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Bringing natural killer cells to the clinic: 
Opportunities beyond cancer
Marjorie Cayatte1*�, Valentin Picant2*�, Marie Vétizou2�, and Eric Vivier1,2,3,4,5�

Natural killer (NK) cells are cytotoxic and cytokine-producing innate lymphocytes with established roles in antiviral and 
antitumor immunity. In recent years, the biology of NK cells has been exploited in innovative cancer immunotherapies, leading 
to clinical advances including allogeneic NK cell infusions, chimeric antigen receptor NK cells, and NK cell engager 
technologies. These studies pave the way to explore how advances in NK cell–based immunotherapies could be leveraged 
outside of oncology to selectively target pathogenic cells and restore tissue homeostasis in viral infections, neurodegenerative 
disorders, autoimmunity, and transplantation medicine.

Introduction
Natural killer (NK) cells are lymphocytes belonging to the innate 
lymphoid cell (ILC) family (Vivier et al., 2018). Together with 
ILC1, they constitute group 1 ILCs and have been recognized for 
their ability to eliminate virally infected and malignant cells 
without prior antigen-specific sensitization. Through a combi
nation of activating and inhibitory receptors, NK cells can dis
tinguish healthy self from altered self. Indeed, NK cells can 
detect self-molecules that appear or increase on stressed 
cell surfaces. A classic illustration of this stress-related self- 
detection involves NK cell activation through activating sur
face receptors like NKG2D and the natural cytotoxicity receptors 
(NCRs), NKp46 and NKp30. These receptors bind to Major his
tocompatibility complex (MHC) class I chain-related protein A 
and B (MICA/B) and UL16-binding proteins (ULBPs), ecto- 
calreticulin, or B7-H6, respectively, which are displayed on 
stressed cells. The expression of these ligands occurs following 
DNA damage responses, excessive cell proliferation, or other 
stress-triggered signaling cascades. NK cells also express in
hibitory surface receptors such as killer cell immunoglobulin- 
like receptors (KIRs) that recognize major histocompatibility 
complex (MHC) class I molecules and CD94/NKG2A that recog
nizes the nonclassical MHC class I molecule, HLA-E (Vivier et al., 
2024). Once activated, NK cells ensure a rapid immune response 
by killing distressed cells and releasing an array of chemokines 
and cytokines that shape a broader immune response. Advances 
in understanding NK cell biology have spurred innovative 
therapies that leverage their unique functional capacities 
(Laskowski et al., 2022; Myers and Miller, 2021; Vivier et al., 
2024).

Candidate therapeutic strategies aimed at harnessing NK 
cells for cancer treatment comprise monoclonal antibody–based 
therapies, such as bispecific or multispecific NK cell engagers 
and immune checkpoint inhibitors (targeting NKG2A, LAG-3, 
TIGIT, or TIM-3), or cell-based therapies infused directly into 
patients such as ex vivo–expanded or genetically modified NK 
cells including CAR-NK cells (Laskowski et al., 2022; Myers 
and Miller, 2021; Vivier et al., 2024). NK-based therapies ex
hibit a favorable safety profile; notably, NK cells do not trigger 
graft-versus-host disease. Their potential for “off-the-shelf” 
manufacturing from allogeneic sources is an attractive feature to 
increase scalability and cost-effective manufacturing. Clinical 
trials based on NK cell–based therapies are in phase I and I/II 
stages, and are targeting a broad spectrum of cancers, including 
various lymphomas, leukemias, and solid tumors (Biederstädt 
and Rezvani, 2025; Laskowski et al., 2022; Myers and Miller, 
2021; Vivier et al., 2024). However, there are still some chal
lenges, particularly with regard to the persistence and fitness of 
NK cells in vivo in the immunosuppressive tumor microenvi
ronment, as well as the manufacturing and scalability of the 
therapies (Shi et al., 2024). Despite these hurdles, the field is 
exploring new strategies such as metabolic engineering, next- 
generation “armored” NK cells with improved homing and 
survival capabilities, and computational tools to refine target 
identification and predict therapeutic responses (Burga et al., 
2019; Du et al., 2021; Foo et al., 2023).

While NK cell–based therapies are emerging, the most 
transformative immunotherapy successes to date have come 
from the harnessing of T cell immunity. The use of immune 
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Timone, Marseille-Immunopole Profiling Platform, Marseille, France; 4Paris Saclay Cancer Cluster, Villejuif, France; 5Université Paris-Saclay, Gustave Roussy, INSERM, 
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checkpoint inhibitors, bispecific antibodies, and CAR-T cells has 
led to major clinical advances in cancer. Recently, T cell–based 
immunotherapies have been pivoted to other disease conditions. 
In particular, CAR-T cells targeting B cell surface molecules have 
been used in patients presenting B cell–mediated autoimmunity 
with groundbreaking clinical benefit. Similarly, although NK 
cell therapies currently focus on cancer, their functional rep
ertoire and excellent safety record suggest broader therapeutic 
potential. Indeed, NK cells are more than killers of tumor cells. 
Their effector functions can be redirected against normal cells in 
an autologous setting with stimulating engagers binding to de
fined target surface molecules. In addition, accumulating evi
dence reveals that NK cells can be present in nearly all tissues 
(Björkström et al., 2016; Dogra et al., 2020). Together, these 
findings support the investigation of NK cell therapies beyond 
cancer. We review current insights into human NK cell hetero
geneity and function, their roles in viral infection, autoimmu
nity, neurodegeneration, and transplantation, and the emerging 
therapeutic opportunities they offer.

What are NK cells?
Over the five decades since their discovery, major advances have 
been made in deciphering the heterogeneity of NK cells 
(Kiessling et al., 1975). In human, NK cells were initially classi
fied into two main subsets based on the surface expression of 
CD56, encoded by the neural cell adhesion molecule 1 NCAM1 
gene, and the Fcγ receptor III (CD16), encoded by FCGR3A 
(Cooper et al., 2001; Lanier et al., 1983; Lanier et al., 1986). These 
subsets commonly referred to as CD56dim and CD56bright NK cells 
(Moretta, 2010; Vivier et al., 2008) differ not only in phenotype 
but also in function and tissue localization. CD56dim cells exhibit 
strong cytotoxic potential and highly express perforin, gran
zymes, and CD16, endowing them with an antibody-dependent 
cellular cytotoxicity (ADCC) capacity. They also express KIRs 
and chemokine receptors such as CX3CR1 and CXCR1, which 
enable peripheral tissue recruitment. CD56dim cells also produce 
an array of proinflammatory cytokines (IFN-γ, TNF-α), chemo
kines (CCL3/4/5), and immunomodulatory molecules (TGF-β, 
IL-10). By comparison, CD56bright NK cells are professionalized 
in soluble factor production (Horwitz et al., 1999; Vivier and 
Ugolini, 2009). They express little or no CD16 or KIRs, but are 
enriched in CCR7 and CD62L (L-selectin), which supports 
homing to secondary lymphoid tissues (Collins et al., 2019; 
Cooper et al., 2001; Freud et al., 2017; Jacobs et al., 2001). CD56dim 

are the predominant population in peripheral blood and highly 
vascularized tissues, including bone marrow, spleen, lung, and 
breast. CD56bright are preferentially enriched in lymph nodes, 
tonsils, liver, uterus, and throughout the gastrointestinal tract 
(Dogra et al., 2020; Ferlazzo and Carrega, 2012; Melsen et al., 
2016; Sender et al., 2023; Subedi et al., 2022; Vivier et al., 2024; 
Yu et al., 2013). However, accumulating evidence has revealed 
that NK cells span a broader and more nuanced continuum, 
thereby challenging the traditional dichotomy (Freud et al., 
2017). For instance, a third subset of CD56neg NK cells has been 
described. These cells are rare in healthy individuals and pro
liferate in certain pathological conditions such as chronic and 

acute viral infections (e.g., human immunodeficiency virus, 
hepatitis C virus) and acute myeloid leukemia, but their function 
remains debated (Björkström et al., 2010b; Gonzalez et al., 2009; 
Gyurova et al., 2019; Stary et al., 2020; Wlosik et al., 2025).

