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Monogenic disorders of the IRF transcription factors

Mattison P. Stojcic¥2@®, Pariya Yousefi'®, Catherine M. Biggs'®, and Stuart E. Turvey>>@

Interferon regulatory factors (IRFs) are a family of transcription factors essential for inmune system development and host
defense. Beyond immunity, IRF6 plays an indispensable role in craniofacial development. Inborn errors of IRFs (IE-IRFs) are a

group of rare monogenic disorders caused by damaging variants in the IRF family of genes. In this review, we
comprehensively discuss known IE-IRFs and how they contribute to our understanding of human biology, and provide a
framework for their diagnosis and treatment. The IRF transcription factors mediate a wide range of biological functions.
Accordingly, genetic defects in individual IRFs give rise to diverse human phenotypes, including increased susceptibility to
infection, impaired immune development, and even congenital anatomical anomalies. Our collective understanding of IE-IRFs
is a powerful example of how integration of clinical care with mechanistic translational research can transform the lives of
patients while simultaneously advancing our fundamental understanding of human biology.

Introduction

Interferon regulatory factors (IRFs) were initially identified and
named based on their ability to promote type I interferon (IFN)
production (Miyamoto et al., 1988). Since then, nine human IRFs
have been discovered: IRF1 through IRF9. In this review, we
provide an overview of the structure and function of each known
IRF as developed through in vitro experiments, mouse models,
and human studies, a clinical description of known human in-
born errors of IRFs (IE-IRFs), and an approach to their diagnosis
and management.

Each member of the IRF family shares a highly conserved
N-terminal DNA-binding domain (DBD) that interacts with DNA
elements such as the IFN-stimulated response element (ISRE)
(Fig. 1A) (Escalante et al., 1998; Levy et al., 1988). The C terminus
of IRFs has an IRF-associated domain (IAD), which is crucial for
mediating interaction with other IRFs, transcription factors, and
cofactors (Meraro et al., 1999; Sharf et al., 1997). IRF2 through
IRF7 also have a C-terminal autoinhibitory domain (Bailey et al.,
2005; Brass et al., 1996; Chen et al., 2008; Qin et al., 2003;
Sathish et al., 2011; Yamamoto et al., 1994). The classic activation
of the IRFs involves phosphorylation, homo- or heterodimeriza-
tion, nuclear translocation, and DNA binding (Fig. 1 B).

Inborn errors of immunity (IEIs) are a group of disorders
characterized by the absence or dysfunction of critical compo-
nents of the immune system (Notarangelo et al., 2020; Turvey
et al., 2024). Over 550 unique forms of IEI have been described,
most resulting from damaging monogenic germline variants

(Poli et al., 2025). A functioning immune system is key to human
health: IEIs are therefore associated with broad manifestations
spanning infection, autoimmunity, inflammation, and cancer.
The majority of human IE-IRFs are IEIs, highlighting the crucial
role of IRFs in immune function. The first IEI linked to an IRF
variant was IRF8 deficiency, published in 2011 (Hambleton et al.,
2011). This was followed by the description of IEIs caused by
damaging genetic changes in IRF7 and IRF3 in 2015 (Andersen
et al., 2015; Ciancanelli et al., 2015), IRF4 and IRF9 in 2018
(Guérin et al., 2018; Hernandez et al., 2018), and finally, IRFI in
2023 (Rosain et al., 2023). While no IEIs have been attributed to
IRF2, IRF5, or IRF6, damaging variants in IRF6 underlie devel-
opmental disorders that typically affect the orofacial region,
including Van der Woude syndrome (VWS) and the more severe
popliteal pterygium syndrome (PPS) (Kondo et al., 2002; Lees
et al., 1999). A brief overview of key features of each human IE-
IRF can be found in Table 1, with a comprehensive overview of
peer-reviewed cases provided in Table 2.

Human IE-IRFs

IRF1

IRF1 was originally identified as a transcriptional regulator in
IFN-induced signaling pathways, where it mediates antimicro-
bial responses (Harada et al., 1989; Miyamoto et al., 1988). Ac-
tivation of type I IFN receptors and pattern recognition receptors
(PRRs) allows IRF1 to bind to ISRE DNA elements, initiating
transcription of type ITFN and a subset of IFN-stimulated genes
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Figure 1. Structural representations of IRF
proteins and the IRF signaling pathway. (A)
IRF proteins are a family of transcription factors.

The IRF DBD mediates interactions with DNA
targets, the IAD mediates dimerization and inter-
action with other factors, and the autoinhibitory
domain (AID) limits IRF activity. (B) Schematic
overview of the IRF signaling pathway. PRR or IFN
receptor activation triggers intracellular signaling
leading to IRF phosphorylation, dimerization, nu-
clear localization, and modulation of gene expres-
sion, including ISG expression for most IRFs. Created
in BioRender, https://BioRender.com/b0q00jx.
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(ISGs) (Fig. 2 A) (Harada et al., 1989; Harada et al., 1990). Mice
deficient in IRF1 have impaired Thl responses (Kamijo et al.,
1994; Lohoff et al., 2000; Lohoff et al., 1997; Salkowski et al.,
1999; Taki et al., 1997). Consequently, IL-12 production, IFN-y
response, natural killer (NK) cell development, and macrophage
nitric oxide production are impaired. Thymocyte development is
also impaired in Irfl-deficient mice with reduced CD8* T cells,
impaired TCR-mediated signal transduction, and reduced MHC
class I expression (Matsuyama et al., 1993; Penninger et al., 1997).
Irfi/~ mice have elevated susceptibility to intramacrophagic
pathogens, including Mycobacterium bovis, Leishmania major, and
Listeria monocytogenes (Kamijo et al., 1994; Lohoff et al., 2000;
Lohoff et al., 1997; Taki et al., 1997).

