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Autoantibodies neutralizing type I IFNs in a fatal 
case of H5N1 avian influenza
Qian Zhang1,2,3�, Taylor S. Conrad4,5*�, Marcela Moncada-Velez1*�, Kaijun Jiang6,7*�, Anastasija Cupic6,7*�, Jonathan Eaton4�, 
Kimberley Hutchinson5�, Adrian Gervais2,3�, Ruyue Chen1,8�, Anne Puel1,2,3�, Paul Bastard1,2,3,9�, Aurelie Cobat1,2,3�, Theresa Sokol10�, 
Ryan A. Langlois11�, Lisa Miorin6,12�, Adolfo Garćıa-Sastre6,13,14,15,16**�, John A. Vanchiere17**�, and Jean-Laurent Casanova1,2,3,9,18�

Avian influenza A virus (IAV) H5N1 is an emerging threat of human pandemic. We describe a 71-year-old man who died of H5N1 
pneumonia in Louisiana and whose blood contained autoantibodies neutralizing type I IFNs (AAN-I-IFNs), including the 12 IFN-α 
subtypes (1–10 ng/ml) and IFN-ω (100 pg/ml). Causality between these AAN-I-IFN and lethal outcome of avian influenza in 
this patient is based on (1) our previous report that AA-I-IFN underlie about 5% of cases of critical pneumonia triggered by 
seasonal influenza viruses in three cohorts, (2) the rarity of this combination of AAN-I-FNs in individuals over 70 years old (<1%), 
and (3) the rarity of lethal avian influenza among infected individuals (<1%). AAN-I-IFNs underlie a growing number of severe 
viral diseases, from arboviral encephalitis to viral pneumonia, particularly in the elderly. This case suggests they can also 
underlie life-threatening avian H5N1 influenza. The presence of AAN-I-IFN may facilitate infection, replication, and adaptation 
of zoonotic IAVs to humans and, therefore, human-to-human transmission.

Introduction
Influenza A viruses (IAVs) triggered the 1918 Spanish flu (H1N1), 
1957 Asian flu (H2N2), 1968 Hong Kong flu (H3N2), 1977 Russian 
flu (H1N1), and 2009 swine flu (H1N1) epidemics and pandemics. 
Zoonotic IAVs, especially H5N1 and H7N9, are among the 
greatest current threats to public health due to their pandemic 
potential (WHO, 2025; CDC, 2025). H5N1 IAV causes lethal in
fections in poultry, leading to important economic losses, but can 
also infect various mammals, including humans, causing severe 
disease. Since 1997, 985 cases of H5N1 infection in humans have 
been recorded in 25 countries by the WHO, with a fatality rate of 
48% (case-fatality ratio) (WHO, 2025). From 2013 to 2019, 1,500 
human cases of H7N9 infection were reported, all in China, with 
a fatality rate of 40% (Chen et al., 2021). Data for estimating 
the true infection-fatality rate (IFR) of H5N1 and H7N9 IAV 
infections are scarce, but this rate is probably below WHO 
estimates (WHO, 2025) because the rate of seroconversion in 

exposed individuals is only 1–2%, and even if infected, many mild 
cases remain undiagnosed (Wang et al., 2012). Indeed, recent 
studies on human H5N1 infections showed that all cases were 
asymptomatic or mild (Garg et al., 2025; Shimizu et al., 2016). 
Similar findings were reported for humans infected with H7N9 
(Chen et al., 2014). So far, no human-to-human transmission of 
either avian IAV has been documented. However, the recent 
introduction of H5N1 viruses into cows resulted in several H5N1 
infections in dairy workers, probably through exposure to in
fectious material from infected cow’s milk (Garg et al., 2025). As 
with other infectious agents, there is immense interindividual 
variability in humans exposed to H5N1 or H7N9, ranging from 
silent infection to lethal disease, and the IFR is not precisely 
known (Casanova and Abel, 2022).

Protection against avian IAVs may be mediated by cross- 
reactive adaptive immunity to seasonal IAVs, or by intrinsic or 
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this paper. Correspondence to Qian Zhang: qzhang02@rockefeller.edu; Jean-Laurent Casanova: Jean-Laurent.Casanova@rockefeller.edu.

© 2025 Zhang et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).

