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Autoantibodies neutralizing type I IFNs in patients 
with fulminant herpes simplex virus hepatitis
Adrian Gervais1,2�, Astrid Marchal1,2�, Soraya Boucherit1,2�, Anthony Abi Haidar1,2�, Lucy Bizien1,2�, Ahmet Yalcinkaya3,4�, Ella Sandström3�, 
Xiao-Fei Kong5,6�, Emmanuel Jacquemin7�, Olivier Bernard7, Dominique Debray8�, Florence Lacaille9�, Philippe Ichai10�, Cigdem Arikan11�, 
Etienne Javouhey12�, Bertrand Roquelaure13�, Frédéric Gottrand14�, Francesca Trespidi15�, Veronica Codullo16�, Lorenzo Cavagna16,17�, 
Nicolas Schleinitz18�, Mohamed Bousfiha19,20�, Naima Amenzoui19,20�, Ahmed Aziz Bousfiha19,20�, Sofie E. Jørgensen21,22�, Nanna Mørk21,22�, 
Trine H. Mogensen21,22�, Paul Bastard1,2,23,24�, Anne Puel1,2,23�, Alessandro Borghesi15,25,26,27�, Jody A. Rule5�, William M. Lee5�, 
Nils Landegren3�, Aurélie Cobat1,2,23*�, Jean-Laurent Casanova1,2,23,28,29*�, and Emmanuelle Jouanguy1,2,23*�

Fulminant viral hepatitis (FVH) is a devastating condition caused by hepatotropic viruses such as hepatitis A virus (HAV), 
hepatitis B virus (HBV), and HSV-1/2. We studied 149 FVH patients (73 males and 76 females, aged 1–76) for blood 
autoantibodies (auto-Abs) neutralizing type I interferons (IFNs; IFN-α2, -β, -ω). Six of 16 (37.5%) HSV-triggered FVH patients 
carried such auto-Abs on admission, including three with a previously known autoimmune disease. These patients contrasted 
with 133 HAV- (n = 46) or HBV-triggered (n = 87) patients, none of whom had such detectable auto-Abs. Odds ratios for HSV- 
triggered FVH in individuals with auto-Abs ranged from 35.3 (95% CI: 13.0–96.2; P < 10–7) for those neutralizing only 100 pg/ 
ml IFN-α/ω to 1,895 (CI: 448.5–8,002; P < 10–12) for those neutralizing both IFN-α and IFN-ω at 10 ng/ml. Over one third of 
HSV-triggered FVH cases in this international cohort were due to preexisting auto-Abs. This finding highlights auto-Abs against 
type I IFNs as a major determinant of HSV-FVH and paves the way for targeted preventive or therapeutic interventions.

Introduction
Fulminant viral hepatitis (FVH) is a severe, rapidly progressing 
form of liver failure characterized by massive hepatocyte death 
and hepatic encephalopathy, requiring immediate intensive care 
(Jouanguy, 2020; Li et al., 2022). Mortality due to FVH is high, at 
about 80% in the absence of liver transplantation (Lemon et al., 
2018). The long-term outcome of patients after transplantation is 

also poor, with a mortality of ∼35% in the first year after 
transplantation. FVH can be triggered by various hepatotropic 
viruses, principally the hepatitis A and B viruses (HAV, HBV), 
and more rarely, herpes simplex virus (HSV)-1 and HSV-2 (Farci 
et al., 1996; Liu et al., 2001). The prevalence and incidence of 
FVH in unvaccinated populations are unknown. Vaccination 
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campaigns against HAV and HBV have significantly decreased 
the incidence of FVH worldwide (Cervio et al., 2011; Nelson et al., 
2011). About 10–45% of acute liver failure (ALF) cases are cur
rently due to viral infections (Stravitz and Lee, 2019), and the 
incidence of ALF is estimated at ∼1/10−5 annually in the USA 
(Weiler et al., 2020) and other Western countries. The annual 
incidence of FVH may therefore be estimated at between 1 and 5 
cases per million of infected individuals in Western countries.