Furthermore, terminally differentiated “adaptive” NK cells 
exhibiting memory-like features, originally described in mouse 
models of cytomegalovirus (CMV) infection (Sun et al., 2009), 
are now also characterized in humans (Hammer and 
Romagnani, 2017; Lopez-Vergès et al., 2010). They show selec
tive target recognition of human cytomegalovirus (HCMV)-in
fected cells via the CD94-NKG2C receptor complex and enhanced 
functionality. Paralleling memory T cell differentiation, adaptive 
NK cells acquire epigenetically imprinted transcriptional pro
grams that promote long-term persistence and antigen-specific 
recall responses (Lee et al., 2015; Rückert et al., 2022; Tesi et al., 
2016). Memory-like NK cell responses are not restricted to 
HCMV exposure, as subsets with similar properties have also 
been observed following infection with hantavirus (Björkström 
et al., 2010a), human immunodeficiency virus (Vendrame et al., 
2020), influenza virus (Jost et al., 2023), and SARS-CoV-2 (Hasan 
et al., 2024), suggesting a broader paradigm (Lopez-Vergès et al., 
2011). In addition, cytokine-induced memory-like (CIML) NK 
cells can be generated independently of virus recognition, fol
lowing stimulation with a cocktail of IL-12, IL-15, and IL-18 
(Cooper et al., 2009; Cooper and Yokoyama, 2010; Romee et al., 
2012). CIML cells persist long term and show an enhanced re
sponse to further restimulation that partially recapitulates 
properties associated with adaptive NK cells (Hammer and 
Romagnani, 2017; Terrén et al., 2022).

Over the past decade, advances in single-cell “omics” tech
nologies, such as single-cell RNA sequencing, have transformed 
our ability to study immune cell diversity and substantially re
fined our understanding of NK cell heterogeneity (Subedi et al., 
2022). In particular, three major subsets in healthy blood—NK1, 
NK2, and NK3—have been identified (Rebuffet et al., 2024; 
Vivier et al., 2024). NK1 corresponds to CD56dimCD16+ NK cells, 
NK2 to CD56brightCD16- and early-stage CD56dim, while NK3 in
cludes, but is not limited to, CD16dim NKG2C+CD57+ adaptive NK 
cells. The subpopulations within the NK1 and NK2 clusters— 
namely, NK1A, NK1B, NK1C, and NKint—recapitulate subsets 
identified in previous single-cell transcriptomics analyses 
(Crinier et al., 2018; Jaeger et al., 2024; Melsen et al., 2016; Smith 
et al., 2020; Yang et al., 2019). An alternative strategy has been 
obtained based on the label transfer of transcriptional signatures 
derived from sorted populations based on CD56, NKG2A, KIR, 
CD57, and NKG2C cell surface expression (Björkström et al., 
2010c; Netskar et al., 2024). There is some overlap with the 
NK1-3 framework (Rebuffet et al., 2024), but a key distinction 
lies in the presumed fate of CD56bright cells. Indeed, the CD56dim 

and CD56bright subsets have been interpreted through a matu
ration lens (Holmes et al., 2021; Netskar et al., 2024; Subedi et al., 
2022), with CD56bright NK cells possibly representing the most 
immature or naı̈ve state (Chan et al., 2007; Dulphy et al., 2008), 
while CD56dim NK cells comprising more differentiated stages, 
which has been associated with a gradual downregulation or 
upregulation of surface molecules such as CD62L (SELL), NKG2A 
(KLRC1), or CD57, KIRs, and NKG2C (KLRC2), respectively 
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(Björkström et al., 2010c; Juelke et al., 2010). This trajectory of 
NK cell differentiation from CD56brightKIR- to CD56dimKIR+ cells 
is challenged by the absence of experimental data showing such 
a transition. In addition, data in human and mouse support two 
development routes for NK cells: one from early NK cell pro
genitors giving rise to NK1 and NK3, and the other from the 
innate lymphoid common progenitor leading to NK2 (Ding et al., 
2024).

Another layer of heterogeneity arises from the tissue in 
which NK cells reside, with the local microenvironment exerting 
a strong imprint on differentiation (Björkström et al., 2016), 
transcriptomics profile (Crinier et al., 2018), and functional 
properties (Subedi et al., 2022). Tissue-resident NK cells express 
residency markers such as CD69 and CXCR6 in the liver (Aw 
Yeang et al., 2017; Cuff et al., 2016; Hudspeth et al., 2016; 
Stegmann et al., 2016) and lymphoid tissues (Crinier et al., 2021a; 
Lugthart et al., 2016), CD49a and CD103 in the uterus, tonsil, and 
lung, and various chemokine receptors (Carrega et al., 2014; 
Maghazachi, 2010) that limit their egress into the circulation 
(Björkström et al., 2016; Melsen et al., 2016; Subedi et al., 2022). 
An analysis identified RGS1 (regulator of G protein signaling 1) as 
a transcriptional marker for tissue-infiltrating NK cells (Tang 
et al., 2023). In several tissues, they have been shown to have 
functional differences from their blood counterparts (Dogra 
et al., 2020; Marquardt et al., 2017; Robinson et al., 1984), the 
most prominent example being uterine NK cells, which have 
been proposed to play a role in placental vascular remodeling 
and regulation of trophoblast invasion (Gaynor and Colucci, 
2017).

Similarly, NK cells are significantly altered by the tumor 
microenvironment (de Andrade et al., 2019; Li et al., 2025; Liang 
et al., 2022; Pietropaolo et al., 2021; Zu et al., 2024), conditions in 
which a terminal stage CD56dim population was identified and 
therefore termed tumor-associated NK cells. These cells are 
poorly cytotoxic, display a stressed phenotype, and are poten
tially dysfunctional. This subset is associated with poor survival 
and immunotherapy resistance in various cancers.

Finally, the last piece of the puzzle lies in the close ontological 
and functional proximity between NK cells and ILC1. Increasing 
evidence highlights a high degree of plasticity between those two 
populations, which can have overlapping phenotypes, local
izations, and functions to some extent (Björklund et al., 2016; 
Chaudhry and Belz, 2024; Jaeger et al., 2024; Spits et al., 2016). 
Importantly, cytotoxicity, once considered a defining feature of 
NK cells, can also be attributed to subsets of ILC1, further blur
ring their distinction. The NK-ILC1 convergence has been de
scribed in the tumor microenvironment, where transforming 
growth factor β (TGF-β) in particular has been shown to re
program NK cells into resident ILC1-like cells with impaired 
antitumor capacity (Cortez et al., 2017; Crinier et al., 2021b; 
Picant et al., 2025).

Regardless of these different characteristics of NK cells, the 
standardized NK1, NK2, and NK3 terminology aims to promote 
clarity and consistency in future research, thereby improving 
the comparability of studies. This last point is crucial, consid
ering that CD56 is not expressed in mouse NK cells, while NK1 
and NK2 have been identified in both humans and mice (Crinier 

et al., 2018; Lopes et al., 2022). Despite the limitations of the 
CD56dim and CD56bright NK cell classification and the improve
ment offered by the NK1, NK2, and NK3 terminology, published 
studies on NK cell subsets that employed the CD56dim and 
CD56bright nomenclature will be presented herein using their 
original terminology.

NK cells in viral infections
NK cells recognize virus-induced molecules on infected cell 
surfaces, triggering direct cytotoxicity and secretion of cyto
kines (IFN-γ, TNF-α) that control viral replication. Paradoxi
cally, long-term follow-up of patients with selective ILC 
deficiency revealed no increased susceptibility to common viral 
infections (Vély et al., 2016), suggesting that under conditions 
of modern hygiene and medical care, NK cell functions against 
most viruses may be redundant or compensated by other 
immune mechanisms. However, studies of primary im
munodeficiencies affecting—though not restricted to—NK cells 
(Abdalgani et al., 2025; Mace and Orange, 2019) support a role of 
NK cells in controlling flaviviruses (Blom et al., 2016; Marquardt 
et al., 2015; Zimmer et al., 2019) and herpesviruses. Among 
herpesviruses, CMV represents the best-characterized example 
of NK cell–mediated immune control.

NK cells may serve as essential effectors against specific vi
ruses in contexts where other immune compartments are 
compromised. During pregnancy, for instance, the maternal– 
fetal interface develops as an immunosuppressive environ
ment that maintains T cell tolerance toward the fetus. In this 
setting, intrauterine immune surveillance—notably against 
CMV—appears to be mediated by decidual NK cells (Pighi et al., 
2024; Siewiera et al., 2013; Yockey and Iwasaki, 2018). Similarly, 
increased CMV susceptibility has been observed in patients ex
periencing delayed NK cell reconstitution following hemato
poietic stem cell transplantation (HSCT) (Cook et al., 2006; Park 
et al., 2020). Furthermore, in pediatric patients with immature 
immune systems, complete NK cell functional impairment 
(though the selectivity of this deficiency remains unclear) has 
been associated with heightened susceptibility to Epstein-Barr 
virus (EBV) (Fleisher et al., 1982).

