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Autoantibodies neutralizing type | IFNs in a fatal
case of H5N1 avian influenza
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Avian influenza A virus (IAV) H5N1 is an emerging threat of human pandemic. We describe a 71-year-old man who died of H5N1
pneumonia in Louisiana and whose blood contained autoantibodies neutralizing type | IFNs (AAN-I-IFNs), including the 12 IFN-a
subtypes (1-10 ng/ml) and IFN-w (100 pg/ml). Causality between these AAN-I-IFN and lethal outcome of avian influenza in
this patient is based on (1) our previous report that AA-I-IFN underlie about 5% of cases of critical pneumonia triggered by
seasonal influenza viruses in three cohorts, (2) the rarity of this combination of AAN-I-FNs in individuals over 70 years old (<1%),
and (3) the rarity of lethal avian influenza among infected individuals (<1%). AAN-I-IFNs underlie a growing number of severe
viral diseases, from arboviral encephalitis to viral pneumonia, particularly in the elderly. This case suggests they can also
underlie life-threatening avian H5N1 influenza. The presence of AAN-I-IFN may facilitate infection, replication, and adaptation
of zoonotic IAVs to humans and, therefore, human-to-human transmission.

Introduction

Influenza A viruses (IAVs) triggered the 1918 Spanish flu (HIN1),
1957 Asian flu (H2N2), 1968 Hong Kong flu (H3N2), 1977 Russian
flu (HIN1), and 2009 swine flu (HIN1) epidemics and pandemics.
Zoonotic IAVs, especially H5N1 and H7N9, are among the
greatest current threats to public health due to their pandemic
potential (WHO, 2025; CDC, 2025). H5N1 IAV causes lethal in-
fections in poultry, leading to important economic losses, but can
also infect various mammals, including humans, causing severe
disease. Since 1997, 985 cases of H5N1 infection in humans have
been recorded in 25 countries by the WHO, with a fatality rate of
48% (case-fatality ratio) (WHO, 2025). From 2013 to 2019, 1,500
human cases of H7N9 infection were reported, all in China, with
a fatality rate of 40% (Chen et al., 2021). Data for estimating
the true infection-fatality rate (IFR) of H5N1 and H7N9 IAV
infections are scarce, but this rate is probably below WHO
estimates (WHO, 2025) because the rate of seroconversion in

exposed individuals is only 1-2%, and even if infected, many mild
cases remain undiagnosed (Wang et al., 2012). Indeed, recent
studies on human H5N1 infections showed that all cases were
asymptomatic or mild (Garg et al., 2025; Shimizu et al., 2016).
Similar findings were reported for humans infected with H7N9
(Chen et al., 2014). So far, no human-to-human transmission of
either avian IAV has been documented. However, the recent
introduction of H5N1 viruses into cows resulted in several H5N1
infections in dairy workers, probably through exposure to in-
fectious material from infected cow’s milk (Garg et al., 2025). As
with other infectious agents, there is immense interindividual
variability in humans exposed to H5N1 or H7N9, ranging from
silent infection to lethal disease, and the IFR is not precisely
known (Casanova and Abel, 2022).

Protection against avian IAVs may be mediated by cross-
reactive adaptive immunity to seasonal IAVs, or by intrinsic or
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innate immunity. Since 2015, we and others have reported that
rare monogenic inborn errors of type I IFN immunity can un-
derlie life-threatening seasonal IAV infections in otherwise
healthy individuals (Ciancanelli et al., 2015; Zhang et al., 2022a;
Hernandez et al., 2018; Lim et al., 2019). Moreover, variants of
MXI1, an IFN-stimulated gene (ISG) that is functional in humans
but not birds, were identified in Chinese individuals who de-
veloped severe H7N9 infection (Chen et al., 2021). Since 2020,
we have also shown that autoantibodies neutralizing type I IFNs
(AAN-I-IFNs) can underlie 5% of severe seasonal influenza
pneumonia (Zhang et al., 2022b), 10% of tick-borne encephalitis
(Gervais et al., 2024b), 15% of hypoxemic COVID-19 pneumonia
(Bastard et al., 2020, 2021a; Stertz and Hale, 2021), 20% of severe
Middle East respiratory syndrome pneumonia cases (Alotaibi
et al., 2023), 30% of severe adverse reactions to live-attenuated
yellow fever virus vaccine (YFV-17D) (Bastard et al., 2021b), 40%
of West Nile virus encephalitis cases (Gervais et al., 2023), and
most cases of the rarer Usutu or Powassan virus encephalitis
(Gervais et al., 2024a). Unlike most known inborn errors of type I
IFN immunity, AAN-I-IFNs are common in the general popula-
tion, with a prevalence of about 0.5% under the age of 70 years
and about 5% over the age of 70 years (Bastard et al., 202Ia).
Samples from most patients (1:10 diluted plasma or serum)
neutralize 0.1-10 ng/ml IFN-a and/or -w, resulting in a very high
odds ratio (OR: 100-500) for severe disease relative to controls
with mild/asymptomatic infection (Bastard et al., 2024). We
thus tested the hypothesis that AAN-I-IFN can underlie severe
H5NI1 infection.