HAV and HBV are the main agents of FVH, accounting for 31% 
and 25% of all FVH cases, respectively, with other viruses less 
frequently involved (Gimson et al., 1983; Ichai and Samuel, 2011). 
About 0.1% of acute HBV infections progress to FVH in unvac
cinated adults, and FVH occurs in 0.015% to 0.5% of acute HAV 
cases in unvaccinated children (Farooq et al., 2019; Manka et al., 
2016). The incidence of hepatitis E virus (HEV)–triggered FVH is 
less well known, but this condition is a significant cause of 
concern in endemic regions, especially in pregnant women 
(Braira Wahid, 2022). FVH has been reported even more rarely 
in patients co-infected with HBV/hepatitis D virus, HAV/HEV, 
or hepatitis C virus/another virus, or infected with HHV-6 or 
enteroviruses (Charnot-Katsikas et al., 2016; Farci et al., 1996; 
Farci and Niro, 2012; Liaw et al., 2004; Vento et al., 1998). Finally, 
HSV-induced FVH has been estimated to account for about 1% of 
all causes of FVH in the USA (Vinholt Schiødt et al., 2003). FVH 
is, thus, rare, and mostly driven by HAV and HBV or more rarely 
by HSV-1 or HSV-2 (Vinholt Schiødt et al., 2003). The annual 
incidence of FVH worldwide is not precisely known, but it can be 
estimated to range from several thousands to over a hundred 
thousand cases annually.

The pathogenesis of FVH remains unknown, as most in
dividuals infected with the viruses concerned do not develop 
FVH. Its rarity, and its sporadic, as opposed to epidemic, nature 
suggest that the viruses involved are unlikely to be particularly 
virulent (Ajmera et al., 2011). A few case-control association 
studies have suggested that common variants of TIM1 (Kim et al., 
2011) and CXCL16 (Ajmera et al., 2019) increase the risk of FVH by 
factors of 1.3 and about 1.6-fold, respectively. Moreover, variants 
of genes encoding intracellular viral sensors or other molecules 
involved in type I interferon (IFN) immunity were found in 10 
out of 24 HEV-FVH patients tested but not in the control group 
(Saadat et al., 2024). Furthermore, reports of multiplex and/or 
consanguineous families have suggested a possible contribution 
of monogenic inborn errors of immunity (IEIs) (Casanova, 2025). 
For example, autosomal recessive (AR) deficiencies of the IL-18 
binding protein (IL-18BP) and the IL-10 receptor B subunit have 
been reported in patients with HAV-FVH (Abd Elaziz et al., 2025; 
Belkaya et al., 2019; Korol et al., 2023). These patients may have an 
immunological feature in common: the unleashing of type II IFN 
activity via an enhancement of IL-18 activity or a decrease in IL-10 
activity, leading to excessive macrophage activation in the virus- 
infected liver.

Other severe viral infections of isolated organs, such as viral 
encephalitis and pneumonia, have been explained by rare 
IEI impairing the production of or response to type I IFNs 
(Casanova, 2025; Casanova and Abel, 2022). Moreover, auto
antibodies (auto-Abs) neutralizing type I IFNs (AAN-I-IFNs) 
have been implicated in disease in larger proportions of patients. 

They underlie 5–20% of cases of critical COVID-19 pneumonia 
(Abers et al., 2021; Acosta-Ampudia et al., 2021; Akbil et al., 2022; 
Arrestier et al., 2022; Bastard et al., 2021a; Bastard et al., 2020b; 
Busnadiego et al., 2022; Carapito et al., 2022; Chang et al., 2021; 
Chauvineau-Grenier et al., 2022; Credle et al., 2022; Eto et al., 
2022; Frasca et al., 2022; Goncalves et al., 2021; Grimm et al., 
2022; Hale, 2023; Hansen et al., 2023; Koning et al., 2021; 
Lamacchia et al., 2022; Lemarquis et al., 2021; Mathian et al., 
2022; Meisel et al., 2021; Petrikov et al., 2022; Philippot et al., 
2023; Pons et al., 2023; Raadsen et al., 2022; Savvateeva et al., 2021; 
Schidlowski et al., 2022; Simula et al., 2022; Solanich et al., 2021; 
Soltani-Zangbar et al., 2022; Su et al., 2022; Troya et al., 2021; van 
der Wijst et al., 2021; Vanker et al., 2023; Vazquez et al., 2021; 
Wang et al., 2021; Ziegler et al., 2021), 5% of cases of severe 
influenza pneumonia (Zhang et al., 2022), 20% of cases of severe 
Middle East respiratory syndrome pneumonia (Alotaibi et al., 
2023), about a third of severe adverse reactions to the attenu
ated live measles and yellow fever virus vaccines (Bastard et al., 
2021b), ∼40% of West Nile virus (WNV) encephalitis cases 
(Gervais et al., 2023), ∼10% of the most severe forms of tick- 
borne encephalitis (Gervais et al., 2024c), and most cases of 
the rarer Powassan virus, Usutu virus, and Ross River virus 
diseases studied (Gervais et al., 2024a). These auto-Abs are 
present in the general population, with a prevalence increasing 
from 0.3–1% in individuals under 65 years of age to 4–7% in those 
over 65 years of age (Bastard et al., 2024).

