain cellular macromolecules, such as the small nuclear ribonucleoprotein particles (snRNPs), which had been considered to be passive targets of the autoimmune response. SLE is also characterized by the increased expression of type I interferon (IFN), which appears to be associated with the development and severity of disease. Here, we show that specific, highly conserved RNA sequences within snRNPs can stimulate Toll-like receptors (TLRs) 7 and 8 as well as activate innate immune cells, such as plasmacytoid dendritic cells (pDCs), which respond by secreting high levels of type I IFN. SLE patient sera containing autoantibodies to snRNPs form immune complexes that are taken up through the Fc receptor γ RII and efficiently stimulate pDCs to secrete type I IFNs. These results demonstrate that a prototype autoantigen, the snRNP, can directly stimulate innate immunity and suggest that autoantibodies against snRNP may initiate SLE by stimulating TLR7/8.
Includes: Supplementary data