Autosomal recessive (AR) IRF1 deficiency was reported in two
unrelated patients with severe forms of Mendelian susceptibility
to mycobacterial disease (MSMD) (Rosain et al., 2023). MSMD is
amonogenic disorder, which typically presents with early-onset
life-threatening infections due to weakly virulent mycobacteria,
including the bacillus Calmette-Guérin (BCG) vaccine strain,
environmental mycobacteria, and related intramacrophagic
pathogens (Hambleton et al., 2011; Khavandegar et al., 2024;
Rosain et al., 2023). An inverse relationship between IFN-y
activity and both MSMD penetrance and severity has been
recognized, emphasizing the importance of IFN-y in anti-
mycobacterial response (Cooper et al., 1995; Dupuis et al., 2000;
Khan et al., 2016; Wenner et al., 1996). Reinforcing this rela-
tionship, MSMD is also caused by the disruption of a large
number of genes crucial to IFN-y immunity, such as ILI2B, IFNG,
and IFNGRI (Bustamante, 2020; Casanova and Abel, 2002;
Shanmuganathan et al., 2022).

Both IRFl-deficient patients experienced recurrent myco-
bacterial disease, including disseminated BCG and Mpycobacte-
rium avium complex infection, without apparent susceptibility
to other pathogens apart from one infection with histoplasmosis,
an intramacrophagic fungus. Patients had reduced circulating
dendritic cells (DCs), plasmacytoid DCs (pDCs), NK cells, innate
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lymphoid precursors, and type 2 innate lymphoid cells. Naive
CD8* and recent thymic emigrant CD4* T cells were dramatically
reduced, while memory and terminally differentiated effector
T cells were increased. The affected patients had homozygous
variants in IRFI (p.R129* in P1 and p.Q35* in P2), resulting in
complete IRF1 deficiency and abolished transcriptional activity.
Despite normal blood levels, IFN-y response was impaired in
fibroblasts and myeloid and lymphoid cells, but IFN-a/f re-
sponse was normal, other than impairment of a small subset
of ISGs.

These findings support the importance of IFN-y in anti-
mycobacterial immunity and parallel impaired Thl responses in
Irfi~/- mice (Kamijo et al., 1994; Lohoff et al., 1997; Taki et al.,
1997). Interestingly, IRF1 deficiency is not known to produce
broad infection susceptibility, despite having a role in type I IFN
response (Harada et al., 1989). This may be explained by IRFI
primarily mediating only a small subset of ISGs and redundancy
with IRFl-independent type I IFN production (Reis et al., 1994;
Sato et al., 2000).

IRF2

IRF2 is typically described as a transcriptional repressor of ISGs,
counteracting IRF1 by competing for the same DNA-binding
sites, and limiting the harmful effects of excessive IFNs
(Harada et al., 1989). IRF2 knockdown severely limits human
NK cell proliferation, maturation, cytotoxic potential, and
cytokine secretion (Persyn et al., 2022). Mouse models of IRF2
deficiency demonstrate impaired control of the inflammatory
response with hyperactivation of CD8* T cells, further re-
inforcing the role of IRF2 in negative regulation of IFN sig-
naling (Hida et al., 2000). IRF2-deficient mice also have
impaired Thl responses, immature NK cells, and poor control
of L. major and lymphocytic choriomeningitis virus (Lohoff
et al., 2000; Matsuyama et al., 1993; Salkowski et al., 1999;
Taki et al., 2005). To date, no patients have been identified
with monogenic IRF2 disease.
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IRF3

IRF3 s critical for the early IFN response and, together with IRF7,
amplifies the later stages of IFN signaling (Sato et al., 2000). IRF3
is phosphorylated and activated by PRRs, resulting in homo-
dimerization, or heterodimerization with IRF7, promoting ISG
expression (Fig. 2 B) (Liu et al., 2015; Osterlund et al., 2007; Sato
etal., 2000). Mice deficient in IRF3 have poor production of type
I IFNs and impaired control of viral infections, including influ-
enza and HSV (Hatesuer et al., 2017; Menachery et al., 2010; Sato
et al., 2000).

Autosomal dominant (AD) IRF3 deficiency predisposes to
severe viral infections, including herpes simplex encephalitis
(HSE), severe influenza, and SARS-CoV-2 pneumonia (Andersen
etal., 2015; Mgrk et al., 2015; Thomsen et al., 2019b; Zhang et al.,
2020). Two cases of AD IRF3 deficiency underlying HSE have
been described (Andersen et al., 2015; Mgrk et al., 2015). The
first patient developed HSE at age 15 years and was found to have
a heterozygous IRF3 variant (p.R285Q) inherited from a healthy
father, demonstrating incomplete penetrance. This variant
showed impaired phosphorylation, dimerization, and subse-
quent transcriptional activity for the IFNB promoter. The disease
mechanism was attributed to haploinsufficiency as a dominant-
negative effect was ruled out. The second patient (p.A277T)
presented with HSE at age 34 years. Primary samples from both
patients showed impaired cytokine production, namely, IFN-y
and CXCLI10, in response to HSV-1.

More recently, AD IRF3 deficiency has also been linked to
severe respiratory viral infections (Thomsen et al., 2019b; Zhang
et al, 2020). A 55-year-old patient presented with a life-
threatening infection caused by the influenza A virus (IAV)
subtype HINI. Sequencing identified a heterozygous variant in
the 3’ untranslated region of IRF3 (c.1576C>T), giving rise to
p-P447S in one of eight splice variants (Thomsen et al., 2019b).
IRF3 protein expression was reduced in patient PBMCs; how-
ever, it was normal in ¢.1576C>T overexpression systems. Pa-
tient cells infected with IAV had impaired induction of IFNA2,
IFNB, and IFNLI. Importantly, IRF7 also failed to be upregulated,
limiting the late-phase IFN response. Heterozygous missense
IRF3 variants were also found in two females with life-
threatening COVID-19 at ages 23 and 60 years, respectively
(Zhang et al., 2020). Patient variants were confirmed delete-
rious using an IFN-B reporter assay.

The impaired IFN responses observed in IRF-deficient hu-
mans mirror findings from models of IRF3 deficiency. Further-
more, mice and humans share infection susceptibility with both
having an increased risk for viral pathogens, including HSV and
influenza. The lack of a strong cellular phenotype in human IRF3
deficiency also aligns with mouse models. Together, these lines
of data converge to confirm the crucial role of IRF3 in antiviral
type I IFN responses.