AAN-I-IFNs also seem to predispose to some infections with 
some herpes viruses. Indeed, patients with autoimmune poly
endocrinopathy syndrome type 1, most if not all of whom carry 
these auto-Abs, have an increased risk of recurrent or severe 
mucocutaneous disease due to HSV or varicella zoster virus 
(VZV) (Hetemäki et al., 2021). Likewise, these auto-Abs in
creased the risk of recurrent herpesvirus infections in patients 
mutated in recombination activating gene (RAG) genes 
(Delmonte et al., 2020; Dutmer et al., 2015), especially VZV 
and cytomegalovirus (CMV), or patients with severe COVID-19 
(Busnadiego et al., 2022). Moreover, monoclonal antibody 
therapy targeting the IFN alpha receptor 1 (IFNAR1) elicited 
HSV-2 acute hepatitis in a patient with systemic lupus ery
thematosus (SLE) (Larsen et al., 2024), while AAN-I-IFNs were 
found in a patient with HSV-2 acute hepatitis (Martinot et al., 
2023). Both were hospitalized and treated before liver failure 
occurred. In this light, we hypothesized that such auto-Abs may 
also underlie FVH, at least in some patients, particularly upon 
infection with HSV.

Results
A cohort of 149 patients with FVH
We analyzed 149 FVH patients, all hospitalized: 46 with HAV, 87 
with HBV, and 16 with HSV (HSV-1: 9; HSV-2: 5; both: 2). Mean 
ages were 38.6 years overall (range 1–76), with subgroup means 
of 31·1 (HAV), 43.3 (HBV), and 29.4 (HSV) years (Fig. 1 A and 
Table 1). Males comprised 48.7% overall: 50% in HAV, 51.7% in 
HBV, and 35% in HSV groups (Fig. 1 B and Table 1). Infections 
occurred from 1980 to 2024. Patients came from the USA (n = 
102), France (31), Morocco (12), Italy (2), and Turkey (2). Viral 
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triggers were confirmed in all HAV/HBV cases via virus-specific 
IgM and/or IgG. HSV infection was confirmed by anti-HSV IgM/ 
IgG in nine patients, and PCR in blood/liver in the other seven 
patients. Among HSV cases, five had primary infections (based 
on anti-HSV-1 IgG on admission), 10 had prior infections, and 
one case was inconclusive (Fig. 1 C). Among all patients, 35/149 
(23.5%) died, including 2/46 (4.3%) HAV, 29/87 (33.3%) HBV, 
and 4/16 (25.0%) HSV patients (Table 1). In other words, mor
tality was comparable in non-HSV-FVH (31/133, 23%) and HSV- 
FVH (4/16, 25%). None of the 149 patients were found to carry 
biallelic or X-linked mutations known to underlie FVH, impair 
the production of or the response to type I IFNs (including AR 
TLR3, IRF7, IFNAR1/2, IRF9, STAT1, STAT2 deficiencies, auto
somal dominant (AD) IRF3 deficiency, and X-linked recessive 
TLR7 and NEMO deficiencies) (Abolhassani et al., 2022; 
Andersen et al., 2015; Asano et al., 2021; Audry et al., 2011; 
Bastard et al., 2022; Bastard et al., 2020a; Bravo Garcı́a-Morato 
et al., 2019; Duncan et al., 2022; Dupuis et al., 2003; Hambleton 
et al., 2013; Hernandez et al., 2019; Hernandez et al., 2018; 
Thomsen et al., 2019; Zhang and Casanova, 2015; Zhang et al., 
2007), or the production of AAN-I-IFNs (including AR AIRE, 
RAG1/2, RELB, and NIK deficiencies, a specific form of AD NFKB2 
deficiency, and X-linked recessive FOXP3 deficiency) (Bastard 
et al., 2021c; Bosticardo et al., 2021; Le Voyer et al., 2023; 
Lemarquis et al., 2021; Meager et al., 2006; Rosenberg et al., 
2018; Schidlowski et al., 2022; Sjøgren et al., 2022).