Rockefeller University Press https://doi.org/10.1084/jem.20251962 1 of 6
J. Exp. Med. 2026 Vol. 223 No. 3 e20251962

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/223/3/e20251962/1954620/jem
_20251962.pdf by guest on 10 February 2026

https://orcid.org/0000-0002-9040-3289
https://orcid.org/0000-0002-8667-0800
https://orcid.org/0000-0002-3073-5345
https://orcid.org/0000-0002-3607-2220
https://orcid.org/0000-0002-1291-1042
https://orcid.org/0009-0009-9116-6391
https://orcid.org/0009-0008-3404-1915
https://orcid.org/0000-0002-1083-5787
https://orcid.org/0000-0003-3195-6446
https://orcid.org/0000-0003-2603-0323
https://orcid.org/0000-0002-5926-8437
https://orcid.org/0000-0001-7209-6257
https://orcid.org/0009-0007-2102-5281
https://orcid.org/0000-0002-0515-571X
https://orcid.org/0000-0003-0989-3178
https://orcid.org/0000-0002-6551-1827
https://orcid.org/0000-0001-6863-4323
https://orcid.org/0000-0002-7782-4169
mailto:qzhang02@rockefeller.edu
mailto:Jean-Laurent.Casanova@rockefeller.edu
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1084/jem.20251962
http://crossmark.crossref.org/dialog/?doi=10.1084/jem.20251962&domain=pdf


innate immunity. Since 2015, we and others have reported that 
rare monogenic inborn errors of type I IFN immunity can un
derlie life-threatening seasonal IAV infections in otherwise 
healthy individuals (Ciancanelli et al., 2015; Zhang et al., 2022a; 
Hernandez et al., 2018; Lim et al., 2019). Moreover, variants of 
MX1, an IFN-stimulated gene (ISG) that is functional in humans 
but not birds, were identified in Chinese individuals who de
veloped severe H7N9 infection (Chen et al., 2021). Since 2020, 
we have also shown that autoantibodies neutralizing type I IFNs 
(AAN-I-IFNs) can underlie 5% of severe seasonal influenza 
pneumonia (Zhang et al., 2022b), 10% of tick-borne encephalitis 
(Gervais et al., 2024b), 15% of hypoxemic COVID-19 pneumonia 
(Bastard et al., 2020, 2021a; Stertz and Hale, 2021), 20% of severe 
Middle East respiratory syndrome pneumonia cases (Alotaibi 
et al., 2023), 30% of severe adverse reactions to live-attenuated 
yellow fever virus vaccine (YFV-17D) (Bastard et al., 2021b), 40% 
of West Nile virus encephalitis cases (Gervais et al., 2023), and 
most cases of the rarer Usutu or Powassan virus encephalitis 
(Gervais et al., 2024a). Unlike most known inborn errors of type I 
IFN immunity, AAN-I-IFNs are common in the general popula
tion, with a prevalence of about 0.5% under the age of 70 years 
and about 5% over the age of 70 years (Bastard et al., 2021a). 
Samples from most patients (1:10 diluted plasma or serum) 
neutralize 0.1–10 ng/ml IFN-α and/or -ω, resulting in a very high 
odds ratio (OR: 100–500) for severe disease relative to controls 
with mild/asymptomatic infection (Bastard et al., 2024). We 
thus tested the hypothesis that AAN-I-IFN can underlie severe 
H5N1 infection.

Results and discussion
On December 9, 2024, a 71-year-old man of European descent 
with a 1-week history of dyspnea, fever, and confusion presented 
at a rural hospital in Jennings, LA. On admission, the patient had 
acute hypoxic respiratory failure. Chest X ray revealed multi
focal pneumonia involving the right upper and lower lobes. The 
patient was intubated and transferred to the ICU on day 1 of 
hospitalization (day 1). On day 2, IAV was detected in swabs 
(influenza A/Louisiana/12/2024 H5N1 virus, D1.1 genotype). 
Oseltamivir was initiated on day 2, and baloxavir was added on 
day 3. The patient kept domesticated chickens and ducks, which 
had died about 5–7 days earlier. He was transferred to the Aca
demic Medical Center of Ochsner-LSU Health Shreveport in 
Shreveport, LA. On day 3, veno-venous extracorporeal mem
brane oxygenation was initiated, and therapeutic plasma ex
change (TPE) was performed due to concerns about thrombotic 
microangiopathy and viremia. Continuous renal replacement 
therapy (CRRT) was performed from days 4 to 13 and days 20 to 
28, and an ExThera Seraph 100 Microbind Affinity Blood Filter 
was used (days 4 to 8). The course of the infection was compli
cated by atrial fibrillation with rapid ventricular response and 
gastrointestinal bleeding. Tracheostomy was performed on day 
14. On day 25, the patient developed profound hypoxia and hy
percapnia, with anuria and a return of vasoplegic shock, which 
became refractory to treatment. On day 29, a transition to 
comfort care was decided. The patient died shortly thereafter, 
surrounded by family. During hospitalization, the patient was 

tested positive for cold agglutinin, anti-Kna (Knops), and anti- 
JKB antibodies. He had no clinical history of severe infectious 
diseases or autoimmunity and no recorded influenza or COVID- 
19 vaccination.

