The functional role of cell surface Ia antigens has been studied for in vitro antibody responses, using as a probe the ability of anti-Ia reagents to inhibit these responses. A hybridoma monoclonal anti-Ia reagent specific for a product of I-Ak (Ia.17) profoundly inhibited in vitro antibody responses to TNP-KLH by spleen cells of the I-Ak but not I-Ab haplotype. This inhibition by anti-I-Ak product, but not by interaction with T or B cell product, in spite of the fact that functional B cells as well as accessory cells could be shown to express the determinant detected by this hybridoma reagent. These results suggest that the Ia expressed by accessory cells in of unique functional importance in these responses. To further characterize the function of Ia antigens in this response system, the mechanism of anti-I-Ak inhibition was determined. The inhibition resulting from interaction of anti-I-Ak with accessory cell Ia was not mediated by nonspecific suppressor cells, nor was there nonspecific interference with accessory cell function as a result of the binding of anti-Ia antibody. The relationship between anti-Ia inhibition and T helper cell recognition of self determinations on accessory cells was analyzed using T cells from radiation bone marrow chimeras. It was demonstrated that (B10 X B10.A)F1 leads to B10 (F1 leads to B10) chimera T cells were able to cooperate with B10 (H-2b and I-Ab) but not B10.A (H-2a and I-Ak) accessory cells for responses to TNP-KLH; F1 leads to B10.A T cells were able to cooperate with B10.A but not B10 accessory cells; and both chimera populations were able to cooperate with (B10 X B10.A)F1 (F1) accessory cells. Monoclonal anti-I-Ak inhibited the cooperation of F1 leads to B10.A T cells with the same F1 accessory cells. Thus, inhibition by anti-I-Ak is dependent upon active helper T cell recognition of I-Ak-encoded determinants expressed on accessory cells. These findings demonstrate that T cells recognize self Ia determinants expressed on accessory cells, and that such recognition is required for the generation of T cell-dependent antibody responses.

This content is only available as a PDF.