Auto-Abs neutralizing IFN-α2, -β, and/or -ω in FVH patients
Using a previously described luciferase-based neutralization 
assay, we tested 1:10 dilutions of serum/plasma for the ability to 
neutralize high (10 ng/ml) or low (100 pg/ml) levels of non- 

glycosylated IFN-α2 and IFN-ω, and high (10 ng/ml) or inter
mediate (1 ng/ml) levels of glycosylated IFN-β. Samples were 
collected from 51% of patients within 30 days of symptom onset, 
and the rest between 2 mo and 48 years after FVH. Incubation 
periods vary from 2 to 14 days (HSV-1/2) to 5 to 180 days (HAV/ 
HBV). Among HSV-FVH patients, five (31%) had auto-Abs neu
tralizing 10 ng/ml type I IFNs: two targeted IFN-α2 only, two 
both IFN-α2 and IFN-ω, and one of all three IFNs (Fig. 2 A). At 
lower concentrations, these five plus one additional patient 
neutralized IFN-α2, totaling six HSV-infected patients (37.5%) 
with AAN-I-IFNs (Fig. 2 B). These auto-Abs were also detected by 
ELISA and HuProt microarray in four of the six cases (Fig. S1, A 
and B). Auto-Abs were present in 2.8% of FVH deaths vs. 4.4% of 
survivors overall, and in 25% of HSV-FVH deaths vs. 42% of 
HSV-FVH survivors. Of the six HSV-FVH patients with auto- 
Abs, four had primary infections, two had reactivations. By 
contrast, no HAV/HBV-FVH patients had neutralizing auto-Abs. 
Even a single IFN-neutralizing auto-Ab may impair anti-HSV 
immunity, as seen in other viral diseases. Overall, AAN-I-IFNs 
were found in 6 (37.5%) of 16 HSV-FVH patients, but in none of 
133 HAV/HBV-FVH cases (P < 10−6) (Fig. 2 C).

Clinical descriptions of the patients with AAN-I-IFNs
P1 was an 18-year-old Italian woman with HSV-2 infection and a 
prior diagnosis of HLA-B27 spondyloenthesoarthritis and sero
negative rheumatoid arthritis. Treated with anti-TNF and 
methotrexate, she was hospitalized for HSV-2–associated hep
atitis and pancreatitis. Acyclovir therapy lasted 6 mo, until 
serum HSV-2 DNA cleared. After infection, she experienced 
cutaneous HSV-2 recurrences, hand and foot blisters, and ele
vated liver enzymes, all resolving with antivirals. P2, a 68-year- 

Figure 1. Description of the FVH cohort. (A) Distribution of the viruses implicated in FVH in these FVH patients. (B) Sex distribution of the FVH patients 
according to the infecting virus. (C) Anti-HSV-1 IgG titers in the plasma of HSV-FVH patients, as determined by ELISA.

Table 1. General demographic data of the FVH cohort

HAV HBV HSV Total

Mean age (years) 31.1 43.3 29.4 38.6

Male proportion (%) 50.0 51.7 35.0 48.7

Mortality (%) 4.3 33.3 25.0 23.5

Gervais et al. Journal of Experimental Medicine 3 of 12 
Neutralizing IFN-I autoantibodies in HSV hepatitis https://doi.org/10.1084/jem.20251760 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/223/3/e20251760/1954586/jem
_20251760.pdf by guest on 10 February 2026



