We analyzed the molecular mechanism for the immunoglobulin (Ig) multiple isotype expression using a transgenic mouse (TG.SA) model system. Though most of the endogenous mu chain expression was excluded by the expression of the human rearranged mu transgene in the TG.SA mouse, a significant portion of splenic B lymphocytes could express the transgenic human IgM and endogenous mouse IgG simultaneously after stimulation with lipopolysaccharide and interleukin 4. The fluorescence-activated cell sorter-purified population of the human IgM+/mouse IgG+ cells expressed mRNA that consisted of properly spliced sequences of the transgenic VHDJH and the endogenous mouse C gamma genes (trans-mRNA), together with the transgenic human mu mRNA and germline transcripts of the mouse C gamma gene, without apparent rearrangement of the transgene. We also found that a lymphoma tumor, derived from the cross between the TG.SA mouse and another transgenic mouse carrying Ig H chain enhancer-driven c-myc oncogene, expressed about equal levels of the trans-mRNA and the transgenic mu mRNA without DNA rearrangement in either the transgene or the endogenous mouse switch region. These findings strongly support our previous proposal that the trans-splicing can account for the multiple isotype expression in this transgenic model and also suggest that novel molecular mechanism(s) might be involved in this reaction.

This content is only available as a PDF.