IRF4

IRF4 (also know as Pip, LSIRF, ICSAT, MUM]) is not directly
involved in IFN signaling but is instead expressed in T cells,
B cells, and macrophages, where it is crucial to immune devel-
opment and function (Eisenbeis et al., 1995; Matsuyama et al.,
1995). Activation of antigen receptors, PRRs, and CD40 promotes
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IRF4 phosphorylation, enabling it to form homodimers or het-
erodimers with transcription factors such as PU.1 and BATF,
thereby facilitating DNA binding and downstream gene regu-
lation (Fig. 2 C) (Brass et al., 1996; Brass et al., 1999; De Silva et al.,
2012; Li et al., 2012; Negishi et al., 2005; Ochiai et al., 2013;
Remesh et al., 2015). IRF4 overexpression in human B cells
stimulates plasma cell differentiation (Sciammas et al., 2006).
Mouse models reinforce the importance of IRF4 in B cell func-
tion, including differentiation, receptor editing, proliferation,
class switch recombination, and plasma cell formation (Klein
et al., 2006; Maffei et al., 2023; Mittriicker et al., 1997; Ochiai
et al., 2013; Sciammas et al., 2006). Beyond B cells, Irf4~/~ mice
also have impaired CD4* and CD8a+ DC development, and T cell
development, including Th1:Th2 balance and CD8* T cell pro-
liferation, function, and memory response (Aliberti et al., 2003;
Harberts et al., 2021; Krishnamoorthy et al., 2017; Man et al.,
2013; Mittriicker et al., 1997; Schiavoni et al., 2002). Conse-
quently, Irf4-deficient mice are susceptible to a range of bacte-
rial, viral, and parasitic infections (Honma et al., 2008; Man
et al., 2013; Nayar et al., 2014; Raczkowski et al., 2013).

Damaging genetic variants in IRF4 cause a range of im-
munodeficiencies, spanning combined immunodeficiency to a
very specific predisposition to Whipple’s disease (WD), with the
nature of the immune defect determined by the impact of the
genetic lesion on IRF4 function (Bravo Garcia-Morato et al.,
2018; Fornes et al., 2023; Guérin et al., 2018).

The first IRF4-linked IEI predisposed to WD (Guérin et al.,
2018). WD is a rare complication of Tropheryma whipplei (Tw)
infection, occurring in only 4.6 per 1 million hospitalizations in
the United States (Ahmad et al., 2022). Before its association
with IRF4, WD had not been linked to any IEIs. A study of a
multiplex family with four WD patients and five Tw carriers
suggested an AD predisposition to Tw with age-dependent in-
complete penetrance (Guérin et al., 2018). All those who devel-
oped WD were previously healthy. The four WD patients and five
Tw carriers were all heterozygous for the p.R98W variant in
IRF4, although additional heterozygous family members were
noncarriers of Tw, emphasizing the incomplete penetrance. The
IRF4 p.R98W variant failed to bind or activate ISRE or AICE
promoters, and the disease mechanism was attributed to hap-
loinsufficiency resulting from a lack of activity of the p.RO8W
IRF4 proteins present in the nucleus.

The second description of an IEI attributed to IRF4 was de-
scribed in a 5-mo-old girl with intrauterine growth retardation,
dermatitis, fevers, tachycardia, generalized adenopathy, hypo-
glycemia, and failure to thrive who was found to have a unipa-
rental disomy of chromosome 6, resulting in the presence of a
homozygous IRF4 variant, c.1213-2A>G (p.V405GfsTerl127). In-
fection history included rotavirus, Candida albicans, HSV, and
respiratory infections with unknown cause. Notable immune
features included agammaglobulinemia with absent memory
B cells. The patient was treated with allogeneic hematopoietic
stem cell transplant (HSCT) at 2 years and died at day +2. Al-
though this patient exhibited striking phenotypic similarities
to Irf4~/~ mouse models, the genetic complexity introduced
by uniparental isodisomy, coupled with the absence of func-
tional validation, precludes definitive conclusions.
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Figure 2. Key signaling pathways related to IE-IRFs. IRFs primarily mediate the expression of ISGs from the ISRE in response to activation of IFNRs and
PRRs. Dysregulation in these pathways leads to distinct clinical immunodeficiencies (IRF1, IRF3, IRF4, IRF7, IRF8, IRF9) or developmental syndromes (IRF6).
(A) Upon binding the ISRE, IRF1induces expression of a subset of ISGs. (B) IRF3 and IRF7 stimulate type |, I, and lll interferon production. (C) IRF4 is crucial for
lymphocyte development through interaction with the ISRE and AICE motifs. (D) IRF6 regulates genes required for epithelial differentiation and palate fusion.
(E) IRF8 promotes lymphocyte development through interaction with the ISRE. (F) IRF9 complexes with STAT1 and STAT2 to form ISGF3, which drives ISG
expression. AICE = AP-1-IRF composite element; EMT = epithelial-mesenchymal transition; and IFNRs, IFN receptors. Created in BioRender, https://BioRender.

com/3h8qilu.

In 2023, the IRF4 international consortium identified a
multimorphic variant in IRF4, p.T95R, in seven patients from six
kindreds, presenting with fully penetrant AD multimorphic
IRF4 combined immunodeficiency (Fornes et al., 2023). Clinical
characteristics indicated a significant combined immunodefi-
ciency: all patients experienced severe infections within the first
year of life from opportunistic pathogens such as Pneumocystis
jirovecii, viruses (CMV and Epstein-Barr virus [EBV]), and
weakly pathogenic mycobacteria (BCG and M. bovis). IRF4 mRNA
and protein levels were normal. Patients had a notable B cell
developmental arrest characterized by increased naive and
transitional B cells, reduced plasmablasts, decreased immuno-
globulin isotype switching, and agammaglobulinemia. Ty17 and
Try were reduced and, when stimulated, had decreased pro-
duction of IL-12 and IFN-y. This phenotype was replicated in
both Irf4 p.T95R knock-in mice and B cells transduced with IRF4

Stojcic et al.
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p-.T95R. The p.T95R variant had dominant-negative and hypo-
morphic effects, which failed to upregulate canonical IRF4 tar-
gets. Furthermore, a novel subset of genes was upregulated,
demonstrating a neomorphic effect. There was also a hyper-
morphic effect with increased noncanonical DNA-binding ac-
tivity. Together, the mechanism of this IRF4 p.T95R disease was
surprising and novel with a simultaneous multimorphic com-
bination of dominant loss, gain, and new functions for IRF4.
Thus, this discovery expanded the classic description of “Miil-
ler’s morphs” (Muller, 1932).

