Congenic mice, differing genetically only at the loci coding for immunoglobulin H chain (or Fc) structures, have been used to study cell interactions in the 7S (γG2a) antibody response to sheep erythrocytes (SRBC), as detected by the Jerne plaque-forming cell (PFC) method.

The interaction between thymus and bone marrow cells was studied in adult thymectomized irradiated recipients, protected with syngeneic bone marrow and injected with thymus cells from the partner congenic strain. All of the γG2a PFC detected in the spleens of these mice were of bone marrow allotype.

Adoptive secondary immune responses were then studied to determine whether a similar interaction between memory cells and bone marrow derived cells could be detected. Primed spleen cells from the partner congenic strain, or a subpopulation of these cells obtained by BSA density gradient fractionation, were injected into irradiated recipients alone, or together with syngeneic nonimmune spleen or bone marrow cells. All γG2a PFC detected in these experiments were of primed cell allotype. There was no evidence that antibody forming cell precursors in normal spleen or bone marrow participate in the adoptive secondary immune response detected 7 days after transfer of primed spleen cells. This was true regardless of whether the bone marrow cells were injected at the time of transfer, or were injected 1–2 wk earlier and allowed to become established in the spleens of recipient mice. Although no specific cell interaction was seen, bone marrow (and, to a lesser degree, normal spleen) cells were found to have a nonspecific enhancing effect on the adoptive secondary response when they were injected together with the primed spleen cells. This enhancement was not evident if the bone marrow cells were injected 1 or 2 wk prior to primed cell transfer.

This content is only available as a PDF.