Skip Nav Destination
Close Modal
Update search
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
Filter
- Title
- Author
- Author Affiliations
- Full Text
- Abstract
- Keyword
- DOI
- ISBN
- EISBN
- ISSN
- EISSN
- Issue
- Volume
- References
NARROW
Format
Journal
Article Type
Date
1-6 of 6
Marsha Wills-Karp
Close
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Journal Articles
Marsha Wills-Karp, Reena Rani, Krista Dienger, Ian Lewkowich, James G. Fox, Charles Perkins, Lauren Lewis, Fred D. Finkelman, Dirk E. Smith, Paul J. Bryce, Evelyn A. Kurt-Jones, Timothy C. Wang, Umasundari Sivaprasad, Gurjit K. Hershey, De’Broski R. Herbert
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2012) 209 (3): 607–622.
Published: 13 February 2012
Abstract
The molecular mechanisms that drive mucosal T helper type 2 (T H 2) responses against parasitic helminths and allergens remain unclear. In this study, we demonstrate in mice that TFF2 (trefoil factor 2), an epithelial cell–derived repair molecule, is needed for the control of lung injury caused by the hookworm parasite Nippostrongylus brasiliensis and for type 2 immunity after infection. TFF2 is also necessary for the rapid production of IL-33, a T H 2-promoting cytokine, by lung epithelia, alveolar macrophages, and inflammatory dendritic cells in infected mice. TFF2 also increases the severity of allergic lung disease caused by house dust mite antigens or IL-13. Moreover, TFF2 messenger RNA expression is significantly increased in nasal mucosal brushings during asthma exacerbations in children. These experiments extend the biological functions of TFF2 from tissue repair to the initiation and maintenance of mucosal T H 2 responses.
Includes: Supplementary data
Journal Articles
Charles Perkins, Noriko Yanase, George Smulian, Lucy Gildea, Tatyana Orekov, Crystal Potter, Frank Brombacher, Bruce Aronow, Marsha Wills-Karp, Fred D. Finkelman
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2011) 208 (4): 853–867.
Published: 04 April 2011
Abstract
Production of the cytokines IL-4 and IL-13 is increased in both human asthma and mouse asthma models, and Stat6 activation by the common IL-4/IL-13R drives most mouse model pathophysiology, including airway hyperresponsiveness (AHR). However, the precise cellular mechanisms through which IL-4Rα induces AHR remain unclear. Overzealous bronchial smooth muscle constriction is thought to underlie AHR in human asthma, but the smooth muscle contribution to AHR has never been directly assessed. Furthermore, differences in mouse versus human airway anatomy and observations that selective IL-13 stimulation of Stat6 in airway epithelium induces murine AHR raise questions about the importance of direct IL-4R effects on smooth muscle in murine asthma models and the relevance of these models to human asthma. Using transgenic mice in which smooth muscle is the only cell type that expresses or fails to express IL-4Rα, we demonstrate that direct smooth muscle activation by IL-4, IL-13, or allergen is sufficient but not necessary to induce AHR. Five genes known to promote smooth muscle migration, proliferation, and contractility are activated by IL-13 in smooth muscle in vivo. These observations demonstrate that IL-4Rα promotes AHR through multiple mechanisms and provide a model for testing smooth muscle–directed asthma therapeutics.
Includes: Supplementary data
Journal Articles
Ian P. Lewkowich, Nancy S. Herman, Kathleen W. Schleifer, Matthew P. Dance, Brian L. Chen, Krista M. Dienger, Alyssa A. Sproles, Jaimin S. Shah, Jörg Köhl, Yasmine Belkaid, Marsha Wills-Karp
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2005) 202 (11): 1549–1561.