The final IEI currently linked to IRF4 was found in a family
with AD IRF4 deficiency. The three affected family members
displayed recurrent infections, hypogammaglobulinemia, ab-
normal T cell subsets, and early hair graying (Thouenon et al.,
2023). This early hair graying is intriguing given that IRF4
polymorphisms have been linked to hair graying and skin color

Journal of Experimental Medicine
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(Adhikari et al., 2016; Han et al., 2008). Infections were caused
by a variety of pathogens including CMV, Giardia lamblia, HSV,
varicella-zoster virus (VZV), molluscum contagiosum, and
fungi. All affected patients received intravenous immunoglob-
ulin (IVIG) for hypogammaglobulinemia as children, with an-
tibody levels normalizing by adulthood. Immunophenotypic
analysis revealed impaired plasmablast differentiation with
low plasma cells and abnormal T cell phenotypes, including low
naive and elevated terminal effector CD4* and CD8* T cells. Each
patient carried IRF4 p.F359L, with no impairment of mRNA and
protein production or localization. IRF4 p.F359L had a dominant-
negative effect on the ISRE and elevated binding to AICE and
EICE, with an overall shift in gene expression from ISRE to AICE
sites, opposing the normal shift from AICE to ISRE sites during
B cell development (Cocco et al., 2020; Ochiai et al., 2013). This
resulted in low expression of genes associated with B cell dif-
ferentiation, including PRDMI, XBP1a20lv, and CD38.

When considered together, this series of IEIs caused by
damaging variants in IRF4 highlights the importance of this
transcription factor in lymphocyte development, resulting in a
unifying phenotype of broad immunodeficiency, altered lym-
phocyte development, and impaired antibody production that
mirrors models of IRF4 deficiency. Moreover, this series of IRF4-
related IEIs vividly emphasizes that it is essential to consider
variant-specific effects in human IE-IRFs.

IRF5
IRF5 is an important mediator of cytokine production down-
stream of PRRs, with activation resulting in IRF5 phosphoryla-
tion, homodimerization, nuclear translocation, and stimulation
of proinflammatory gene expression, including type I IFNs
(Banga et al., 2020; Barnes et al., 2001; Barnes et al., 2004; Chen
etal., 2008; Takaoka et al., 2005). Human leukocytes deficient in
IRF5 have impaired B cell activation, plasmablast differentiation,
and production of immunoglobulins, reactive oxygen, and ni-
trogen species, with impaired response to influenza and poor
clearance of intracellular bacteria (De et al., 2017; Forbester et al.,
2020; Hedl et al., 2019). Murine models reinforce the role of IRF5
in immune function, including cytokine and chemokine pro-
duction and Thl and proinflammatory M1 macrophage polari-
zation (Feng et al., 2012; Sun et al., 2016; Takaoka et al., 2005;
Weiss et al., 2015; Yanai et al., 2007). Irf5~/~ mice are susceptible
to a range of bacterial and viral pathogens (Paun et al., 2008).
No cases of monogenic human IRF5-mediated disease have
been identified; however, IRF5 has been implicated as a poly-
genic risk locus for SLE, systemic sclerosis, Sjégren’s syndrome,
and inflammatory bowel disease (Dideberg et al., 2007; Graham
et al., 2006; Hou et al., 2023; Lépez-Bricefio et al., 2024; Miceli-
Richard et al., 2009; Saigusa et al., 2015; Sigurdsson et al., 2008;
Sigurdsson et al., 2005; Wang et al., 2019; Xu et al., 2016). The
link between IRF5 and SLE is further supported by IRF5-
deficient mice showing resistance to murine lupus (Ban et al.,
2021; Pellerin et al., 2023; Pellerin et al., 2021; Song et al., 2020).

IRF6
Expanding the biological repertoire of the IRF family, the main
roles of IRF6 are outside the immune system. IRF6 is primarily

Stojcic et al.
Human inborn errors of IRFs

5.2 EM
« [8)
5%

expressed in epithelial cells, where it is activated by PRRs and
free glucose, resulting in phosphorylation, dimerization, and
nuclear translocation (Fig. 2 D) (Bailey et al., 2008; Kwa et al.,
2014; Lopez-Pajares et al., 2025; Wright et al., 2024). IRF6 then
binds the ISRE motif to mediate chemokine production, epi-
dermal differentiation, epithelial-mesenchymal transition, and
palate fusion (Bailey et al., 2008; Ke et al., 2019; Ke et al., 2015;
Kwa et al., 2014; Lopez-Pajares et al., 2025). IRF6-deficient hu-
man keratinocytes have severe impairments of differentiation,
cell-cell adhesion, and migration, with aloss of both polarization
and the ability to move as a collective epithelial sheet (Ghassibe-
Sabbagh et al., 2021; Girousi et al., 2021). Complete ablation of
Irf6 in murine models is lethal in early development (Ingraham
et al., 2006; Richardson et al., 2006). The targeted expression of
IRF6 in the basal epithelium of Irfé knockout mice partially
rescues their phenotype, with embryos surviving the perinatal
period; however, orofacial clefting and palate and tongue ad-
hesions remain (Kousa et al., 2017). Irf6-deficient mice have a
failure of terminal epidermal differentiation, causing abnormal
skin, limb, and craniofacial development (Carroll et al., 2025;
Ingraham et al., 2006; Richardson et al., 2006).

In humans, damaging IRF6 variants cause monogenic VWS
and PPS, which result in cleft lip/palate (CLP) and other devel-
opmental differences (Kondo et al., 2002; Kumaran et al., 2004;
Murray et al., 1990; Schutte et al., 1999; Zucchero et al., 2004).
VWS is the most common syndromic form of CLP, resulting in
the development of lip pits (i.e., depressions of the lower lip or
blind-ended fistulae) with or without CLP (Bennun et al., 2018;
Busche et al., 2016; Kondo et al., 2002; Kumaran et al., 2004). PPS
extends this phenotype to also include popliteal webbing, syn-
dactyly, hypodontia, and deformities of the limbs and genitals
(Bennun et al., 2018; Kondo et al., 2002; Lees et al., 1999; Leslie
et al., 2015; Soekarman et al., 1995).