We first tested the blood sample collected from the patient on 
day 3, before TPE/CRRT, for AAN-I-IFN neutralizing IFN-α, -β, 
and -ω in a luciferase reporter assay. The patient’s blood (diluted 
1:20) neutralized 10 ng/ml IFN-α and 100 pg/ml IFN-ω, but not 
IFN-β (Fig. 1 A). It also neutralized all 12 subtypes of IFN-α tested 
(Fig. S1 A). ELISA and multiplex assays revealed high levels of 
IgG-binding IFN-α, intermediate levels of IgG binding IFN-ω, 
and no detectable IgG-binding IFN-β, consistent with neutrali
zation assay results (Fig. 1, B and C). High IgG levels binding IL- 
17F, IL-22, possibly CXCL1, IL-5, IL-9, TSLP, and TWEAK were 
detected, but no IgG binding the other 36 cytokines tested (Fig. S1 
B). We then tested the patient’s blood samples 18 h, 2 days, and 
3 days after TPE treatment. Anti–IFN-α titer decreased but was 
still detectable 18 h after TPE. (Fig. 1 D). Serological tests were 
performed for IAVs. The patient’s blood samples were positive 
for A/Hong Kong/1/1968 by hemagglutination inhibition (HAI) 
assay, indicating exposure to seasonal H3N2 (Fig. 2 A). Finally, in 
the presence of blood from the patient, IFN-α failed to inhibit 
IAV replication in A549 cells, indicating that the AAN-I-IFN 
blocked the antiviral function of IFN-α (Fig. 2 B).

We report a fatal case of H5N1 pneumonia in a 71-year-old 
man with blood AAN-I-IFN neutralizing 10 ng/ml IFN-α and 100 
pg/ml IFN-ω. In the general population, autoantibodies neu
tralizing these concentrations of IFN-α and IFN-ω are found in 
only 0.5% of individuals aged between 65 and 75 years and 1% of 
individuals aged >70 years (Bastard et al., 2021a). We previously 
showed that individuals with AAN-I-IFN have a very high risk of 
critical seasonal IAV pneumonia (OR: 10–100) (Zhang et al., 
2022b). Causality between AAN-I-IFN and fatal H5N1 infection 
in this patient is therefore plausible. The patient was seroposi
tive for seasonal H3N2, indicating that he had controlled 
seasonal IAV infections without vaccination. His AAN-I-IFN 
probably emerged when he was already seropositive for seasonal 
H3N2 (Fernbach et al., 2024; Bastard et al., 2023). The patient 
had no clinical history of severe infection or autoimmune dis
ease, like many patients with AAN-I-IFN in this age group 
(Bastard et al., 2024). Similarly, like most individuals with AAN- 
I-IFN, he had autoantibodies neutralizing IFN-α and/or -ω, but 
not -β, and might therefore have benefited from IFN-β therapy, 
if administered early in infection and in combination with an
tiviral therapies.

We and others have shown that AAN-I-IFN underlie a 
growing range of severe infections of emerging and circulating 
viruses (Bastard et al., 2024; Hale, 2023; Busnadiego et al., 2022). 
This fatal case of H5N1 infection has broad clinical and biological 
implications. It suggests that type I IFNs may contribute to in
nate and intrinsic immunity to emerging viruses, including zo
onotic viruses, such as avian IAV. AAN-I-IFNs are common in the 
general population and therefore constitute a substantial threat 
to public health (Bastard et al., 2021a). We also recently identi
fied a dominant-negative mutation in IFNAR1 (p.Pro335del), 
encoding the type I IFN receptor, which is remarkably common 
in South China (0.6–2%). This mutation impairs the response to 
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IFN-α and -ω, but not -β, as in patients with AAN-I-IFN. Hetero
zygous carriers of this mutation are vulnerable to infections with 
various viruses, including SARS-CoV-2 (Al Qureshah et al., 2025). 
They may also be vulnerable to H5N1, H7N9, or other avian IAVs. 
New cases of H5N1 infections are increasing in the recent years 
(Siegers et al., 2025). Since October 2024, four other hospitalized 
cases of H5N1 infection have been documented in North America 
(Jassem et al., 2025; CDC, 2025), some of which might perhaps have 
been caused by inborn errors of type I IFN immunity or AAN-I-IFN 
(Langlois and Casanova, 2025).

