The electrocardiographic records taken during vagus stimulation by pressure from children suffering with chronic heart disease have shown that the stimulation of the vagi in these cases is strikingly effectual. In some of the cases, a definite difference was demonstrated between the action of the right and left vagi. The control of the rate of the heart-beat seemed to predominate usually in the right vagus nerve, while the control of stimulus conduction from auricles to ventricles apparently predominated usually in the left vagus. This difference in the two nerves probably exists on account of the difference in their anatomical distribution, the right vagus going especially to that part of the heart which controls the rate of contraction, the sinus node above the right auricle, and the left vagus going especially to that part in which the conducting mechanism is found. Each nerve, however, has to a lesser degree the function which predominates in the other. The whole heart seems to respond, as a rule, more promptly to right than to left vagus pressure, and fairly constant differences have been seen in the effects which stimulation of each nerve has on the various waves of the electrocardiograms. The stimulation of each vagus may influence directly the contractions of the ventricles, causing great diminution in their force.

Right vagus stimulation was followed at times by a complete dissociation of auricles and ventricles. The auricular rhythm was slowed sufficiently at this time to allow the ventricles, whose inherent rhythmicity is apparently unaffected by right vagus stimulation, to take up their own independent rhythm. The heightened ventricular rhythmicity in these cases allowed this to take place after only moderate slowing of the auricles. The independent ventricular rhythm was sometimes established in the region of the node of Tawara, for no disturbance of the ventricular portion of the electrocardiogram occurred. At another time, some other point in the ventricles inaugurated the stimuli of the independent ventricular contractions and an abnormal electrocardiogram resulted.

The resemblance of our curves, showing dissociation, to those obtained during right vagus and left accelerator stimulation in dogs is definite. That analogy, the clinical picture, and the form of the electrocardiograms of these cases have led us to the belief that an important feature in the pathological physiology of these cases is hypertonus of the cardiac accelerator nerves. This factor, as a cause of symptoms and as a hindrance to the establishment of cardiac rest, may prove of great importance, against which a new form of cardiac therapeutics must be directed.

This content is only available as a PDF.