Both VWS and PPS are primarily inherited through AD IRF6
variants with variable expressivity and incomplete pene-
trance (Alade et al., 2020; Escobar and Weaver, 1978; Kondo
et al., 2002; Leslie et al., 2015). A single case of AR IRF6 var-
iants has also been linked to PPS (Leslie et al., 2015). Most
PPS- and VWS-associated variants are in the DBD and IAD,
with a high prevalence of missense variants near R84 in the
DBD in PPS (Alade et al., 2020; Busche et al., 2016; de Lima
et al., 2009; Kondo et al., 2002; Leslie et al., 2013; Matsuzawa
et al., 2010; Peyrard-Janvid et al., 2005).

Due to the phenotypic similarities between VWS and PPS, it is
hypothesized that they are a spectrum of the same disorder
(Kondo et al., 2002; Leslie et al., 2013; Soekarman et al., 1995).
This concept is supported by variants shared across both diag-
noses, and some families have both diagnoses across multiple
generations (Busche et al., 2016; de Lima et al., 2009). Others
suggest that these syndromes are allelic with IRF6 hap-
loinsufficiency due to protein-truncating variants resulting in
VWS, and dominant-negative missense variants in functional
domains of IRF6 underlying PPS; however, the existence of
variants shared across syndromes complicates this model
framework (de Lima et al., 2009; Kondo et al., 2002). Finally,
IRF6 polymorphisms may also increase the risk and/or severity
of nonsyndromic CLP (Alappat et al., 2025; Askarian et al., 2023;
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Bezerra et al., 2020; Leslie and Marazita, 2013; Ludwig et al.,
2012; Nasroen et al., 2023; Zhang et al., 2024).

IRF7

IRF7 is vital in the late IFN response where IFN stimulation re-
sults in homodimerization or heterodimerization with IRF3,
promoting ISG expression (Fig. 2 B) (Marié et al., 1998; Marié
et al., 2000; Osterlund et al., 2007; Sato et al., 1998; Sato et al.,
2000). Irf7-/~ mice have impaired production of type I IFNs and
are susceptible to viral pathogens, including influenza (Hatesuer
et al,, 2017; Honda et al., 2005; Sato et al., 2000). IRF7-deficient
patients reveal a predisposition to severe viral infections, in-
cluding 1AV, SARS-CoV-2, respiratory syncytial virus, and ade-
novirus (Campbell et al., 2022; Ciancanelli et al., 2015; Thomsen
et al., 2019a; Zhang et al., 2020). Both AR and AD forms of IRF7
deficiency have been described.

AR IRF7 deficiency was first described in a 2.5-year-old with
severe HINI1 IAV causing acute respiratory distress syndrome
who carried compound-heterozygous missense variants in IRF7
(Ciancanelli et al., 2015). Both variants disrupted IRF7 localiza-
tion with loss of function for IFNB, IFNA4, and IFNA6 promoters.
Type I and III IFNs were reduced in patient PBMCs at baseline,
and IFN-a, IFN-B, and IFN-Al responses were impaired to 11
different viruses. Interestingly, some ISGs known to inhibit IAV
replication were upregulated normally, possibly through intact
IFN-B signaling. Patient fibroblasts and fibroblast-derived pul-
monary epithelial cells also had reduced IRF7 expression and
poor IFN-y responses. Interestingly, the patient’s lack of severe
influenza infections since vaccination suggests that IRF7 is likely
redundant for vaccine-mediated influenza immunity.

AR IRF7 deficiency also underlies severe SARS-CoV-2 in-
fections (Zhang et al., 2020). Two patients carrying biallelic
damaging IRF7 variants had no history of clinically significant
viral infections until the ages of 49 and 50 years, when they
developed severe COVID-19. IRF7 protein production was re-
duced, and patient pDCs were unable to produce type I or IIl IFNs
upon exposure to SARS-CoV-2. In a follow-up study, four addi-
tional patients with AR IRF7 deficiency were described, which
broadened the viral susceptibility phenotype to include SARS-
CoV-2, influenza, respiratory syncytial virus, and adenovirus
(Campbell et al., 2022). These patients typically had one to two
episodes of pulmonary viral infections, with ages of onset
ranging from 6 mo to 38 years. Transcriptional activity was re-
duced or absent for all variants. No IRF7 could be detected in
patient PBMCs stimulated with IFN-B, and IFN-a response was
impaired in PRR-stimulated pDCs. Adaptive responses to SARS-
CoV-2 infection and vaccination were intact.

The first description of AD IRF7 deficiency was in an adult
with severe influenza infection who was heterozygous for the
p-E331V variant in the inhibitory domain of IRF7 (Thomsen et al.,
2019a). Neither IRF7 mRNA nor protein levels were affected, but
patient PBMCs had impaired IFN-B priming with reduced up-
regulation of IFNB, IFNA2, and IFNLI. Patient-derived macro-
phages had impaired control of IAV replication. This discovery
was significantly expanded by the addition of five additional
patients with AD IRF7 deficiency (p.R7fs, p.Q185*, p.P246fs,
p-R369Q, and p.F95S) who all experienced severe COVID-19
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(Zhang et al., 2020). Functional workup of these additional
patients found both low IRF7 expression and low type I IFN
production in vivo during SARS-CoV-2 infection.

Together, these studies confirm that both AR and AD IRF7
deficiencies present with susceptibility to a narrow range of
respiratory viral infections, commonly SARS-CoV-2 and IAV.
Memory responses were intact, suggesting that severe infection
likely results from the disruption of both type I and III IFNs in
pDCs and respiratory cells. Immunity to less virulent pathogens
may stem from the small amounts of residual IFN-f, providing
some level of protection. Patients with IRF7 deficiency share a
similar presentation to models of IRF7 deficiency. Both have
impairments of IFN production, and susceptibility to viral in-
fections in the absence of a strong cellular phenotype.