Beyond their physiological role in antiviral immunity, ther
apeutic strategies exploiting NK cell antiviral properties are 
being explored for chronic viral infections with potential for 
severe disease progression. In a clinical study of 16 patients, 
early adoptive NK cell infusion following HSCT protected 
against human herpesvirus-6B reactivation (Gasior et al., 2021). 
In HIV-infected patients, observations of NK cells dysfunction 
have prompted two phase I clinical trials evaluating combined 
NK cell infusion with IL-2 or IL-15 superagonists to enhance NK 
cell fitness (NCT03346499 and NCT03899480 [Miller et al., 
2024], respectively). These trials reported favorable safety pro
files and modest reductions in HIV RNA-positive cells. Despite 
the success of SARS-CoV-2 vaccines, several clinical trials have 
evaluated whether NK cell–based therapies could improve dis
ease outcomes. A phase I/II trial (NCT04578210) demonstrated 
that infusion of allogeneic NK cells from convalescent donors 
into patients with moderate-to-severe COVID-19 was safe and 
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well tolerated (Hernández-Blanco et al., 2025). Similarly, ongo
ing phase I trials are assessing the safety of genetically modified 
placental-derived NK cells (NCT04365101), iPSC-derived NK cells 
expressing noncleavable CD16 (NCT04363346), and cord blood– 
derived allogeneic NK cells—either unmodified (NCT04900454) 
(Liu et al., 2024) or as CAR-NK cells overexpressing NKG2D, the 
SARS-CoV-2 receptor ACE2, an IL-15 superagonist, and a GM- 
CSF–neutralizing antibody (NCT04324996). Most trials remain 
ongoing and are at early stages. Completed phase I studies col
lectively demonstrate the safety of NK cell–based therapies for 
viral infections; however, additional studies are required to estab
lish their therapeutic efficacy (Fig. 1). Leveraging NK cell immunity 
to target infected cells through specific antigen recognition may 
represent a promising complementary strategy for future thera
peutic development.

NK cells in neurodegenerative diseases
The traditional view of the central nervous system (CNS) as an 
“immune-privileged” ecosystem, firmly independent and sealed 
from peripheral immune cells, has drastically evolved. This shift 
stems from the discovery of neuroimmune interfaces that per
mit afferent cell trafficking and immune surveillance, including 
by NK cells, which are necessary for CNS homeostasis (Castellani 
et al., 2023; Rustenhoven et al., 2021). Despite their clinical di
versity, many neurodegenerative diseases share pathological 
hallmarks, suggesting a convergence of the underlying pro
cesses. It is possible to distinguish neurodegenerative disorders 
relying on genetic mutations and intraneuronal mechanisms 
(Kamatham et al., 2024; Wilson et al., 2023) from diseases in 
which pathogenesis is driven by extracellular elements. These 
include misfolded protein aggregates, autoreactive T cells 
(Campisi et al., 2022; Huseby et al., 2001; Lalle et al., 2024; 
Lückel et al., 2019; Machado-Santos et al., 2018; Monsonego et al., 
2003), or chronically activated microglial cells (Melchiorri et al., 
2023; Webers et al., 2020), which cumulatively disrupt brain 
barriers and create a persistent neurotoxic inflammatory envi
ronment (Sweeney et al., 2018).

There are several lines of evidence for the presence of a small 
population of tissue-resident NK cells in the CNS of healthy in
dividuals. In humans, although studies are limited due to inac
cessibility of the tissue, NK cells, mostly with a CD56bright (NK2) 
phenotype, have been detected in both the cerebrospinal fluid 
and brain parenchyma (Gross et al., 2016; Qin et al., 2024). In 
vitro experiments using human brain microvascular endothelial 
cells demonstrated a higher adherence and transmigration ca
pacity of CD56bright cells (Gross et al., 2016). In mice, NK cells have 
consistently been observed in limited numbers within the brain 
parenchyma (Korin et al., 2017; Mrdjen et al., 2018) and in prox
imal immune cell niches (i.e., subdural meninges, dura mater, and 
choroid plexus) (Van Hove et al., 2019). These findings collectively 
indicate that NK cell passage across the CNS barriers is rare under 
homeostatic conditions. Yet, peripheral NK cells have been shown 
to infiltrate CNS in various inflammatory contexts (Lepennetier 
et al., 2019) and increasing number of studies implicate NK cells in 
the pathophysiology of inflammatory-driven neurodegenerative 
diseases (Fig. 1 and Table 1).

In multiple sclerosis (MS), a chronic autoimmune disease 
(AID) of the CNS (Jilek et al., 2007; Rodŕıguez Murúa et al., 
2022), NK cells, mainly of the CD56bright phenotype, are found 
in increased frequencies both in the cerebrospinal fluid (Gross 
et al., 2016; Rodŕıguez-Mart́ın et al., 2015; Schafflick et al., 2020) 
and in the brain parenchyma of patients (Liu et al., 2016; 
Rodŕıguez-Lorenzo et al., 2022), with an accumulation observed 
in active lesions and in close proximity to T cells. Mechanisti
cally, NK cell recruitment is mediated by CXCL9, CXCL10, and 
CCL2 secreted by astrocytes and microglia, as well as neuron- 
derived CX3CL1 (Huang et al., 2006). Once in the CNS paren
chyma, neuron stem cell IL-15 secretions sustain NK cell 
survival, proliferation, and fitness (Liu et al., 2016). In MS 
animal models, NK cell depletion exacerbates disease severity, 
while adoptive transfer alleviates symptoms (Hao et al., 2010; 
Zhang et al., 1997). These protective effects are mediated 
through both the secretion of immunosuppressive factors 
(i.e., acetylcholine and cytokines) (Jiang et al., 2017; Sanmarco 
et al., 2021) and direct cytotoxicity against autoreactive T cells 
(Jiang et al., 2011). Consistently, expansion of intrathecal 
CD56bright in MS patients treated with a CD25 blocking anti
body (daclizumab) correlated with therapeutic outcomes 
(Bielekova et al., 2006; Bielekova et al., 2011; Martin et al., 2010; 
Wynn et al., 2010), whereas active phases or relapses are fre
quently associated with altered NK cell number, phenotype, 
and cytolytic activity against autoreactive CD4+ T cells 
(Caruana et al., 2017; Gross et al., 2016; Laroni et al., 2016). 
Although few studies report a detrimental role of NKp46+/ 
NK1.1+ ILCs in disease recovery in mouse models (Kwong et al., 
2017; Liu et al., 2016), notably by promoting brain barrier 
permeabilization and T cell entry into the CNS, NK cells are 
generally associated with treatment efficacy and clinical re
mission. Another study links poor NK cell function to ineffec
tive control of EBV-induced autoimmunity, leading to an 
increased risk of MS (Vietzen et al., 2023). In individuals with 
high antibody titers to EBNA386–405, which cross-reacts with 
the glial protein GlialCAM, autoreactive T and B cells may 
emerge but are normally eliminated by NK cells. Two subsets 
are particularly important: NKG2C+ adaptive NK cells, primed 
by prior HCMV infection, and NKG2D+ NK cells, which recog
nize stressed lymphocytes. The protective effect requires spe
cific host and viral traits, such as HCMV strains that stabilize 
HLA-E and highly active NKG2D genotypes, which are common 
in healthy EBNAhigh individuals but rare in MS patients. In MS, 
autoreactive B cells evade NK killing by upregulating HLA-E 
through EBV-driven mechanisms, engaging inhibitory NKG2A 
receptors, and blocking cytotoxicity. Overall, NK cells emerge 
as sentinels eliminating autoreactive clones induced by viral 
mimicry, with outcomes determined by the balance of activating 
(NKG2C, NKG2D) and inhibitory (NKG2A–HLA-E) signals. Ge
netic variation, prior viral exposures, and viral strain diversity 
modulate this balance, highlighting therapeutic opportunities in 
boosting protective NK subsets, enhancing activating pathways, 
or blocking inhibitory checkpoints to restore tolerance in EBV- 
associated autoimmunity.