Figure 2. AAN-I-IFNs in patients with FVH and associated OR. (A) Luciferase-based neutralization assay to detect auto-Abs neutralizing 10 ng/ml IFN-α2, 
IFN-ω, or IFN-β. Samples with a RLA <15% are considered neutralizing. (B) Luciferase-based neutralization assay to detect auto-Abs neutralizing 100 pg/ml 
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old Italian woman with nephrotic syndrome, xerophthalmia, 
oral lichen, and recurrent CMV/VZV infections, developed 
HSV-1 FVH and later hepatic HSV reactivation, both treated with 
acyclovir. She was subsequently diagnosed with undifferenti
ated arthritis and subclinical hypothyroiditis, managed with 
hydroxychloroquine. P3 was a 21-year-old American woman 
with HSV-1 and preexisting SLE, treated with azathioprine. This 
case mirrors previous reports of SLE patients with AAN-I-IFNs, 
who exhibited lower disease activity and increased susceptibil
ity to viral infections (Mathian et al., 2022). Despite acyclovir, 
she died from FVH. P4, a 50-year-old American man without 
prior autoimmune or infectious history, survived HSV-1 infec
tion after acyclovir treatment. P5 was a 58-year-old American 
man with chronic sinusitis who survived HSV-1 infection thanks 
to liver transplantation. P6 was an 18-year-old French woman 
with HSV-2, successfully treated with acyclovir. She later de
veloped anal herpes and showed chronic inflammation and an
tinuclear antibodies, although no autoimmune disease was 
identified. All six patients had FVH prior to the COVID-19 pan
demic. The subsequent SARS-CoV-2 infection status was only 
documented for P6; she had a symptomatic SARS-CoV-2 infec
tion in 2021, which did not require hospitalization. Notably, half 
the patients were young (18–21 years old), contrasting with the 
typical age-related prevalence of AAN-I-IFNs, and half had 
previous or simultaneous diagnosis of an autoimmune condition 
(Table 2).

Risk of FVH in individuals with AAN-I-IFNs
We previously assessed AAN-I-IFNs prevalence in the French 
population via neutralization assays on 34,159 healthy adults 
(20–100 years) and 2,272 children (0–19 years). By comparing 
FVH patients with this population, and adjusting for age, we 
estimated FVH risk conferred by AAN-I-IFNs. In the full FVH 
cohort, auto-Abs neutralizing 10 ng/ml of at least one type I IFN 
were linked to increased FVH risk (odds ratio [OR] = 2.8, 95% CI: 
1.2–6.8, P = 0·04). The association was borderline for auto-Abs 
neutralizing 100 pg/ml (OR = 2.3; 95% CI: 1.0–1.0, P = 0·07) 
(Fig. 2 D). Stratifying by virus, AAN-I-IFNs were strongly 

associated with HSV-FVH, with ORs from 52.7 (95% CI: 17.8– 
155.9; P < 10−7) for any neutralizing auto-Abs to 1,895 (CI: 448.5– 
8,002; P < 10−12) for auto-Abs neutralizing both IFN-α2 and 
IFN-ω at 10 ng/ml (Fig. 2 E). These findings support prior evi
dence linking broader and stronger neutralization of type I IFNs 
with severe viral disease.

Longitudinal samples
Samples were collected from the six patients with AAN-I-IFNs 
1 day (P1, P2, and P5), 7 days (P3), 2 days (P4), and 5 years (P6) 
after the onset of FVH. We studied the neutralization of type I 
IFNs in longitudinal plasma samples for two patients (P2 and P6, 
Fig. 3, A–C). We had two samples for P2, obtained 3 years apart 
(one collected the first day of HSV infection, and another col
lected 3 years later). Both samples were able to neutralize 10 ng/ 
ml IFN-α2, -β, and -ω, demonstrating the stability of these 
pathogenic immunoglobulins. We had two samples taken 6 years 
apart for P6 (one collected 5 years after HSV infection, and the 
other collected 11 years later). Interestingly, we found that the 
initial sample (closer to the episode of FVH) contained auto-Abs 
neutralizing only 100 pg/ml IFN-α2, whereas the subsequent 
sample was able to neutralize this IFN at concentrations up to 
1 ng/ml. Thus, these auto-Abs do not disappear over time but 
their amounts and/or affinity for their target may vary over 
time, consistent with previous reports, showing that auto-Abs 
do not disappear but instead diversify and become more potent 
with time (Fernbach et al., 2024).