IRF8

IRF8 (also known as ICSBP) is primarily expressed in myeloid
and lymphoid cells, where, upon PRR or IFN-y binding, IRF8
is phosphorylated, promoting heterodimer formation with
PU.1, IRFL, or IRF2, and subsequent ISG expression (Fig. 2 E)
(Bovolenta et al., 1994; Driggers et al., 1990; Eklund et al., 1998; Li
et al., 2011; Nelson et al., 1996; Sharf et al., 1997; Tailor et al.,
2007). In vitro models demonstrate the importance of IRF8 in the
development and function of macrophages, DCs, and B cells,
including in the production of IFN and specific antibodies (Gupta
etal., 2015; Lee et al., 2006; Scheller et al., 1999; Schiavoni et al.,
2002; Tailor et al., 2007; Tamura et al., 2000; Tsujimura et al.,
2003). Similar findings are observed in Irf8~/~ mice, which have
a Th2 bias, elevated granulocytes, impaired development of
B cells from the pre-pro-B cell stage, and poor development of
CD8a* and CD4-CD8a~ DC subsets (Aliberti et al., 2003; Giese
et al., 1997; Schiavoni et al., 2002; Tailor et al., 2008; Tamura
et al., 2005; Wang et al., 2008). Irf8-deficient mice are suscep-
tible to a range of bacterial and parasitic infections, particularly
with intramacrophagic pathogens such as M. bovis (Alter-
Koltunoff et al., 2008; Fortier et al., 2009; Marquis et al., 2009;
Scharton-Kersten et al., 1997; Turcotte et al., 2007).

Genetic variants in IRF8 cause both AR and AD forms of
MSMD, with the recessive form being more severe (Hambleton
et al., 2011). The phenotype of IRF8-related disease later ex-
panded to encompass a more complex immunodeficiency syn-
drome as more patients were identified (Bigley et al., 2018; Mace
et al., 2017; Salem and Gros, 2013).

AR IRF8 deficiency was first recognized in a 10-wk-old pa-
tient with disseminated BCG infection, oral candidiasis, and
cachexia (Hambleton et al., 2011). She had absent DCs and
monocytes, variable tissue macrophages, elevated neutrophils,
and CD34* progenitors. Monocyte development was severely
impaired, with growth factor-stimulated circulating stem cells
producing >98% granulocytes. Stimulated whole blood had low
IFN-y, TNF-q, IL-10, IL-6, and absent IL-12. CD4* T cells had poor
secretion of IFN-y, IL-17, and IL-10, with only a partial IFN-y
response following IL-12 preincubation. Sequencing revealed a
homozygous missense variant (p.K108E) located in the DBD of
IRF8. This variant altered protein structure/folding and was
nearly inactive for ILI2B and NOS2 promoters. A cord-blood
HSCT was curative. Although the initial description focused on
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the MSMD phenotype, the index patient did show broader sus-
ceptibility, including oral candidiasis and severe respiratory
viral infection (Salem et al., 2014).

A subsequent patient who was compound-heterozygous for
two damaging IRF8 variants (p.R83C/p.R291Q) presented with
recurrent viral infections, granuloproliferation, BCGosis, intra-
cerebral calcification, and developmental delay (Bigley et al.,
2018). Further assessment revealed low T cells, impaired B cell
class switching, somatic hypermutation, and maturation with
dysplastic and hypofunctional granulocytes. A third case of AR
IRF8 deficiency was later reported in a neonate with severe
neutrophilia, monocytopenia, impaired IFN-y response, and
recurrent and eventually fatal infection in infancy (Dang et al.,
2021). Further testing revealed homozygous IRF8 variants
p-R111%, reduced IRF8 mRNA, and elevated IL-4, IL-6, and IL-10.
More recently, another infant was found to have AR IRF8 defi-
ciency, carrying compound-heterozygous IRF8 variants: c.55del
and p.R111* (Rosain et al., 2022). The infant died at 10 months of
refractory pulmonary alveolar proteinosis following a history
that included sepsis, respiratory distress, viral pulmonary dis-
ease, disseminated BCGosis, facial dysmorphism, short stature,
and intracerebral calcification. p.R111* resulted in absent IRF8
protein expression and c.55del, which was predicted to produce
a truncated protein, p.D19Tfs*8, due to reinitiation of tran-
scription at p.M22. Both p.R111* and c.55del had loss-of-function
in a luciferase reporter system, with impaired repression of
IRF1-mediated ISRE transcriptional activity. Further assessment
revealed an accumulation of neutrophils, absent monocytes,
¢DCl, pDCs, mild CD4* lymphopenia, and B cell lymphopenia
with low memory B cells. Platelet counts were also low, and
there was impaired IFN-y, IL-1j, IL-10, IL-12p70, IL-23, and TNF-
a production, but normal IFN-a.

Four patients with AD IRF8 deficiency have been reported.
The first two were heterozygous for a de novo IRF8 p.T80A
variant (Hambleton et al., 2011). Following BCG vaccination, one
had repeated chronic granulomatous tuberculoid lesions and
lymphadenopathy at 1-2 years of age, and the other had recur-
ring lymphadenopathy spanning 30 years. Both were managed
successfully with antimycobacterial drugs. The T80A variant
did not affect the IRF8 protein level or stability but impaired
the expression of target promoters ILI2B and NOS2, with a
dominant-negative effect over wild-type IRF8. CDlc* DCs were
reduced with poor IL-12 production in vitro, but normal IL-12
production in BCG-stimulated whole blood. IFN-y production
was normal, unlike recessive IRF8 deficiency. Two more patients
were later identified with AD IRFS8 deficiency (Ham et al., 2025).
The proband presented with persistent EBV viremia, and the
mother presented with an HPV-positive tumor. Both carried an
IRFS variant c.1279dupT (p.*427Lext*42), which resulted in ex-
tension of the IRF8 protein by 42 amino acids. This elongated
IRF8 protein had impaired nuclear translocation with a
dominant-negative effect on wild-type IRF8 and IRF1, resulting
in abnormal transcriptional and proteomic profiles, including
those associated with pDC function and development and cyto-
kine function. It is worth noting that the proband also carried a
STATS3 variant (p.G743V); however, functional testing revealed
no STAT3 abnormalities. Both patients had reduced pDCs, cDCls,
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elevated central and effector memory T cells, mild neutrophilia,
and mild monocytosis. The proband also had decreased memory
B cells, but both had increased IgG and normal IgA levels. NK cell
subsets and function were normal. Notably, neither had a his-
tory of mycobacterial infection; however, neither was vacci-
nated for BCG, and it is possible they had not been exposed.