Alzheimer’s disease (AD) is a multifactorial disorder tradi
tionally characterized by the accumulation of extracellular Aβ 
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aggregates and neuroinflammation (Leng and Edison, 2021). 
However, recent evidence revealed a significant contribution 
from intrathecal chronically activated T cells, establishing au
toimmune responses as a hallmark of AD pathology (Afsar et al., 
2023; Gate et al., 2020). While not all patients diagnosed with 
mild cognitive impairment (MCI) will progress to AD, they are at 
increased risk, suggesting that MCI may represent an early stage 
of the disease (Bradfield, 2023; Levey et al., 2006). Although 
there are no studies comparing the CNS NK cells of MCI and AD 
patients with age-matched healthy individuals, most available 
data indicate that the number of circulating NK cells remains 
unchanged in these groups (Huang et al., 2022; Le Page et al., 
2015; Richartz-Salzburger et al., 2007). In contrast, NK cell fre
quencies have been shown to increase specifically in the 

cerebrospinal fluid of MCI and AD patients (Busse et al., 2021), 
possibly due to an increase in CX3CL1 (Kulczyńska-Przybik 
et al., 2020). Their precise functional state and role are still 
unknown: a proinflammatory phenotype has been observed 
specifically in CSF NK during the MCI stages (Le Page et al., 
2015), while ex vivo assays of blood NK cells reported variable 
alterations in their fitness, ranging from increased to impaired 
cytotoxic functions (Araga et al., 1991; Le Page et al., 2015; Solerte 
et al., 1998). Both human studies and animal models support a 
protective role of NK cells through their ability to clear Aβ ag
gregates, either by direct uptake and degradation (Zúñiga et al., 
2025) or by reinvigorating the phagocytic capacity of microglia 
(Hwang et al., 2022). As described in MS, NK cells may also re
duce neuroinflammation and glial proinflammatory phenotype 

Figure 1. Endogenous role and harnessing possibilities of NK cells in cancer and beyond. NK cells are well recognized for their capacity to detect and 
eliminate tumor cells. Several strategies to harness these functions have been developed and are currently being evaluated in clinical trials for both hematologic 
malignancies and solid tumors. These advances are now being extended to investigate the potential of NK cell manipulation in other clinical contexts, including 
viral infections, neurodegenerative disorders, AIDs, and solid organ transplantation.
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by selectively eliminating pathogenic T cells and secreting im
munosuppressive factors (IL-10, TGF-β) (Zúñiga et al., 2025). 
IFN-γ produced by meningeal NK cells has been shown to par
ticipate in memory formation in healthy mice (Garofalo et al., 
2023). Conversely, circulating NK cells from AD patients exhibit 
increased secretions of the proinflammatory cytokines IFN-γ 
and TNF-α, an overproduction inversely correlated with cogni
tive performance (Solerte et al., 2000). Depletion of NK cells in 
an AD mouse model has been associated with reduced neuro
inflammation, enhanced neurogenesis, and improved cognitive 
function (Zhang et al., 2020). Those data suggest that while NK 
cells may exert beneficial effects in the early stages by naturally 
targeting different pathogenic drivers, their chronic activation 
could lead to dysfunction and progressively contribute to the 
pathological burden. Considering that the prevalence of AD 
strongly correlates with age and that the frequency of CD56bright 

cells decreases with age (Wang et al., 2025c), one could hypothesize 
a link between immunoaging-induced NK impairment and the 
occurrence of AD. Interestingly, increased frequency of NK cells in 
the cerebrospinal fluid has also been reported in frontotemporal 
dementia patients, suggesting a potential role in other dementia- 
inducing neurodegenerative diseases (Busse et al., 2021).

In Parkinson’s disease (PD), an α-synucleinopathy, the in
creased numbers of NK cells, particularly CD56dim [NK1], along 
with elevated activation markers, have been reported in the 
blood and substantia nigra of both early- and late-onset PD pa
tients (Earls et al., 2020; Holbrook et al., 2023; Niwa et al., 2012; 
Tian et al., 2022; Zhang et al., 2024). These changes correlate 
with disease severity and progression. In PD models, NK cells are 
increased in the cerebrospinal fluid and infiltrate the affected 

brain regions, colocalizing with α-syn aggregates and dopa
minergic neurons (Guan et al., 2022; Xiong et al., 2024). Anal
ogous to their scavenger role in AD, NK can clear α-syn 
aggregates, mitigating disease severity. However, this process 
has been reported to reduce their ability to lyse target cells and 
secrete IFN-γ. Concurrently, specific reactivity against several 
products of PD-associated genes (α-syn, PINK1, C9orf72) has 
been observed in PD patient T cells, driving autoimmune events 
from the early stages of the disease (Lindestam Arlehamn et al., 
2020; Michaelis et al., 2025; Sulzer et al., 2017; Williams et al., 
2024). Although direct evidence is lacking in PD, it is plausible 
that NK cells can limit the harmful adaptive responses as ob
served in MS and AD. Consistently, murine NK cell depletion 
promotes disease incidence and severity (Earls et al., 2020; 
Zúñiga et al., 2025). Since the deposition of α-syn is a central 
hallmark of multiple system atrophy and Lewy body dementia 
(McCann et al., 2014), it is possible that NK cells play a similar 
role in these diseases.

Over the years, our understanding of the constant, dynamic, 
and reciprocal interactions between the nervous and immune 
systems has deepened considerably. The traditional neuron- 
centric vision of neurodegenerative diseases has evolved, and 
it is now becoming clear that immune dysregulation is a hall
mark of many CNS disorders. Drawing parallels between neu
rodegenerative diseases and classic AIDs offers new hope for the 
development of effective therapies. A major challenge in CNS 
drug development remains the brain barrier impermeability, 
which, even in case of neurodegenerative disease-driven dys
function, still significantly restricts the CNS biodistribution of 
molecular therapies to the perivascular space (Lamptey et al., 

Table 1. NK cell characteristics in neurodegenerative diseases

Disease Circulating 
NK cells

CSF 
NK 
cells

CNS parenchyma 
NK cells

Predominant 
phenotype

Activation/ 
functional status

Protective mechanisms Detrimental effects

MS Altered 
number

↑ ↑ Accumulate in 
active lesions near 
T cells

CD56bright Variable cytolytic 
activity during relapses

Kills autoreactive CD4+ 

T cells; secretes 
acetylcholine and 
immunosuppressive 
cytokines; NKG2C+ and 
NKG2D+ subsets eliminate 
EBV-induced autoreactive 
clones

NKp46+/NK1.1+ ILCs 
promote brain barrier 
permeabilization and 
T cell CNS entry; 
autoreactive B cells evade 
killing via HLA-E 
upregulation

AD Unchanged ↑ Not well defined CD56bright 

(predominant in 
CNS)

Proinflammatory in CSF 
during MCI; variable 
blood; NK cytotoxicity 
(increased to impaired)

Direct uptake/degradation 
of Aβ; restores microglial 
phagocytosis; reduces 
neuroinflammation; 
meningeal NK-derived 
IFN-γ promotes memory 
formation

Chronic activation leads 
to overproduction of IFN- 
γ and TNF-α (inversely 
correlates with cognition); 
depletion in mouse 
models reduces 
neuroinflammation but 
impairs early protective 
effects

PD ↑ ↑ ↑ Infiltrate 
substantia nigra; 
colocalize with α-syn 
aggregates and 
dopaminergic 
neurons

CD56dim (blood) Elevated activation 
markers; correlates 
with severity/ 
progression

Clear α-syn aggregates; 
likely eliminates 
autoreactive T cells

α-syn clearance reduces 
NK cytolytic capacity and 
IFN-γ secretion, potential 
dysfunction with chronic 
activation
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2022; Pandit et al., 2020). In this context, the biology of NK cells 
and their ability to efficiently cross such barriers upon activation 
have led to the idea that enhancing NK cell recruitment or 
functions may represent a promising approach to resolve neu
roinflammation. Adoptive NK cell transfers are being considered 
in several indications. Troculeucel (SNK01), a nongenetically 
modified, cytokine-preconditioned autologous NK cell therapy 
candidate, displays a highly activated phenotype, secretes im
munosuppressive cytokines (IL-10, TGF-β), selectively kills ac
tivated T cells, and clears Aβ aggregates in vitro. In a phase 
1 clinical trial (NCT04678453), SNK01 was administrated intra
venously as a single agent to mild- to severe-stage AD patients 
and was found to be safe and well tolerated, with no severe ad
verse events reported (Zúñiga et al., 2025). Over the 22-wk 
study, SNK01 might have demonstrated an early sign of clini
cal efficacy, as suggested by a stabilization of clinical score and 
cerebrospinal fluid biomarkers, although longer studies are re
quired to confirm these hypotheses. Following FDA Fast Track 
designation, SNK01 is currently being evaluated in a phase 2a 
trial targeting moderate AD stages (NCT06189963). A phase 
1 trial (NTC06677710) has also been initiated to evaluate an al
logeneic NK cell product (IDP-023) combined with the depleting 
anti-CD20 antibody ocrelizumab in MS patients. NK cell en
gagers (NKCE) may also represent promising agents for en
hancing the neuroprotective functions of NK cells. They could be 
engineered to trigger NK cell–mediated killing of autoreactive 
T cells (Naatz et al., 2025), to potentiate NK cell activation and 
homeostatic roles (Demaria et al., 2022), and/or to have opti
mized CNS delivery by targeting receptors involved in trans
cytosis across barriers (e.g., TfR1, CD98hc, IGRF1) (Alata et al., 
2022; Chew et al., 2023; Schumacher et al., 2025), as cur
rently tested in AD (NCT07169578, NCT07170150) and MS 
(NCT05704361) patients (Schumacher et al., 2025). Although 
these approaches are still limited, they reflect a changing per
spective in which NK cells are recognized as possible contrib
utors in neuroinflammation and neurodegeneration. This 
opens new therapeutic possibilities in diseases previously 
thought to be outside the realm of immune modulation.