Results and discussion

On December 9, 2024, a 71-year-old man of European descent
with a 1-week history of dyspnea, fever, and confusion presented
ata rural hospital in Jennings, LA. On admission, the patient had
acute hypoxic respiratory failure. Chest X ray revealed multi-
focal pneumonia involving the right upper and lower lobes. The
patient was intubated and transferred to the ICU on day 1 of
hospitalization (day 1). On day 2, IAV was detected in swabs
(influenza A/Louisiana/12/2024 H5N1 virus, D11 genotype).
Oseltamivir was initiated on day 2, and baloxavir was added on
day 3. The patient kept domesticated chickens and ducks, which
had died about 5-7 days earlier. He was transferred to the Aca-
demic Medical Center of Ochsner-LSU Health Shreveport in
Shreveport, LA. On day 3, veno-venous extracorporeal mem-
brane oxygenation was initiated, and therapeutic plasma ex-
change (TPE) was performed due to concerns about thrombotic
microangiopathy and viremia. Continuous renal replacement
therapy (CRRT) was performed from days 4 to 13 and days 20 to
28, and an ExThera Seraph 100 Microbind Affinity Blood Filter
was used (days 4 to 8). The course of the infection was compli-
cated by atrial fibrillation with rapid ventricular response and
gastrointestinal bleeding. Tracheostomy was performed on day
14. On day 25, the patient developed profound hypoxia and hy-
percapnia, with anuria and a return of vasoplegic shock, which
became refractory to treatment. On day 29, a transition to
comfort care was decided. The patient died shortly thereafter,
surrounded by family. During hospitalization, the patient was
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tested positive for cold agglutinin, anti-Kna (Knops), and anti-
JKB antibodies. He had no clinical history of severe infectious
diseases or autoimmunity and no recorded influenza or COVID-
19 vaccination.

We first tested the blood sample collected from the patient on
day 3, before TPE/CRRT, for AAN-I-IFN neutralizing IFN-a, -,
and -w in a luciferase reporter assay. The patient’s blood (diluted
1:20) neutralized 10 ng/ml IFN-a and 100 pg/ml IFN-w, but not
IFN-B (Fig. 1A). It also neutralized all 12 subtypes of IFN-a tested
(Fig. S1 A). ELISA and multiplex assays revealed high levels of
IgG-binding IFN-a, intermediate levels of IgG binding IFN-w,
and no detectable IgG-binding IFN-B, consistent with neutrali-
zation assay results (Fig. 1, B and C). High IgG levels binding IL-
17F, IL-22, possibly CXCL1, IL-5, IL-9, TSLP, and TWEAK were
detected, but no IgG binding the other 36 cytokines tested (Fig. S1
B). We then tested the patient’s blood samples 18 h, 2 days, and
3 days after TPE treatment. Anti-IFN-a titer decreased but was
still detectable 18 h after TPE. (Fig. 1 D). Serological tests were
performed for IAVs. The patient’s blood samples were positive
for A/Hong Kong/1/1968 by hemagglutination inhibition (HAI)
assay, indicating exposure to seasonal H3N2 (Fig. 2 A). Finally, in
the presence of blood from the patient, IFN-a failed to inhibit
IAV replication in A549 cells, indicating that the AAN-I-IFN
blocked the antiviral function of IFN-a (Fig. 2 B).