The initial replication of avian IAV in humans is suboptimal 
due to the lack of mammal-adaptive mutations of the viral genes. 
However, crippled type I IFN immunity, due to inborn errors 
or AAN-I-IFN, may boost replication sufficiently for an avian 
IAV to generate mutations facilitating adaptation to mammals 
(Langlois and Casanova, 2025; Spieler et al., 2020). Sequencing 
of the influenza A/Louisiana/12/2024 H5N1 virus responsible for 
this case revealed low-frequency mutations in the HA segment 

(mixed amino acid populations at positions A134V, N182K, and 
E186D) associated with an increase in binding to human-type cell 
receptors (CDC, 2024). Previous reports of MX1 variants in patients 
with severe H7N9 infections suggest that variants of a single ISG 
may facilitate cross-species transmission (Chen et al., 2021; Hale 
et al., 2010; Casanova and Abel, 2024). However, the very rare 
human MX1 variants are unlikely to facilitate human-to-human 
transmission, as the virus remains MX1 sensitive and cannot infect 
the predominantly MX1 wildtype population. By contrast, the 
common presence of AAN-I-IFN and IFNAR1 p.Pro335del may 
enable the virus to undergo selection for more efficient human- 
to-human transmission if propagated in a cluster of affected 
individuals, paving the way for zoonotic virus pandemics.

Materials and methods
Written informed consent was obtained in LSU Health Shreve
port in accordance with the approval of the institute review 

Figure 1. AAN-I-IFN in the patient’s blood neutralized IFN-α and IFN-ω. (A) A549-IFN-reporter (AIR) cells carrying the ISRE reporter were stimulated with 
IFN-α, -ω, or -β at the concentration indicated, with or without blood from the patient (pt), an AAN-I-IFN–positive control (positive ctrl), an APS-1 patient, or 
healthy donors (HD). All samples were diluted 1:20. Renilla luciferase activity was measured 24 h after stimulation. The results are expressed as a percentage of 
the mean value for HDs. Luciferase activity levels <25% that of HDs were considered to indicate neutralizing activity. Two separate blood draws from the patient 
were sampled. Experiments were done three times. (B) ELISA plates were coated with 1 μg/ml of the IFN subtypes indicated and incubated with blood samples 
(diluted 1:50). Anti-human IgG-HRP secondary antibodies were then added, and OD was measured at 450 nm. An OD450>0.5 was considered to be a positive 
results. Three separate blood draws from the patient were sampled. Experiment was done once. (C) Multiplex assay beads were incubated with blood samples 
(diluted 1:1,000), and the MFI was normalized against a beads-only control. Normalized MFI values > 3 were considered positive. Two separate blood draws 
from the patient were sampled. Experiment was done once. (D) AAN-I-IFN neutralization tested with patient’s blood collected at the indicated time points as 
described in A. Three separate blood draws from the patient were sampled. Experiment was done once.
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board (protocol number 2899). AAN-I-IFN neutralization (Groen 
et al., 2024, 2025), ELISA (Gervais et al., 2024a), multiplex as
says (Bastard et al., 2020), IAV infection assay (Zhang et al., 
2022b), and HAI assays (Aydillo et al., 2021), were performed 
as previously described.

Online supplemental material
Fig. S1 provides more information on the autoantibodies neu
tralizing different type I IFN subtypes (A) and cytokines (B).
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Supplemental material

Figure S1. Characterization of AAN-I-IFN in the patient. (A) AIR cells were stimulated with the 12 subtypes of IFN-α at a concentration of 1 ng/ml, with or 
without blood from the patient (pt), an AAN-I-IFN–positive control (positive ctrl), an APS-1 patient, or healthy donors (HD). All samples were diluted 1:20. Renilla 
luciferase activity was measured 24 h after stimulation and expressed as a percentage of the mean value for HDs. Luciferase activity levels <25% of HD values 
were considered to indicate neutralizing activity. Three separate blood draws from the patient were sampled. Experiment was done once. (B) Multiplex assay 
beads were incubated with blood samples, and MFI values were normalized against the beads-only control. Normalized MFI values > 3 were considered 
positive. Two separate blood draws from the patient were sampled. Experiment was done once. AIR, A549-IFN-reporter.
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