Thus, NK cells are emerging as regulators at the intersection 
of neuroinflammation and neurodegeneration. Their ability to 
eliminate multiple pathogenic drivers such as autoreactive 
lymphocytes and protein aggregates, and regulate dysfunctional 
microglia positions them as multifunctional agents. However, 
their roles are highly context dependent, with protective func
tions predominating in early disease stages and potential detri
mental contributions emerging with chronic activation. The 
balance between activating and inhibitory signals (exemplified 
by NKG2C/NKG2D versus NKG2A-HLA-E in MS) represents a 
critical determinant of outcomes and a possible therapeutic 
target. As understanding of neuroimmune crosstalk deepens, 
NK cell–based therapies, including adoptive transfer, genetic 
modification, and engager platforms, are transitioning from 
theoretical constructs to possible clinical assets, offering new 
hope for diseases that have long resisted effective immune-based 
interventions. The challenge ahead lies in optimizing timing and 
delivery across brain barriers, and maintaining the delicate 
balance between neuroprotection and inflammation resolution.

NK cells in AIDs
AIDs affect 10% of the global population, and the incidence and 
prevalence of many AIDs are increasing worldwide (Scherlinger 
et al., 2020). AIDs are chronic diseases arising from a complex 
interplay of genetic, environmental, hormonal, and immuno
logical factors that ultimately lead to a breakdown in immune 
tolerance. Many details of their pathogenesis and etiology have 
yet to be elucidated, and further research is needed to address 
these gaps. As contributors to immune surveillance and regu
lation via cytotoxic activity and cytokine production, NK cells 
may play a role in the pathogenesis of AID by promoting in
flammation through IFN-γ production, or by alleviating in
flammation through the killing of activated T cells (Cerboni 
et al., 2007; Kilian et al., 2024; Rabinovich et al., 2003) and 
macrophages (Table 2).

Key features of systemic lupus erythematosus (SLE) include 
excessive activation of type I IFN pathways, persistent produc
tion of diverse autoantibodies targeting nuclear antigens, and 
the formation of immune complexes in multiple organs, such as 
the skin, kidneys, lungs, blood, joints, and CNS, resulting in 
inflammation and tissue damage, exemplified by lupus nephri
tis. Distinct NK cell subset alterations have been documented 
(Hervier et al., 2011; Li et al., 2023; Liu et al., 2021). The pro
portion of CD56dim NK cells is reduced, whereas CD56bright cells 
are relatively expanded in SLE peripheral blood. Moreover, 
CD56dim in SLE patients display an activated phenotype, with 
upregulation of NKp44, NKp46, NKp30, and CD69, alongside 
downregulation of CD16 and inhibitory KIRs (Hudspeth et al., 
2019). The reduced number of circulating NK cells in SLE could 
be attributed to their migration from the peripheral blood to the 
damaged tissue. This possibility is supported by the increased 
expression of the NKG2D ligand MICA in kidneys of patients 
with lupus nephritis paralleling greater infiltration of activated 
NK cells into glomeruli in murine SLE models (Spada et al., 
2015). NK cells of SLE patients demonstrated reduced cytotox
icity, while the production of IFN-γ remained elevated (Hervier 
et al., 2011; Lin et al., 2017; Liu et al., 2021; Lu et al., 2022). Pa
tients with SLE present higher levels of circulating IL-15 and an 
increased proportion of NK cells expressing the proliferation 
marker Ki67, which are strongly correlated with clinical severity 
(Hudspeth et al., 2019; Lin et al., 2017). Mechanistically, a recent 
study has revealed that mitochondrial dysfunction and defective 
mitophagy are key drivers of NK cell abnormalities in SLE 
(Fluder et al., 2025, Preprint). Alongside, tissue-resident NKp46+ 

group 1 ILC1s appear to be key amplifiers of kidney inflammation 
in lupus nephritis. These cells promote macrophage expansion 
and epithelial cell injury through GM-CSF production, and 
blocking or deleting NKp46 prevents tissue damage, revealing a 
new mechanism driving organ injury in AID (Biniaris-Georgallis 
et al., 2024). Further research using single-cell RNA sequencing 
on peripheral blood and kidney or skin tissue from individuals 
with SLE could yield a clearer understanding of the contribution 
of NK cells to disease pathogenesis.

Rheumatoid arthritis (RA) is a highly prevalent chronic in
flammatory disorder characterized by persistent synovial 
inflammation, progressive cartilage degradation, and bone 
erosion. While autoimmune T and B cell responses are 
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predominant, innate immune cells have also been implicated in 
RA pathogenesis. Several studies have demonstrated that pa
tients with RA have higher levels of NK cells in their peripheral 
blood than healthy controls. However, these NK cells have re
duced cytotoxic activity (Fathollahi et al., 2021; Lin et al., 2020; 
Zhao et al., 2025). Analyses of synovial fluid consistently re
vealed an enrichment of CD56bright cells (Coyle et al., 2024; 
Dalbeth and Callan, 2002; Pridgeon et al., 2003). These syn
ovial NK cells frequently exhibit increased activation mark
ers, production of inflammatory cytokines (IFN-γ and TNF-α), 
and impaired cytotoxicity (Yamin et al., 2019); phenotypic 
and functional features that have been inversely associated 
with disease remission (Coyle et al., 2024). NK cells within RA 
synovial tissues express both RANKL and M-CSF, which may 
contribute to osteoclastogenesis and subsequent bone de
struction. Depletion of NK cells from mice before the induc
tion of collagen-induced arthritis reduces the severity of 
subsequent arthritis and almost completely prevents bone 
erosion (Söderström et al., 2010). Another murine study in the 
collagen-induced arthritis model found that NK cell infiltra
tion in joints correlated positively with arthritis score, his
topathology, and bone destruction. Adoptive transfer of NK 
cells increased arthritis severity, while NKp46 knockout had 
no effect on incidence/severity (Wu et al., 2022). Finally, in an 
autoantibody-mediated inflammatory arthritis mouse model, 
synovial NK cells were shown to produce GM-CSF and 

exacerbate inflammation by promoting a neutrophil infiltrate 
(Louis et al., 2020).

In primary Sjögren’s syndrome (pSS), the lacrimal and sali
vary glands are the main organs affected. The presence of au
toantibodies and hypergammaglobulinemia is a key feature of 
this condition, highlighting the important role of B cells in its 
pathogenesis. However, accumulating evidence indicates sig
nificant alterations within the innate immune system, particu
larly involving NK cells. Several studies have demonstrated that 
patients with pSS exhibit lower levels of circulating NK cells 
than healthy controls (Cheng et al., 2023; Davies et al., 2017; 
Ming et al., 2020; Shi et al., 2022). Like in SLE, the proportion of 
CD56dim cells is reduced, while the CD56bright subset is increased 
in the peripheral blood of pSS patients. Salivary glands from pSS 
patients show NK cell enrichment, which correlates with glan
dular inflammation. Interactions between NKp30 and B7-H6, 
where B7-H6 is expressed by dendritic cells and salivary gland 
epithelial cells, can induce IFN-γ secretion (Rusakiewicz et al., 
2013). These data suggest a mechanism by which NK cells may 
foster local immune activation and contribute to the formation 
of ectopic lymphoid structures (Pontarini et al., 2021). Clinical 
observations indicate that belimumab, an antibody blocking the 
B cell–activating factor BAFF, is less effective in patients with a 
high frequency of NK cells in their peripheral blood and glan
dular tissue, suggesting that elevated NK infiltration may indi
cate a poorer response to treatment (Seror et al., 2015). In a pSS 

Table 2. NK cell characteristics in AIDs

Disease Circulating 
NK cells

Tissue NK 
cells

Predominant 
phenotype

Activation/functional 
status

Protective mechanisms Detrimental effects

SLE ↓ ↑ (kidneys, 
glomeruli)