When considered together, these phenotypes align with the
known roles of IRF8 in myeloid and lymphoid development (Lee
et al., 2006; Tailor et al., 2008; Tamura et al., 2005). AD IRF8
deficiency typically causes a limited MSMD phenotype, while
the more severe AR IRF8 deficiency results in a broader
immunodeficiency.

IRF9

IRF9 (also known as p48, ISGF3y) is integral to IFN responses by
mediating ISG expression as a part of the ISGF3 complex with
STAT1and STAT? (Fig. 2 F) (Bluyssen et al., 1996; Fu et al., 1990;
Kimura et al., 1996; Odendall and Kagan, 2015; Paul et al., 2018).
IRF9 is also crucial for positive feedback in the late phase of the
IFN response, by mediating the expression of IRF7 (Sato et al.,
1998; Sato et al., 2000). Mouse models of IRF9 deficiency have
impaired NK cell survival, B cell function, class-switched anti-
body production, DC response, and elevated CD8* T cell ex-
haustion, with susceptibility to a range of viral pathogens (Geary
et al., 2018; Hofer et al., 2012; Huber et al., 2017; Thibault et al.,
2008).

AR IRF9 deficiency predisposes to viral infections with a
broader range of susceptibility than seen in patients with other
deficiencies in IRFs crucial to type I IFN responses such as IRF3
and IRF7 (Bravo Garcia-Morato et al., 2019; Hernandez et al.,
2018). The first patient with AR IRF9 deficiency presented
with severe influenza at the age of 2 years (Hernandez et al.,
2018). She experienced RSV, IAV, adenovirus, parainfluenza
virus infections, recurrent bronchiolitis, and recurrent fevers of
unknown cause. She was repeatedly admitted to the intensive
care unit, including one admission for septic shock without a
detectable pathogen. Sequencing identified a homozygous var-
iant in IRF9, c.991G>A, affecting the final nucleotide of exon
7. Although predicted to cause an amino acid substitution
(p-D331N), the variant was also shown to disrupt splicing of exon
7, which forms a large portion of the IAD. No variant transcripts
were detected. IRF9-Aex7 lost the ability to form ISGF3, and ISRE
binding was impaired. Patient-derived fibroblasts and B cells
had impaired ISG modulation, and fibroblasts also failed to
control IAV replication, even with IFN-a2b pretreatment.

Later, a set of siblings with AR IRF9 deficiency was described
(Bravo Garcia-Morato et al., 2019). The proband had multiple
severe viral infections beginning in the first year of life, in-
cluding RSV and disseminated postvaccination VZV, resulting
in prolonged intensive care unit stays, persistent neurological
impairment, and bronchiectasis. The proband had mild CD4* T
and B lymphopenia with low IgG, and the sister had transient NK
and B lymphopenia. IVIG was started at the ages 9 years for the
proband and 3 wk for the sister from which point neither ex-
perienced any severe disease episodes. Both carried a homozy-
gous splicing variant causing skipping of exon 5 and a premature
stop codon ¢.577+1G>T (p.Glulé6LeufsTer80). IRF9 protein was
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not produced, and stimulated patient-derived fibroblasts and
PBMCs failed to induce ISGs. Notably, the upregulation of IRF7
was also lost, which may contribute to the family’s severe phe-
notype. Nevertheless, these findings should be interpreted with
some caution, however, as consanguinity was present and only
panel sequencing was performed. It is possible that other var-
iants may contribute to the patient phenotype, given that the AR
IRF9 patient reported by Hernandez et al. did not share the same
cellular phenotype (Hernandez et al., 2018).

Due to its importance in the IFN response, it is unsurprising
that damaging variants in IRF9 increase susceptibility to viral
infections. IRF9-deficient patients also share many other simi-
larities with models of IRF9 deficiency, including impaired IFN
production, ISG expression, and cellular phenotypes of impaired
NK cells, B cells, and poor class-switched antibody production.

Clinical approach to the diagnosis and management of IE-IRFs
IE-IRFs present with a broad range of clinical manifestations and
span several classification categories proposed by the Interna-
tional Union of Immunological Societies (Poli et al., 2025). When
evaluating a patient, the specific IE-IRF to consider will therefore
depend on their clinical features. We recommend a baseline im-
munological assessment including complete blood count with
differential, serum immunoglobulin levels, specific vaccine titers,
and enumeration of T, B, and NK cells by flow cytometry. These
studies may provide important clues to an underlying IE-IRF, such
as absent monocytes in the setting of IRF8 deficiency or B cell
developmental arrest in IRF4 defects. Additional specialized di-
agnostic immunology tests may be considered depending on the
conditions under consideration and local testing availability.

In many instances, however, baseline immunology evalua-
tion may be normal despite an underlying IE-IRF. Therefore, in
combination with this baseline assessment, we advocate for a
“genetics-first” approach for securing a definitive diagnosis.
While gene panels are popular and cost-effective, clinicians
must be aware no panel is completely comprehensive. There-
fore, whole-exome (or even whole-genome) sequencing should
be considered if a gene panel is negative but clinical suspicion
remains high. A diagnosis can be made when a known disease-
causing genetic variant is found in a patient with a compatible
clinical phenotype. However, if a variant of uncertain signifi-
cance is found, a current challenge for the field is that functional
assessment of such candidate variants is limited to the research
domain.

