The CD45 tyrosine phosphatase plays an important role in regulating T lymphocyte activation, but the function of the different isoforms of CD45 is not known. T cell transfectants have been prepared that express individual CD45 isoforms in cells with a well-defined T cell receptor (TCR) from the D10 T helper 2 clone. We find that cells bearing low molecular weight CD45 isoforms are far more efficient in responding to stimulation with peptide and antigen-presenting cells compared with cells bearing high molecular weight CD45 isoforms. One hypothesis for the preferential activation of cells that express low molecular weight CD45 isoforms is that they interact with other cell surface antigens important in TCR signaling, altering their phosphorylation status and affecting the character of the signal transduction pathway. In this report, using cells expressing single isoforms, we demonstrate that low molecular weight isoforms of CD45 preferentially associate with CD4 and the TCR complex compared with high molecular weight isoforms. The molecular basis for this interaction was further examined using a glycosyl phosphatidyl inositol (GPI)-linked form of CD45Null (lacking tyrosine phosphatase domains), which preferentially associated with CD4 compared with GPI-linked CD45ABC, and cytoplasmic tail mutants of CD4, which retained the ability to coassociate. Using this panel of transfectants, it is clear that the interaction between CD4 and CD45 does not require the cytoplasmic domains of CD45, but is dependent on the specific external domain of the various isoforms: low molecular weight species were more likely to associate with the CD4-TCR complex than the higher molecular weight isoforms, and their ability to coassociate correlated with the magnitude of the response to specific antigen.

This content is only available as a PDF.