CD56bright (blood) Activated phenotype, 
upregulation of NCRs; 
downregulation of CD16 and 
KIRs (blood); upregulation 
of MICA (kidneys); reduced 
cytotoxicity; increased IFN- 
γ production

Not well defined Tissue-resident NKp46+ ILC1s 
amplify kidney inflammation 
through GM-CSF production

RA ↑ ↑ (synovial 
fluid)

CD56bright 

(synovial fluid)
Activated phenotype; 
reduced cytotoxicity; 
increased IFN-γ production 
(synovial NK cells)

Not well defined Likely promotes synovial 
inflammation through IFN-γ 
and TNF-α; osteoclastogenesis 
and bone destruction via 
RANKL and M-CSF expression; 
exacerbates inflammation 
through GM-CSF production

pSS ↓ ↑ (salivary 
glands)

CD56bright (blood) IFN-γ secretion (via 
interaction with B7-H6 
expressed on salivary gland 
epithelial cells)

Tissue-resident NK shield 
target cells from T cell– 
mediated cytotoxicity

NK infiltration correlates with 
glandular inflammation; 
contributes to ectopic 
lymphoid structures 
formation; amplifies 
autoimmune responses in the 
glands via IFN-γ production

SSc Debated/vary 
with stage

Not well 
defined

Not well defined Not well defined Not well defined Not well defined

T1D ↓ ↑ (pancreatic 
islets)

Activated phenotype, 
spontaneous IFN-γ at early 
stages; dysfunctional state 
at later stages

Secretion of 
immunosuppressive cytokines 
and killing of autoreactive 
T cells

Promotes adaptive 
autoimmune response and β 
cell destruction through IFN-γ 
production and NKp46- 
dependent cytotoxicity
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mouse model, salivary gland NK cells were found to amplify 
autoimmune responses within the glands via IFN-γ production, 
thereby impairing gland function. Conversely, tissue-resident 
NK cells appeared to exert protective effects, shielding target 
cells from T cell–mediated cytotoxicity (Sato et al., 2022).

Systemic sclerosis (SSc) is a multifaceted autoimmune 
connective-tissue disorder hallmarked by collagen and extra
cellular matrix deposition, leading to fibrosis of the skin, lungs, 
heart, and gastrointestinal tract. Additionally, it is associated 
with pronounced microvascular stenosis and the presence of 
disease-specific autoantibodies that reflect immune dysregula
tion driving fibrotic progression. The degree of NK cell alter
ations in the peripheral blood of patients with SSc remains 
debated (Almeida et al., 2015; Benyamine et al., 2018; 
Gumkowska-Sroka et al., 2019; Guo et al., 2025; Van Der Kroef 
et al., 2020). The discrepancies could come from the stage of the 
disease, as an increased frequency and number of NK cells have 
been reported in diffuse cutaneous SSc, whereas they were 
normal in limited cutaneous SSc in the same cohort.

Type 1 diabetes (T1D) is a chronic disease resulting from 
autoimmune destruction of pancreatic insulin-producing β cells. 
Multiple lines of evidence implicate NK cells in both the initia
tion and the progression of T1D. Under homeostatic conditions, 
NK cells are present at low levels in the pancreas (Radenkovic 
et al., 2017; Shi et al., 2011); however, their number increases in 
diabetes-prone conditions from the early stages of the disease. In 
patients with T1D, peripheral NK cell counts and frequencies 
have been repeatedly reported to be reduced compared with 
healthy individuals (Gomez-Muñoz et al., 2021; Qin et al., 2011; 
Sieniawska et al., 2023), a change suggested as a potential reflect 
of their extravasation into the pancreas. Consistently, NK cells 
are among the first immune cells to invade the pancreas in mice, 
localizing to islets before T cells (Brauner et al., 2010). From the 
prediabetic stages, NK cells locally acquire an activated pheno
type and display spontaneous IFN-γ secretions and progres
sively adopt a dysfunctional/hyporesponsive state (Brauner 
et al., 2010; Qin et al., 2011). Mechanistically, NK cells play a 
multifaceted role in T1D pathogenesis. They contribute to dis
ease progression by promoting the adaptive autoimmune re
sponse and β cell destruction through both the secretion of 
T cell–stimulating IFN-γ (Alba et al., 2008; Feuerer et al., 2009; 
Poirot et al., 2004) and NKp46-dependent direct cytotoxicity 
(Gur et al., 2011). Additionally, NKG2D blockade limits T1D onset 
in mouse models, although it remains uncertain whether these 
effects are mediated by autoreactive NKG2D+ T and/or NK cells 
(Ogasawara et al., 2004; Van Belle et al., 2013). NK cells have been 
shown to recognize enterovirus-infected β cells, implicating them 
in virus-triggered T1D onset (Dotta et al., 2007; Flodström et al., 
2002). Conversely, NK may also exert protective roles via the 
secretion of immunosuppressive cytokines and the killing of au
toreactive T cells, a property likely to be decreased as they lose 
their cytotoxic capabilities during T1D progression (Qin et al., 
2011; Yoon Kim and Kwon Lee, 2022). Longitudinal blood tran
scriptomics analyses from the TEDDY cohort identified strong 
enrichment of NK cell–specific transcripts in association with the 
development of islet autoimmunity in both patients developing 
autoantibodies to insulin (IAA) and glutamic acid decarboxylase, 

and with progression to diabetes in IAA patients (Xhonneux et al., 
2021). Similarly, NK cell signatures have been associated with the 
rate of decline in C-peptide, a marker of functional β cell, in the 
INNODIA cohort (Armenteros et al., 2024) and with patient re
sponses to teplizumab, a Fc-silenced anti-CD3 antibody in the 
AbATE study (Sassi et al., 2025). Further studies are required to 
fully elucidate the role of NK cells in T1D pathogenesis.

There is even less evidence for the role of NK cells in other 
systemic AIDs such as anti-neutrophil cytoplasmic antibody- 
associated vasculitis (Fuchs et al., 2022) and inflammatory 
myopathies. Overall, there is some evidence suggesting that NK 
cells may amplify inflammation by releasing cytokines and re
cruiting or activating other immune cells. At the same time, they 
could play a protective role by eliminating autoreactive T and B 
lymphocytes. However, mechanistic data are still needed to 
definitively clarify the exact role of NK cells in AID.

Despite the heterogeneity of AIDs, several unifying patterns 
of NK cell alterations thus emerge across conditions. The fre
quent reduction of circulating NK cells suggests active tissue 
migration rather than systemic depletion, as evidenced by their 
enrichment in target organs where they can contribute to local 
pathology. A consistent phenotypic shift characterized by de
creased CD56dim and relatively expanded CD56bright populations 
in peripheral blood suggests a common underlying mechanism 
of NK cell dysregulation. Notably, a functional dissociation is 
observed across multiple AIDs, wherein NK cells exhibit im
paired cytotoxicity yet maintain or increase their capacity for 
inflammatory cytokine production, particularly IFN-γ. This 
imbalance may contribute to sustained inflammation while di
minishing their potential regulatory function of eliminating 
autoreactive lymphocytes. Additionally, tissue-resident NK cells 
and related ILC1s play distinct and often pathogenic roles within 
affected organs, amplifying local immune responses through 
cytokine secretion and immune cell recruitment. The correla
tion between NK cell alterations and disease severity or treat
ment responses in conditions such as SLE, pSS, and T1D 
underscores their clinical relevance. Collectively, these findings 
highlight a role of NK cells, yet incompletely understood, as 
contributors to autoimmune pathogenesis warranting further 
mechanistic investigation to clarify their potential as thera
peutic targets or biomarkers of disease activity.