Treatment approaches for IE-IRFs are tailored to the patient
and their underlying disease. First and foremost, it must be
noted that most IE-IRFs present with pathogen susceptibility,
either broad or limited to a small group of pathogens. Patients
diagnosed with an IE-IRF should be monitored closely for in-
fection, particularly for those where the patient is at high risk
(e.g., HSE in some AD IRF3 cases). Treatments often combine
prophylaxis to prevent infection with key pathogens (e.g.,
P. jirovecii in IRF4 defects) and immunoglobulin replacement in
patients with antibody production defects (e.g., AR IRF9 defi-
ciency). Attenuated live vaccines should be used with caution in
IE-IRFs with poor control of pathogen replication, such as
avoidance of BCG vaccination in cases with susceptibility to
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weak mycobacterial infections (AR IRF1, AD IRF4, and AD/AR
IRF8 deficiencies). Treatments designed to supplement defective
IFN production have also been used, such as recombinant IFN-y
in IRF1 deficiency or Peg-IFN-a2a treatment in a patient with AD
IRF3 deficiency (Lévy et al., 2021a; Rosain et al., 2023). Fur-
thermore, antiviral monoclonal antibodies, such as casirivimab
and imdevimab, have been effective in one case of AR IRF9 de-
ficiency to prevent severe COVID-19 (Lévy et al., 2021b). How-
ever, because of the severity of the broad immune defect in some
IRF-deficient patients, potentially curative HSCT may be indi-
cated (e.g., IRF4 and IRF8) (Bigley et al., 2018; Bravo Garcia-
Morato et al., 2018; Fornes et al., 2023; Hambleton et al., 2011).
Finally, as IRF], IRF3, IRF8, and IRF7 have been proposed to play
a role in tumor suppression, clinicians should be aware that
patients may have a risk of tumorigenesis; however, only AD
IRF8 deficiency has been definitely associated with tumor de-
velopment (Ham et al., 2025; Holtschke et al., 1996; Nozawa
et al., 1999; Qing and Liu, 2023; Turcotte et al., 2005; van der
Weyden et al., 2017; Wang et al., 2024).

As IRF6 variants are primarily linked to CLP, the approach to
diagnosis and treatment differs from the other IE-IRFs. In the
case of VWS or PPS, genetic testing should be performed to
confirm a link to IRF6 variants. Regardless of the underlying
cause, surgical reconstruction may be required for CLP, and for
the correction of knee flexion contracture in some PPS patients
(Bennun et al., 2018; Gardetto and Piza-Katzer, 2003). Studies
support the importance of early surgical intervention for PPS
patients (Dobs et al., 2021; Gardetto and Piza-Katzer, 2003).

How the characterization of human IE-IRFs has shaped our
understanding of fundamental IRF biology
Our understanding of the biological roles of IRFs has been greatly
enriched by the study of rare human IE-IRFs. For example, IRF1
was initially described as a transcription factor mediating IFN
response to viruses; however, through reports of human IRF1
deficiency we learn that IRF1 is largely dispensable for type I IFN
production and antiviral response (Miyamoto et al., 1988; Rosain
et al., 2023). Instead, patients have profound susceptibility to
mycobacterial infection because of impaired IFN-y response.
Furthermore, IRF1-deficient patients have impaired Thl re-
sponses, altered dendritic, T, and NK cell development, and
reduced expression of genes vital to leukocyte activation, sup-
porting roles of IRF1-mediated signaling in leukocyte develop-
ment and function, aligning with findings in mouse models
(Gabriele et al., 2006; Lohoff et al., 2000; Taki et al., 1997).

Similarly, IRF3, IRF7, and IRF9 were proposed to be vital to
the early and late phases of IFN response (Kimura et al., 1996;
Sato et al., 2000). This is validated by the findings of impaired
type I IFN responses and subsequent viral susceptibility in hu-
man IRF3, IRF7, and IRF9 deficiency (Campbell et al., 2022;
Hernandez et al., 2018; Thomsen et al., 2019b). The role of IRF9
in both type I and III IFN signaling, stronger cellular phenotype,
and the broad expression of IRF9 may explain its wider infec-
tious susceptibility phenotype than that seen in IRF3 or IRF7
deficiency (Coccia et al., 2004; Paul et al., 2018).

The pleiotropic functions of the IRF family are nicely illus-
trated by IRF8 deficiency, which was initially described as a
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cause of MSMD, but is now appreciated to cause a more complex
syndrome spanning abnormal hematopoiesis, immunodefi-
ciency, and immune dysregulation (Bigley et al., 2018;
Hambleton et al., 2011). Not surprisingly, IRF8-deficient patients
share some similarities to those deficient in IRF1, including
predisposition to mycobacterial infections, as both have impor-
tant roles in Thl responses, by mediating IFN-y and IL-12 sig-
naling (Cooper et al., 1995; Schiavoni et al., 2002; Taki et al.,
1997). However, compared with IRF1 deficiency, damaging ge-
netic variants in IRF4 and IRF8 cause more profound cellular
defects and a broader spectrum of immunodeficiency, reinforc-
ing the important roles of IRF4 and IRF8 in the development and
function of both lymphoid and myeloid cells (Lee et al., 2006;
Matsuyama et al., 1995; Yamagata et al., 1996). Furthermore, the
AD and AR IRF4-deficient patients have a broad range of clinical
presentations determined by their genotype, supporting
the theorized dose- and context-dependent functions of IRF4
(Himmelmann et al., 1997; Ochiai et al., 2013; Krishnamoorthy
etal., 2017; Cook et al., 2020). Some features shared by all IRF4-
deficient patients, including defects in B cell maturation,
isotype switching, and plasma cell differentiation, support the
crucial role of IRF4 in B cell development and function (Lu
et al., 2003).

IRF6 is unique in that its role is primarily outside of immune
function, instead being vital to orofacial development, skin, and
limb development (Kondo et al., 2002). Patients deficient in IRF6
present with a broad range of phenotypes from lip pits without
CLP in some VWS cases, to severe developmental deficiencies
with CLP, popliteal webbing, syndactyly, hypodontia, and de-
formities of the limbs and genitals in PPS patients. Together, this
illustrates the role of IRF6 in guiding the development and or-
ganization of tissue throughout the body by mediating terminal
epidermal development, reinforcing similar findings in IRF6-
deficient mice (Carroll et al., 2025; Ingraham et al., 2006;
Richardson et al., 2006).

Conclusion

The IRF family of proteins is central to many biological pro-
cesses, explaining the range of phenotypes experienced by pa-
tients with IE-IRFs. IRF3, IRF7, and IRF9 are crucial for mediating
protective IFN responses, explaining the viral susceptibility in
patients with impairments in these transcription factors. IRF1-
deficient patients have reduced ability to control mycobacterial
infection due to impaired type II IFN responses and myeloid
development. In contrast, IRF4 and IRF8 are crucial to various
immune functions, explaining why affected patients have de-
fects in immune development and broader infection suscepti-
bility. Our rapidly growing recognition of the human IE-IRFsis a
powerful example of how the integration of clinical care with
translational science can transform the lives of affected in-
dividuals. Our current ability to diagnose and treat the IE-IRFs is
true precision medicine in practice!
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