The present experiments were performed in order to analyze the mechanism by which thymus-independent antigens (nonspecific B-cell mitogens) can induce specific immune responses to antigenic determinants present on the same molecule. The hapten NNP was coupled to the B-cell mitogen, lipopolysaccharide (LPS). The conjugate retained full mitogenic activity and bound specifically to NNP-reactive cells. NNP-LPS activated polyclonal as well as specific anti-NNP antibody synthesis, but the optimal concentrations for induction of specific anti-NNP cells were several orders of magnitude lower than the concentrations required for polyclonal activation. These low concentrations failed to activate nonspecific cells, but they induced specific thymus-independent responses of high-avidity NNP-specific cells with the typical kinetics of antigenic responses in vitro. Furthermore, hapten-specific cells were paralyzed by NNP-LPS concentrations that were optimal for induction of polyclonal activation. Specific activation and paralysis could be abolished by free hapten indicating that selective binding of NNP-LPS to hapten-specific cells was responsible for the specificity of the response. However, the triggering signal lacked specificity, since high-avidity specific anti-NNP cells could still be activated by stimulating concentrations of NNP-LPS in the presence of free hapten, even though the Ig receptor combining sites were presumably occupied by NNP.

The findings show that B cells with specific Ig receptors for the antigenic determinants on mitogen molecules preferentially bind these molecules and become activated at concentrations still unsufficient to trigger other B cells that lack specific receptors. It is suggested that activation for primary IgM responses in B cells is the result of "one nonspecific signal." This nonspecific signal is provided by the mitogenic properties of some antigens (highly thymus independent or, alternatively, by nonspecific T-cell factors (for highly T cell-dependent antigens), or both, and the surface structures responsible for triggering are not the Ig receptors. The specific Ig receptors only act as passive focusing devices for nonspecific stimuli, entitling the cell to be selectively activated, even though both the signal and the receptors for the triggering are nonspecific.

This content is only available as a PDF.