Although the pathogenesis of systemic AIDs is complex, part 
of them seem to rely on autoantibody-producing cells. Indeed, 
B cell–targeting therapeutics have produced positive clinical 
outcomes in certain cases, such as anti-neutrophil cytoplasmic 
antibody-associated vasculitis. Rituximab, a chimeric anti-CD20 
monoclonal antibody, is commonly used for these conditions 
(Hauser et al., 2008; Stone et al., 2010), and more recently, 
obinutuzumab, a humanized Fc-optimized monoclonal anti
body, has been approved by the FDA following positive results 
from a phase III clinical trial in patients with lupus nephritis 
(Furie et al., 2025). However, the most promising results to date 
have emerged from the field of cell therapy. Building on their 
successes in oncology, T cell–mediated therapies such as CAR-T 
cells could transform the treatment of B cell–mediated AIDs. 
Autologous CD19-targeted CAR-T cell therapies, originally de
veloped for oncological conditions, have been administered to 
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patients with refractory systemic AIDs, with early-phase clinical 
cohorts reporting drug-free remission (Auth et al., 2025; 
Fischbach et al., 2024; Merkt et al., 2024; Minopoulou et al., 
2025; Müller et al., 2024; Shu et al., 2025). Other autologous 
CAR-T cell products that target the plasma cell antigen BCMA, or 
BCMA and CD19, as well as off-the-shelf allogeneic products, are 
also showing promising results (Hu et al., 2025; Qin et al., 2025; 
Wang et al., 2024). Strategies to overcome the limitations of cell 
therapy were engineered using T cell–targeted lipid nano
particles to deliver CD19 CAR mRNA, and are now beginning to 
show their first encouraging results (Wang et al., 2025a). T cell 
engagers offer a promising alternative to cell therapies, as they 
are off-the-shelf assets that do not require preconditioning 
regimens. Current clinical evaluations have yielded encouraging 
results in RA and SSc (Bucci et al., 2024; Bucci et al., 2025; Hagen 
et al., 2024; Subklewe et al., 2024). In this context, the biology of 
NK cells positions them as possible candidates for such thera
peutic strategies. AB-101, an allogeneic nongenetically modified 
NK cell product, is currently assessed alone or in combination 
with B cell–depleting agents (rituximab or obinutuzumab) in 
multiple AIDs such as SLE, RA, pSS, and SSc (NCT06265220, 
NCT06581562, NCT06991114). A recent report indicates that iPSC- 
derived CAR-NK cells may offer distinct advantages over T cell– 
centric therapies in the treatment of AIDs. In a proof-of-concept 
case of diffuse cutaneous SSc, administration of an allogeneic 
dual-targeting CAR-NK product (CD19 and BCMA) induced rapid 
and durable clinical improvement, accompanied by a profound 
resetting of the B cell compartment and reduction in autoantibody 
titers (Wang et al., 2025b). Compared with CAR-T cells, CAR-NK 
approaches are inherently safer in the allogeneic setting, with a 
markedly reduced risk of cytokine release syndrome, immune 
effector cell–associated neurotoxicity, and graft-versus-host dis
ease, thereby improving the therapeutic risk–benefit profile in 
nonmalignant settings. Their derivation from iPSCs also enables 
scalable, standardized, and truly off-the-shelf manufacturing, 
overcoming the logistical and economic barriers of autologous 
CAR-T production. Dual targeting of both B cells and long-lived 
plasma cells addresses a key limitation of CD19-directed strategies 
and may yield deeper and more durable immune modulation. 
Moreover, the CAR-NK platform supports multiplex genetic en
gineering, including edits that improve persistence, prevent host 
rejection, and incorporate safety switches, providing a level of 
programmability and versatility difficult to achieve with indi
vidualized CAR-T products. Collectively, these features position 
CAR-NK therapies as an interesting next-generation strategy for 
broad application across antibody-mediated AIDs, combining the 
efficacy of targeted immune depletion with improved safety and 
accessibility. These data are supported by an exploratory clinical 
study investigating anti-CD19 CAR-NK cells for the treatment of 
relapsed refractory SLE patients, which has demonstrated prom
ising outcomes, including B cell immune reset and a good safety 
profile (NCT06010472) (Gao et al., 2025).

NK cells in solid organ allografts
Organ transplantation necessitates a delicate balance within the 
immune system: it must maintain tolerance toward genetically 

distinct grafts yet remain efficient against pathogens. Histori
cally perceived as peripheral participants, NK cells are emerging 
as pivotal agents influencing chronic rejection of solid organ 
allografts. In the context of both hematopoietic and solid organ 
transplantation, mismatches in MHC molecules between donor 
and recipient can disrupt the inhibitory signals controlling NK 
cells. This triggers NK cell–mediated cytotoxicity through a 
“missing-self” mechanism, i.e., the absence of interaction be
tween MHC class I molecules and their cognate inhibitory re
ceptors such as KIR and NKG2A, expressed on NK cells (Kärre, 
2002). Additionally, NK cells can migrate toward grafts follow
ing inflammatory chemokine signals (such as CXCL9 and 
CXCL10) and adaptively modulate their phenotype within the 
transplant environment. Finally, NK cells can also recognize 
stressed cells within the allograft through NKG2D and NCRs, a 
mechanism that may contribute to the elimination of the solid 
organ graft, even in the absence of donor-specific antibodies 
against the allograft. In addition, in sensitized solid organ 
transplant recipients, preexisting donor-specific antibodies coat 
the graft endothelium. Patient NK cells, through CD16, can then 
exert antibody-mediated rejection (AMR) via ADCC (Koenig 
et al., 2021; Thaunat et al., 2025). This activity significantly 
contributes to microvascular inflammation, complement depo
sition, and endothelial cell damage. Histological and tran
scriptomics data have robustly associated infiltrating CD16+ NK 
cells with severe microvascular injury within graft tissues.

CD38, a molecule expressed by plasma cells and certain 
NK cell subsets, has become a target of therapeutic interest be
yond hematologic malignancies. Within transplantation, CD38 
targeting simultaneously curbs alloantibody production and 
dampens NK-mediated ADCC. A landmark phase II trial that 
assessed the efficacy of felzartamab, a CD38-depleting antibody, 
among kidney transplant recipients with chronic AMR at least 6 
mo after transplantation demonstrated a marked histological 
reversal of AMR (Mayer et al., 2024). Moreover, significant re
ductions were observed in microvascular inflammation scores, 
molecular rejection signatures, and donor-derived cell-free 
DNA, indicative of reduced graft injury. Remarkably, these 
therapeutic effects correlated with notable peripheral NK cell 
depletion. Safety profiles indicated predominantly mild-to- 
moderate infusion reactions, with fewer severe adverse events 
and graft losses compared with placebo. Importantly, the re
sponse durability was evident at 1 year, with only three initial 
responders experiencing AMR recurrence. From a mechanistic 
perspective, the felzartamab trial provides compelling evi
dence that depletion of CD38-positive NK cells and plasma cells 
substantially mitigates ADCC-driven endothelial injury. Thus, 
it delivers unprecedented mechanistic validation, establishing 
NK cells as direct contributors to late-stage AMR pathology and 
highlights critical insights relevant to transplant immunobiol
ogy. Firstly, NK cells actively drive late-stage AMR, as their 
targeted depletion results in histological recovery. Secondly, 
concurrent inhibition of B cell–derived alloantibodies and NK 
cell effector functions offers synergistic therapeutic advantages. 
Long-term monitoring of infections, malignancies, and immune 
reconstitution will be critical as larger phase III trials progress. 
Future research directions should emphasize refined NK cell 
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characterization of CD38+ NK populations implicated in graft 
rejection. Furthermore, combining anti-CD38 therapy with IL-6 
antagonists, complement inhibitors, or Fc receptor modulators 
may optimize therapeutic strategies, enhancing graft tolerance 
without significantly compromising overall immunity. Identi
fying predictive biomarkers, such as baseline CD38 expression 
on infiltrating NK cells, could further refine patient selection.

Overall, NK cells have transitioned from innate immune 
guardians to mediators of transplant-associated immune re
sponses, positioning them simultaneously as key pathogenic 
agents and promising therapeutic targets.

Conclusion and perspectives
NK cells have long been studied in the context of infection and 
cancer. New therapeutic technologies such as NK cell engagers 
and engineered NK cells are paving the way for precision NK 
cell–based immunotherapies. Although primarily developed for 
oncology, these technologies may be adapted to treat noncan
cerous diseases with high unmet needs in a broader range of 
diseases, including viral infections, neurodegeneration, auto
immunity, and transplantation. Moving forward, critical ques
tions remain. Identifying disease-relevant NK cell subsets, 
selectively targeting or expanding them, and safely monitoring 
their effects in patients will be essential for clinical translation. 
Nonetheless, the evolving landscape of NK cell research sug
gests that these innate lymphocytes should be considered, not 
only as defenders against infection and malignancy, but also as 
modulators of chronic immune-mediated conditions.
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Deicher, I. Andreeva, T. Tretter, et al. 2024. Third-generation 
CD19.CAR-T cell-containing combination therapy in Scl70+ systemic 
sclerosis. Ann. Rheum. Dis. 83:543–546. https://doi.org/10.1136/ard 
-2023-225174

Michaelis, T., C.S. Lindestam Arlehamn, E. Johansson, A. Frazier, J.D. Berry, 
M. Cudkowicz, N.A. Goyal, C. Fournier, A. Snyder, J.Y. Kwan, et al. 2025. 
Autoimmune response to C9orf72 protein in amyotrophic lateral scle
rosis. Nature. 647:970–978. https://doi.org/10.1038/s41586-025-09588 
-6