We report a fatal case of H5N1 pneumonia in a 71-year-old
man with blood AAN-I-IFN neutralizing 10 ng/ml IFN-a and 100
pg/ml IFN-w. In the general population, autoantibodies neu-
tralizing these concentrations of IFN-a and IFN-w are found in
only 0.5% of individuals aged between 65 and 75 years and 1% of
individuals aged >70 years (Bastard et al., 2021a). We previously
showed that individuals with AAN-I-IFN have a very high risk of
critical seasonal IAV pneumonia (OR: 10-100) (Zhang et al.,
2022b). Causality between AAN-I-IFN and fatal H5N1 infection
in this patient is therefore plausible. The patient was seroposi-
tive for seasonal H3N2, indicating that he had controlled
seasonal IAV infections without vaccination. His AAN-I-IFN
probably emerged when he was already seropositive for seasonal
H3N2 (Fernbach et al., 2024; Bastard et al., 2023). The patient
had no clinical history of severe infection or autoimmune dis-
ease, like many patients with AAN-I-IFN in this age group
(Bastard et al., 2024). Similarly, like most individuals with AAN-
I-IFN, he had autoantibodies neutralizing IFN-a and/or -w, but
not -B, and might therefore have benefited from IFN-f therapy,
if administered early in infection and in combination with an-
tiviral therapies.

We and others have shown that AAN-I-IFN underlie a
growing range of severe infections of emerging and circulating
viruses (Bastard et al., 2024; Hale, 2023; Busnadiego et al., 2022).
This fatal case of H5N1 infection has broad clinical and biological
implications. It suggests that type I IFNs may contribute to in-
nate and intrinsic immunity to emerging viruses, including zo-
onotic viruses, such as avian IAV. AAN-I-IFNs are common in the
general population and therefore constitute a substantial threat
to public health (Bastard et al., 2021a). We also recently identi-
fied a dominant-negative mutation in IFNARI (p.Pro335del),
encoding the type I IFN receptor, which is remarkably common
in South China (0.6-2%). This mutation impairs the response to
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Figure 1. AAN-I-IFN in the patient’s blood neutralized IFN-a and IFN-w. (A) A549-IFN-reporter (AIR) cells carrying the ISRE reporter were stimulated with
IFN-a, -w, or -B at the concentration indicated, with or without blood from the patient (pt), an AAN-I-IFN-positive control (positive ctrl), an APS-1 patient, or
healthy donors (HD). All samples were diluted 1:20. Renilla luciferase activity was measured 24 h after stimulation. The results are expressed as a percentage of
the mean value for HDs. Luciferase activity levels <25% that of HDs were considered to indicate neutralizing activity. Two separate blood draws from the patient
were sampled. Experiments were done three times. (B) ELISA plates were coated with 1 ug/ml of the IFN subtypes indicated and incubated with blood samples
(diluted 1:50). Anti-human IgG-HRP secondary antibodies were then added, and OD was measured at 450 nm. An ODy450>0.5 was considered to be a positive
results. Three separate blood draws from the patient were sampled. Experiment was done once. (C) Multiplex assay beads were incubated with blood samples
(diluted 1:1,000), and the MFI was normalized against a beads-only control. Normalized MFI values > 3 were considered positive. Two separate blood draws
from the patient were sampled. Experiment was done once. (D) AAN-I-IFN neutralization tested with patient’s blood collected at the indicated time points as

described in A. Three separate blood draws from the patient were sampled.

IFN-a and -w, but not -B, as in patients with AAN-I-IFN. Hetero-
zygous carriers of this mutation are vulnerable to infections with
various viruses, including SARS-CoV-2 (Al Qureshah et al., 2025).
They may also be vulnerable to H5N1, H7N9, or other avian IAVs.
New cases of H5N1 infections are increasing in the recent years
(Siegers et al., 2025). Since October 2024, four other hospitalized
cases of H5NI infection have been documented in North America
(Jassem et al., 2025; CDC, 2025), some of which might perhaps have
been caused by inborn errors of type I IFN immunity or AAN-I-IFN
(Langlois and Casanova, 2025).