Discussion
We were able to clarify the cause and mechanism of HSV- 
triggered FVH in over a third of the cases studied. These pa
tients had AAN-I-IFNs at the time of HSV-1 or HSV-2 infection of 
the liver, suggesting that defective type I IFN–dependent im
munity was the cause of HSV-triggered FVH. The arguments for 
causality are as follows. First, the prevalence of AAN-I-IFNs is 
much higher in cases than in healthy individuals of the same age 
group, with an OR of 319, for AAN-I-IFNs neutralizing only 100 

IFN-α2 or IFN-ω or 1 ng/ml IFN-β. (C) Proportion of type I IFNs neutralized in the patients, in individuals with HAV-HBV FVH and in individuals with HSV-FVH. 
(D) OR for the presence of AAN-I-IFNs in all individuals with FVH, relative to the general population, with adjustment for age by logistic regression. The 
horizontal bars indicate the upper and lower limits of the 95% CI. IFN-α, auto-Abs neutralizing IFN-α2 (regardless of their effects on other IFNs); IFN-ω, auto- 
Abs neutralizing IFN-ω (regardless of their effects on other IFNs); IFN-α ± ω ± β, auto-Abs neutralizing IFN-α2 and/or IFN-ω and/or IFN-β; IFN-α + ω, auto-Abs 
neutralizing both IFN-α2 and IFN-ω. (E) OR for the presence of AAN-I-IFNs in individuals with HSV-FVH vs. HAV/HBV-FVH.

Table 2. General clinical characteristics of the six patients with HSV-FVH and AAN-I-IFNs

Patient Age Sex Virus FVH outcome Autoimmune history

P1 18 F HSV-2 Survival HLA-B27 spondyloenthesoarthritis, seronegative rheumatoid arthritis

P2 68 F HSV-1 Survival Arthritis, antinuclear antibodies, anti-smooth muscle antibodies

P3 21 F HSV-1 Death Systemic lupus erythematous

P4 50 M HSV-1 Survival -

P5 58 M HSV-2 Survival -

P6 18 F HSV-2 Survival -
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pg/ml IFN-α2, and >1,800, for AAN-I-IFNs neutralizing both 
IFN-α2 and IFN-ω at 10 ng/ml. This impact is like that of highly 
penetrant monogenic lesions. Second, the AAN-I-IFNs were 
detected on the day of admission in four of the six patients, 
implying that they were present before viral infection. This was 
probably also the case for the other two patients, for whom 
plasma samples collected at admission were not available. In
deed, we showed in another study that the neutralization of type 
I IFNs requires multiple rounds of Ab maturation in the germinal 
centers (Sokal et al., 2021). Third, these AAN-I-IFNs have been 
previously shown to cause various cerebral and respiratory viral 

diseases, in unprecedented proportions, best illustrated by the 
40% of cases of WNV encephalitis that can be explained by these 
AAN-I-IFNs (Gervais et al., 2023). Our findings add the liver to 
the list of organs known to require type I IFNs to fend off viruses. 
Fourth, these AAN-I-IFNs were found only in patients with HSV- 
triggered FVH, not in those with FVH triggered by HAV or HBV, 
suggesting a virus-specific requirement for their impact on the 
outcome of hepatitis. Nevertheless, other, hitherto unknown 
factors probably contributed to the pathogenesis of HSV-FVH.

These findings also clarify the mechanism of disease in pa
tients with HSV-induced FVH. They suggest that type I IFNs are 

Figure 3. AAN-I-IFNs in longitudinal samples, 
as determined with the luciferase-based neu
tralization assay in P2 and P6 samples. (A–C) 
Plasma samples were diluted 1:10 and incubated 
with 10 ng/ml (A), 1 ng/ml (B), or 100 pg/ml (C) 
IFNs. Plasma samples from the APS-1 patients and 
the healthy donor were not longitudinal and were 
only used as control for type I IFNs neutralization. 
APS-1, autoimmune polyendocrinopathy syn
drome type 1.
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required for protective immunity in the liver upon infection 
with HSV-1 and HSV-2, whereas they seem to be redundant for 
controlling infection with other liver-tropic viruses, such as 
HAV and HBV. These findings suggest that type I IFN therapy 
may be useful, in addition to antiviral therapies, in patients with 
HSV-triggered FVH, especially if given early in infection. Pa
tients with auto-Abs against IFN-ω may benefit from early 
treatment with IFN-α2 or -β, while patients with auto-Abs 
against IFN-α2 may benefit from early IFN-β therapy. Other 
therapeutic options could include the use of decoys that prevent 
type I IFN neutralization (Groen et al., 2025) or the use of chi
meric auto-Ab receptor T-cells specifically targeting AAN-I-IFNs 
producing B cells (Peng et al., 2025). The contribution of type I 
IFN to protective immunity against HSV in the liver is not en
tirely surprising. Indeed, these findings are consistent with type 
I IFNs being essential for protective immunity against HSV-1 in 
the central nervous system, as demonstrated by the occurrence 
of herpes simplex encephalitis (HSE) due to inherited deficien
cies affecting either the production or the response to type I 
IFNs. Testing for AAN-I-IFNs should be performed in children 
and adults with HSE. We recently developed a quick whole blood 
assay to test the presence of such auto-Abs (Gervais et al., 
2024b). Moreover, the first report of AAN-I-IFNs causing a se
vere disease concerned a single patient with a severe dissemi
nated infection with another herpes virus, VZV. These findings 
were subsequently supported by the higher risk of cutaneous 
diseases due to both HSV and VZV in patients hospitalized for 
COVID-19 pneumonia due to these AAN-I-IFNs (Busnadiego 
et al., 2022).

