B6.T1a(a) (Qa-1(a)) mice that are primed in vivo and restimulated in vitro with Qa-1 congenic spleen cells from B6 (Qa-1(b)) animals are unable to generate anti-Qa-1(b) cytotoxic T lymphocytes (CTL). This nonresponsive pattern was observed regardless of the route of immunization or the time of testing in vitro.

Although B6.T1a(a) mice are nonresponders to Qa-1(b) when presented on B6 cells, these mice can generate anti-Qa-1(b) CTL when primed in vivo with Qa-1 and H-Y alloantigens (females primed with B6 male cells) or Qa-1 and minor-H- alloantigens (primed with sex-matched A.BY cells). Therefore, the inability to generate anti-Qa-1(b) CTL is due to a lack of helper or accessory antigens on B6 immunizing cells obligatory during in vivo priming, rather than an absence of anti-Qa-1(b) CTL precursors (CTL-P). Demonstration that the additional determinants required during in vivo priming actually function as carrier or helper determinants was shown by the requirement for linked recognition of Qa-1 and the helper determinants (H-Y) in vivo, and the fact that H-Y was not present on susceptible target ceils. Animals primed in vivo with H-Y only could not generate anti-Qa-1 CTL activity when challenged in vitro with both Qa-1 and H-Y, indicating that recognition of the helper determinant causes in vivo priming of CTL-P rather than generating helper activity that might activate unprimed CTL-P in vitro.

Whereas unprimed peripheral CTL-P require the presence of both Qa-1 (CTL) and H-Y (helper) determinants for successful in vivo priming, helper determinants were not required in vitro because primed CTL-P from B6.T1a(a) mice could be driven to CTL in vitro using sex-matched B6 stimulator cells.

The generation of anti-Qa-1(b) CTL is under immune response (Ir) gene control because F(1) mice, obtained by crossing responder A/J with nonresponder B6.T1a(a) animals, generated CTL to the Qa-1(b) alloantigen when presented on B6 spleen cells. Progeny testing of backcross mice further demonstrated that the Ir gene(s) is linked to the H-2 complex.

These data indicate that an H-2-linked Ir gene controls the recognition of helper determinants required for CTL priming in vivo. These helper determinants can be distinguished from CTL determinants and both must be recognized together for successful priming of CTL-P.

This content is only available as a PDF.