The initial replication of avian IAV in humans is suboptimal
due to the lack of mammal-adaptive mutations of the viral genes.
However, crippled type I IFN immunity, due to inborn errors
or AAN-I-IFN, may boost replication sufficiently for an avian
IAV to generate mutations facilitating adaptation to mammals
(Langlois and Casanova, 2025; Spieler et al., 2020). Sequencing
of the influenza A/Louisiana/12/2024 H5N1 virus responsible for
this case revealed low-frequency mutations in the HA segment
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Experiment was done once.

(mixed amino acid populations at positions A134V, N182K, and
E186D) associated with an increase in binding to human-type cell
receptors (CDC, 2024). Previous reports of MXI variants in patients
with severe H7N9 infections suggest that variants of a single ISG
may facilitate cross-species transmission (Chen et al., 2021; Hale
et al., 2010; Casanova and Abel, 2024). However, the very rare
human MX1 variants are unlikely to facilitate human-to-human
transmission, as the virus remains MXI sensitive and cannot infect
the predominantly MX1 wildtype population. By contrast, the
common presence of AAN-I-IFN and IFNARI p.Pro335del may
enable the virus to undergo selection for more efficient human-
to-human transmission if propagated in a cluster of affected
individuals, paving the way for zoonotic virus pandemics.

Materials and methods
Written informed consent was obtained in LSU Health Shreve-
port in accordance with the approval of the institute review
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Figure2. The patient’s blood is seropositive for H3N2 and blocked IFN-a function in vivo. (A) We tested for HAl assay by treating patient (Pt) and healthy
donor (HD) blood with receptor destruction enzyme (RDE) and diluting 1:10 before mixing with the HIN1, H3N2, and H5N1 IAVs at the indicated titers, together
with 0.5% Turkey red blood cells. Blood from naive mice and mice immunized with HIN1 (A/Victoria/4897/2022) or H3N2 (A/Thailand/8/2022) was used as
negative and positive controls. Experiment was done once. (B) A549 cells were incubated overnight with 50 pg/ml exogenous IFN-a2 with or without anti-IFN-
a2 monoclonal antibody (mAb), patient blood (Pt), healthy donor blood (HD1 and HD2), or APS-1 patient blood (APS-1) at indicated dilution, and then infected
with influenza A/California/04/2009 virus expressing NS1-mCherry (CalNSmCherry) at an MOI of 1. The percentage of the cells infected was determined 24 h

after infection with a Celigo (Nexcelcom) imaging cytometer. The percentage of infection was normalized against cells infected without IFN-a2 treatment. The
dotted line at 26.5% indicates the mean percentage of cells infected after treatment with IFN-a2 only. Experiments were done twice and paired t test was

performed (P values: ****<0.0001; ***<0.001; **<0.01; *<0.05; ns > 0.05).

board (protocol number 2899). AAN-I-IFN neutralization (Groen
et al., 2024, 2025), ELISA (Gervais et al., 2024a), multiplex as-
says (Bastard et al., 2020), IAV infection assay (Zhang et al.,
2022b), and HAI assays (Aydillo et al., 2021), were performed
as previously described.

Online supplemental material
Fig. S1 provides more information on the autoantibodies neu-
tralizing different type I IFN subtypes (A) and cytokines (B).
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Figure S1. Characterization of AAN-I-IFN in the patient. (A) AIR cells were stimulated with the 12 subtypes of IFN-a at a concentration of 1 ng/ml, with or
without blood from the patient (pt), an AAN-I-IFN-positive control (positive ctrl), an APS-1 patient, or healthy donors (HD). All samples were diluted 1:20. Renilla
luciferase activity was measured 24 h after stimulation and expressed as a percentage of the mean value for HDs. Luciferase activity levels <25% of HD values
were considered to indicate neutralizing activity. Three separate blood draws from the patient were sampled. Experiment was done once. (B) Multiplex assay
beads were incubated with blood samples, and MFI values were normalized against the beads-only control. Normalized MFI values > 3 were considered
positive. Two separate blood draws from the patient were sampled. Experiment was done once. AIR, A549-IFN-reporter.
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