The only two known genetic etiologies of FVH are AR IL-18BP 
(Belkaya et al., 2019) and IL-10RB (Korol et al., 2023) deficien
cies, both of which have been described in patients with HAV- 
triggered FVH. We recently reported another multiplex family 
with AR IL-18BP deficiency, in which two siblings died from 
HAV-triggered FVH (Abd Elaziz et al., 2025). The proposed 
pathophysiological mechanism involves excessive production of 
the macrophage-activating factor type II IFN in the liver, leading 
to a sustained activation of macrophages and uncontrolled in
flammation (Belkaya et al., 2019; Korol et al., 2023). Indeed, IL- 
18BP deficiency unleashes IL-18, which is an inducer of type II 
IFN (Belkaya et al., 2019), whereas IL-10RB deficiency blocks the 
activity of IL-10, a potent inhibitor of type II IFN in macrophages 
(Korol et al., 2023). By contrast, in the case of HSV-triggered 
FVH, the presence of AAN-I-IFNs might impair the control of 
viral replication, leading to excessive inflammation, as observed 
in patients with critical COVID-19 (Casanova and Anderson, 
2023). Interestingly, no patient with an IEI of the type I IFN 
pathway or AAN-I-IFNs has been reported to suffer from both 
HSV-triggered FVH and encephalitis. This is intriguing, because 
such deficiencies severely impair the type I IFN system in all 
cells of an organism. This suggests that some redundant, organ- 
specific anti-HSV immune mechanisms may exist in some pa
tients but not others. The mechanism underlying the incomplete 
penetrance of organ-specific HSV infection warrants further 
investigations. Additional studies are also required to determine 
the genetic causes of HSV-triggered FVH, which may affect type 
I IFNs, and to assess the contribution of AAN-I-IFNs in patients 

with other manifestations of herpes infections, such as skin 
diseases, encephalitis, and other organ-specific infections.

Materials and methods
Patients
All patients were recruited retrospectively.

American patients
The Acute Liver Failure Study Group (ALFSG) was a National 
Institutes of Health (NIH)–funded network that enrolled 3,364 
ALF/acute liver injury (ALI) patients in a prospective registry 
after they were admitted to 31 tertiary centers in North America 
between January 1998 and August 2019. Patients enrolled met 
the following criteria: for ALF, any degree of hepatic encepha
lopathy occurring within 26 wk of symptom onset, coagulopathy 
defined as an international normalized ratio (INR) ≥1.5, absent 
cirrhosis or any prior history of underlying liver disease; for ALI, 
similar illness but with an INR ≥ 2.0, and no hepatic encepha
lopathy. Those with hepatitis B, Wilson disease, or autoimmune 
hepatitis that might have some degree of fibrosis were included, 
if their initial disease presentation met ALF criteria. Participants 
(ALI) or legal next of kin (ALF) provided written informed 
consent; 24 patients presented with ALI but all developed ALF 
prior to transplantation. Data included clinical histories and up 
to 7 days’ detailed clinical and laboratory data. All sites complied 
with local institutional review board requirements and adhered 
to the Declarations of Helsinki and Istanbul. Patient manage
ment was based on the local standard of care, with transplant 
candidacy determined by each center. Sera were obtained on the 
first seven days following study enrollment and stored at −80°C. 
Patient diagnoses were confirmed by a committee of senior 
hepatologists, in the case of viral hepatitis, by the appropriate 
viral serologies.