Published: 28 November 2005
Abstract
The role of natural CD4 + CD25 + regulatory T (T reg) cells in the control of allergic asthma remains poorly understood. We explore the impact of T reg cell depletion on the allergic response in mice susceptible (A/J) or comparatively resistant (C3H) to the development of allergen-induced airway hyperresponsiveness (AHR). In C3H mice, anti-CD25–mediated T reg cell depletion before house dust mite treatment increased several features of the allergic diathesis (AHR, eosinophilia, and IgE), which was concomitant with elevated T helper type 2 (Th2) cytokine production. In similarly T reg cell–depleted A/J mice, we observed a moderate increase in airway eosinophilia but no effects on AHR, IgE levels, or Th2 cytokine synthesis. As our experiments suggested that T reg cell depletion in C3H mice before sensitization was sufficient to enhance the allergic phenotype, we characterized dendritic cells (DCs) in T reg cell–depleted C3H mice. T reg cell–depleted mice had increased numbers of pulmonary myeloid DCs with elevated expression of major histocompatibility complex class II, CD80, and CD86. Moreover, DCs from T reg cell–depleted mice demonstrated an increased capacity to stimulate T cell proliferation and Th2 cytokine production, which was concomitant with reduced IL-12 expression. These data suggest that resistance to allergen-driven AHR is mediated in part by CD4 + CD25 + T reg cell suppression of DC activation and that the absence of this regulatory pathway contributes to susceptibility.
Journal Articles
Edith M. Hessel, Mabel Chu, Jennifer O. Lizcano, Bonnie Chang, Nancy Herman, Sariah A. Kell, Marsha Wills-Karp, Robert L. Coffman
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2005) 202 (11): 1563–1573.
Published: 28 November 2005
Abstract
A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)–mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c + APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E–dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways.
Includes: Supplementary data
Journal Articles
Fernando P. Polack, Michael N. Teng, Peter L.Collins, Gregory A. Prince, Marcus Exner, Heinz Regele, Dario D. Lirman, Richard Rabold, Scott J. Hoffman, Christopher L. Karp, Steven R. Kleeberger, Marsha Wills-Karp, Ruth A. Karron
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (2002) 196 (6): 859–865.
Published: 09 September 2002
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral pneumonia in infants and young children. Administration of a formalin inactivated vaccine against RSV to children in the 1960s resulted in increased morbidity and mortality in vaccine recipients who subsequently contracted RSV. This incident precluded development of subunit RSV vaccines for infants for over 30 years, because the mechanism of illness was never clarified. An RSV vaccine for infants is still not available. Here, we demonstrate that enhanced RSV disease is mediated by immune complexes and abrogated in complement component C3 and B cell–deficient mice but not in controls. Further, we show correlation with the enhanced disease observed in children by providing evidence of complement activation in postmortem lung sections from children with enhanced RSV disease.
Journal Articles
Journal:
Journal of Experimental Medicine
Journal of Experimental Medicine (1998) 187 (6): 939–948.
Published: 16 March 1998
Abstract
The pleiotropic cytokine interleukin 4 (IL-4) has been shown to regulate many processes thought to be important in the allergic diathesis. To determine the mechanism(s) by which IL-4 mediates allergic airway responses to inhaled allergens, we compared the effects of antigen sensitization and challenge on the development of allergic airway responses in mice in which the gene for the signal transducer and activator of transcription factor 6 (Stat6) was disrupted to those of their wild-type littermates. Strikingly, Stat6-deficient mice failed to develop airway hyperresponsiveness (AHR), which was observed in their wild-type littermates after allergen provocation. Moreover, antigen-induced increases in mucus-containing cells were found to be completely Stat6 dependent. Consistent with the lack of Th2 cytokine responses in Stat6-deficient mice, no ovalbumin-specific immunoglobulin (Ig)E was detected in their serum. In contrast, Stat6 signaling only partially mediated antigen-induced eosinophilia with no role in vascular adhesion molecule 1 expression. These results indicate that Stat6 signal transduction is critical in the development of allergen-induced AHR and that agents that specifically inhibit this pathway may provide a novel strategy for the treatment of allergic disorders.