Murine T cells expressing V beta 5 are characterized by (a) intrathymic deletion in the presence of I-E and products of endogenous mouse mammary tumor viruses, and (b) a greater representation in CD8+ relative to CD4+ peripheral T cells, thought to be due to more efficient intrathymic positive selection on class I rather than class II major histocompatibility complex antigens. We have engineered mice that are transgenic for a rearranged gene encoding a V beta 5+ beta chain of the T cell receptor for antigen. Deletion is not predicted in I-E- V beta 5+ transgenic mice, and until the age of 2 wk, the CD4/CD8 ratio of peripheral T cells is > 3:1 and indistinguishable between transgenic and nontransgenic mice. Transgenic mice then show a rapid, age-dependent decline in the ratio of CD4+ to CD8+ T cells in the lymphoid periphery, reaching a low of 1:10 by 7 mo of age. Furthermore, the percent of peripheral CD4+ cells that express the transgene drops with age, reaching a low of about 60% at 7 mo, while the percent of CD8+ cells that express V beta 5 remains greater than 95% at all ages. The lymphoid periphery is implicated in this selection against CD4+ V beta 5+ T cells as it occurs more rapidly in thymectomized transgenic mice, and can be delayed in mice whose peripheral T cells are replaced by recent thymic emigrants after depletion by in vivo treatment with anti-Thy-1 antibodies. These results indicate that the relative expression of V beta 5 in T cell subsets can be influenced not only intrathymically in I-E+ V beta 5+ transgenic mice, but also by events in the periphery, in the absence of I-E expression.

This content is only available as a PDF.