French patients
Patients were included based on the following inclusion criteria: 
no known evidence of preexisting chronic liver disease, bio
chemical evidence of ALF, and hepatic coagulopathy not cor
rectable with vitamin K, defined as: INR ≥ 1.5 with clinical 
hepatic encephalopathy, or INR ≥ 2.0 regardless of the presence 
of encephalopathy and identification of viral etiology. Partic
ipants or legal representants provided written informed consent 
(protocol C09-18, ID-RCB:A00039-30). Data included clinical 
histories and detailed clinical and laboratory data.

Moroccan patients
Patients were admitted to the pediatric intensive care unit for 
suspicion of severe or critical HAV or HBV, with or without anti- 
HAV or anti-HBV IgM.

Turkish patients
Patients were included based on the pediatric ALF (PALF) cri
teria established by the Pediatric Acute Liver Failure Study 
Group in 2006. These inclusion criteria required all the follow
ing: no known evidence of preexisting chronic liver disease, 
biochemical evidence of ALI, and hepatic coagulopathy not 
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correctable with vitamin K, defined as: INR ≥ 1.5 with clinical 
hepatic encephalopathy, or INR ≥ 2.0 regardless of the presence 
of encephalopathy. Participants or legal representants provided 
written informed consent. Data included clinical histories and 
detailed clinical and laboratory data.

Italian patients
Patients P1 and P2 were recruited into a research protocol on
going at Fondazione IRCCS Policlinico San Matteo (San Matteo 
Research Hospital), Pavia, Italy, aiming to define the prevalence 
of auto-Abs neutralizing type I IFNs in individuals with auto
immune conditions. Patients are recruited into the rheumato
logical department. Inclusion criteria include connective tissue 
disorders (SLE, systemic sclerosis, undifferentiated connective 
tissue disorder, or myositis), with or without a history of life- 
threatening viral infection. These two patients were the only 
patients admitted for HSV-FVH in this research protocol. All 
patients signed a written informed consent. Detailed clinical 
data, including demographics, information on autoimmune and 
infectious history and familiar recurrence are recorded for all 
patients. The cohort currently consists of 168 patients. P1 and P2 
were recruited according to inclusion criteria for HLA-B27 
spondyloenthesoarthritis (P1), and for arthritis, antinuclear 
antibodies and anti-smooth muscle antibodies (P2), and were the 
only two patients in the whole cohort with a known history 
of FVH.

Luciferase reporter assay
The blocking activity of anti-IFN-α2, anti-IFN-ω, and anti-IFN-β 
auto-Abs was determined with a reporter luciferase assay, as 
previously described (Bastard et al., 2021a).

Detection of auto-Abs by ELISA
ELISA was performed as previously described (Gervais et al., 
2023; Puel et al., 2008).

Detection of anti-HSV-1 antibodies by ELISA
Anti-HSV-1 IgG was measured in patient serum and plasma 
samples by ELISA (ab108738; Abcam) according to the manu
facturer’s instructions. IgG positivity was calculated based on a 
negative, a positive and a cut-off control analyzed together with 
the patient samples. Samples with ELISA absorbance values 
within ±10% of the absorbance value for the cut-off control were 
considered inconclusive, samples with absorbance value > cut- 
off +10% were considered positive for anti-HSV-1 IgG, and 
samples with absorbance value < cut-off of 10% were considered 
negative for anti-HSV-1 IgG.

Protein array
Detection of auto-Abs with protein arrays (HuProt from CDI 
Laboratories) was performed as previously described (Le Voyer 
et al., 2023).

Statistical analysis
ORs and P values for the effect of auto-Abs neutralizing each 
type I IFN in patients with FVH were estimated relative to 
healthy individuals from the general population and adjusted for 

age in three categories (≤30, 30–50, >50 years) by Firth’s bias- 
corrected logistic regression, as implemented in the logistf 
package of R software, due to low number of auto-Ab carriers for 
some types of IFN. Where relevant, statistical test results are 
indicated in the corresponding figures. ns, not significant, *P < 
0.05, ***P < 0.001, and ****P < 0.0001.

Online supplemental material
Fig. S1 shows detection of auto-Abs by ELISA and HuProt.

Data availability
All data supporting the findings of this study are available within 
the main text and supplemental material and from the corre
sponding author upon request.
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Supplemental material

Figure S1. Detection of auto-Abs by ELISA and HuProt. (A) Correlation between ELISA and neutralization assay results for the detection auto-Abs. 
(B) Detection of auto-Abs by HuProt in the six HSV-triggered FVH with AAN-I-IFNs FVH vs. healthy donors.
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