The physical association of 40 antigenic peptides and purified HLA class I and class II molecules was monitored using a direct peptide binding assay (PBA) in solid phase and an inhibition peptide binding assay (IPBA) in which the competing peptide was present in a soluble phase. We also examined the ability of different peptides to inhibit the lytic activity of human antiviral cytolytic T cells towards cells incubated with the corresponding target peptide. Our results showed that: (a) Binding of a given human T cell-recognized peptide to several HLA class I and class II molecules occurred frequently. Nevertheless, preferential binding of peptides to their respective restriction molecules was also observed. (b) Binding of HLA molecules to peptides recognized by murine T cells occurred less frequently. (c) 11 of 24 (46%) randomly selected HIV-1 peptides contained agretopic residues allowing their binding to HLA molecules. (d) The kinetics of HLA/peptide association depended on the peptide tested and were faster than or similar to those reported for Ia molecules. Dissociation of these complexes was very low. (e) Peptide/HLA molecule binding was dependent on length, number of positive charges, and presence of hydrophobic residue in the peptide. (f) A correlation was demonstrated between a peptide inhibitory effect in the IPBA and its blocking effect in the cytolytic test. Our data indicated that the restriction phenomenon observed in T cell responses was not strictly related to either an elective HLA/peptide association, or a high binding capacity of a peptide to HLA molecules. These data also showed that the PBA and IPBA are appropriate for the detection of agretopic residues within HIV-1 proteins.

This content is only available as a PDF.