The self-mouse lysozyme peptide corresponding to residues 46-62 (ML46-62) binds to the major histocompatibility complex (MHC) class II molecules I-A(k) and it selectively inhibits, when coinjected with antigen, priming of I-A(k)-restricted, antigen-specific T cells. We demonstrate that administration of ML46-62 also inhibits in vivo antibody responses induced by I-A(k)-restricted T helper cells. ML46-62 is able to prevent the primary anti-hen egg white lysozyme (HEL) antibody response induced by the entire HEL molecule in B10.A(4R) mice, expressing only I-A(k) molecules, but not in mice of H-2d haplotype. ML46-62 also strongly decreases, in B10.A(4R) mice, the antibody response to ribonuclease A, a protein antigen unrelated to the MHC blocker, indicating that MHC blockade is the mechanism leading to inhibition of antibody response. This is further supported by the concomitant decrease, in vivo, of complex formation between immunodominant HEL peptides and I-A(k) molecules, preventing I-A(k)-restricted T cell induction. Administration of ML46-62 after antigen priming does not affect ongoing antibody responses, as expected from MHC blockade. A single injection of ML46-62 at the time of protein antigen priming precludes not only the primary, but also the secondary antibody response to a subsequent challenge with soluble protein, even when the challenge is performed several months after priming. Coinjection of antigen and MHC antagonist inhibits production of all antibody isotypes equally well, suggesting that MHC class II blockade affects both Th1- and Th2-type T helper cells. Therefore, these results indicate that administration of MHC class II-binding peptides can efficiently and selectively prevent the induction of T cell-dependent primary and secondary in vivo antibody responses by blocking antigen presentation to class II-restricted T helper cells.

This content is only available as a PDF.