The mitochondrial enzyme δ-aminolevulinate synthetase (ALAS) controls the rate-limiting step in the synthesis of porphyrins and heme. An experimental form of hepatic porphyria can be readily elicited in laboratory animals, such as the rat, by drugs and foreign chemicals which are known to enhance the de novo formation of this enzyme in the liver.

The present study shows that there is a striking refractoriness to the induction of ALAS during the perinatal period in the rat. Chemicals which have potent porphyria-inducing activity in adult animals have no significant inducing effect on hepatic ALAS in neonates. The ultrastructural changes which accompany the induction of ALAS by drugs and chemicals in adult liver also fail to take place in the livers of neonates. A progressive capacity for responding to the action of chemical inducers of hepatic ALAS does, however, develop in neonatal animals so that by approximately 5–6 wk of age experimental porphyria can be elicited as effectively in them as in adults.

The reasons for the refractoriness of hepatic ALAS to induction in the perinatal period are not known; but the findings of this study make it clear that ALAS belongs to that increasingly large group of liver enzymes in mammals whose appearance, increase of activity, or inducibility is developmentally determined.

The occurrence of developmental changes in the indicibility of ALAS in the liver of neonates also provided an opportunity to study the relationship of this enzyme activity to the drug-mediated induction of the hepatic hemoprotein cytochrome P-450. This inducible hemoprotein serves as the terminal oxygenase in the microsomal mixed-function oxidase system in the liver. The results of this study indicate that, in contrast to the refractoriness of ALAS to induction, significant drug-induced changes of hepatic P-450 content and of hemeprecursor incorporation into this cytochrome do take place in neonates. The synthesis of P-450 thus appears to be under a regulatory control different from that of ALAS in neonates, and the relation between ALAS activity and P-450 formation is not therefore a direct one.

This content is only available as a PDF.