Miller, J.S., J. Rhein, Z.B. Davis, S. Cooley, D. McKenna, J. Anderson, K. Es
candón, G. Wieking, J. Reichel, A. Thorkelson, et al. 2024. Safety and 
virologic impact of haploidentical NK cells plus interleukin 2 or N-803 
in HIV infection. J. Infect. Dis. 229:1256–1265. https://doi.org/10.1093/ 
infdis/jiad578

Ming, B., T. Wu, S. Cai, P. Hu, J. Tang, F. Zheng, C. Ye, and L. Dong. 2020. The 
increased ratio of blood CD56bright NK to CD56dim NK is a distinguishing 

Cayatte et al. Journal of Experimental Medicine 15 of 18 
NK cells beyond cancer https://doi.org/10.1084/jem.20250612 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/223/1/e20250612/1955196/jem
_20250612.pdf by guest on 11 February 2026

https://doi.org/10.3233/JAD-143054
https://doi.org/10.3233/JAD-143054
https://doi.org/10.1016/j.immuni.2015.02.013
https://doi.org/10.1016/j.immuni.2015.02.013
https://doi.org/10.1038/s41582-020-00435-y
https://doi.org/10.1186/s12974-019-1601-6
https://doi.org/10.1186/s12974-019-1601-6
https://doi.org/10.1016/j.clinthera.2006.07.006
https://doi.org/10.1016/j.clinthera.2006.07.006
https://doi.org/10.55563/clinexprheumatol/o6bjl8
https://doi.org/10.3389/fonc.2025.1570647
https://doi.org/10.3389/fonc.2025.1570647
https://doi.org/10.1155/2022/6378567
https://doi.org/10.1155/2022/6378567
https://doi.org/10.1371/journal.pone.0186223
https://doi.org/10.1038/s41598-020-62654-z
https://doi.org/10.1038/s41467-020-15626-w
https://doi.org/10.1038/s41467-020-15626-w
https://doi.org/10.1038/nn.4211
https://doi.org/10.1038/nn.4211
https://doi.org/10.3389/fimmu.2021.624687
https://doi.org/10.3389/fimmu.2021.624687
https://doi.org/10.1016/j.omtm.2024.101361
https://doi.org/10.1016/j.omtm.2024.101361
https://doi.org/10.1016/j.xcrm.2022.100812
https://doi.org/10.1182/blood-2010-04-282301
https://doi.org/10.1182/blood-2010-04-282301
https://doi.org/10.1073/pnas.1110900108
https://doi.org/10.1084/jem.20191421
https://doi.org/10.1084/jem.20191421
https://doi.org/10.1186/s13075-022-02731-y
https://doi.org/10.1186/s13075-022-02731-y
https://doi.org/10.1038/s41467-019-13731-z
https://doi.org/10.1038/s41467-019-13731-z
https://doi.org/10.4049/jimmunol.1502603
https://doi.org/10.4049/jimmunol.1502603
https://doi.org/10.1111/imr.12725
https://doi.org/10.1093/brain/awy151
https://doi.org/10.4049/jimmunol.1401811
https://doi.org/10.1016/j.jaci.2016.07.043
https://doi.org/10.4049/jimmunol.0902238
https://doi.org/10.4049/jimmunol.0902238
https://doi.org/10.1056/NEJMoa2400763
https://doi.org/10.1016/S1353-8020(13)70017-8
https://doi.org/10.3389/fphar.2023.1196413
https://doi.org/10.3389/fphar.2023.1196413
https://doi.org/10.3389/fimmu.2016.00262
https://doi.org/10.3389/fimmu.2016.00262
https://doi.org/10.1136/ard-2023-225174
https://doi.org/10.1136/ard-2023-225174
https://doi.org/10.1038/s41586-025-09588-6
https://doi.org/10.1038/s41586-025-09588-6
https://doi.org/10.1093/infdis/jiad578
https://doi.org/10.1093/infdis/jiad578


feature of primary Sjögren’s syndrome. J. Immunol. Res. 2020:7523914. 
https://doi.org/10.1155/2020/7523914

Minopoulou, I., A. Wilhelm, F. Albach, A. Kleyer, E. Wiebe, S. Schallenberg, A. 
Fleischmann, M. Frick, F. Damm, J. Gogolok, et al. 2025. Anti-CD19 CAR 
T cell therapy induces antibody seroconversion and complete B cell 
depletion in the bone marrow of a therapy-refractory patient with 
ANCA-associated vasculitis. Ann. Rheum. Dis. 84:e4–e7. https://doi.org/ 
10.1016/j.ard.2025.01.008

Monsonego, A., V. Zota, A. Karni, J.I. Krieger, A. Bar-Or, G. Bitan, A.E. Budson, 
R. Sperling, D.J. Selkoe, and H.L. Weiner. 2003. Increased T cell reac
tivity to amyloid β protein in older humans and patients with Alzheimer 
disease. J. Clin. Invest. 112:415–422. https://doi.org/10.1172/JCI18104

Moretta, L. 2010. Dissecting CD56dim human NK cells. Blood. 116:3689–3691. 
https://doi.org/10.1182/blood-2010-09-303057

Mrdjen, D., A. Pavlovic, F.J. Hartmann, B. Schreiner, S.G. Utz, B.P. Leung, I. 
Lelios, F.L. Heppner, J. Kipnis, D. Merkler, et al. 2018. High-Dimensional 
single-cell mapping of central nervous system immune cells reveals 
distinct myeloid subsets in health, aging, and disease. Immunity. 48: 
380–395.e6. https://doi.org/10.1016/j.immuni.2018.01.011

Müller, F., J. Taubmann, L. Bucci, A. Wilhelm, C. Bergmann, S. Völkl, M. 
Aigner, T. Rothe, I. Minopoulou, C. Tur, et al. 2024. CD19 CAR T-cell 
therapy in autoimmune disease — a case series with follow-up. N. Engl. 
J. Med. 390:687–700. https://doi.org/10.1056/NEJMoa2308917

Myers, J.A., and J.S. Miller. 2021. Exploring the NK cell platform for cancer 
immunotherapy. Nat. Rev. Clin. Oncol. 18:85–100. https://doi.org/10 
.1038/s41571-020-0426-7

Naatz, L.C., S. Dong, B. Evavold, X. Ye, and M. Chen. 2025. Bispecific killer 
engager for targeted depletion of PD-1 positive lymphocytes: A new 
avenue for autoimmune disease treatment. Acta Pharm. Sin. B. 15: 
1230–1241. https://doi.org/10.1016/j.apsb.2024.10.014

Netskar, H., A. Pfefferle, J.P. Goodridge, E. Sohlberg, O. Dufva, S.A. Teich
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tosus and Sjögrens syndrome. Eur. J. Immunol. 50:119–129. https://doi 
.org/10.1002/eji.201948129

Van Hove, H., L. Martens, I. Scheyltjens, K. De Vlaminck, A.R. Pombo An
tunes, S. De Prijck, N. Vandamme, S. De Schepper, G. Van Isterdael, C.L. 
Scott, et al. 2019. A single-cell atlas of mouse brain macrophages reveals 
unique transcriptional identities shaped by ontogeny and tissue envi
ronment. Nat. Neurosci. 22:1021–1035. https://doi.org/10.1038/s41593 
-019-0393-4

Cayatte et al. Journal of Experimental Medicine 17 of 18 
NK cells beyond cancer https://doi.org/10.1084/jem.20250612 

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/223/1/e20250612/1955196/jem
_20250612.pdf by guest on 11 February 2026

https://doi.org/10.1172/JCI176403
https://doi.org/10.3389/fmed.2022.1036787
https://doi.org/10.3389/fmed.2022.1036787
https://doi.org/10.1038/s41467-019-14118-w
https://doi.org/10.1038/s41467-019-14118-w
https://doi.org/10.1016/j.autrev.2020.102531
https://doi.org/10.1016/j.autrev.2020.102531
https://doi.org/10.1002/ctm2.70178
https://doi.org/10.1002/ctm2.70178
https://doi.org/10.1073/pnas.2308511120
https://doi.org/10.1186/s13075-015-0750-y
https://doi.org/10.1038/nri3065
https://doi.org/10.1038/nri3065
https://doi.org/10.1186/s13075-022-02811-z
https://doi.org/10.1186/s40164-024-00561-z
https://doi.org/10.1016/j.eclinm.2025.103229
https://doi.org/10.5114/pedm.2023.132029
https://doi.org/10.5114/pedm.2023.132029
https://doi.org/10.1371/journal.ppat.1003257
https://doi.org/10.1182/bloodadvances.2019000699
https://doi.org/10.1182/bloodadvances.2019000699
https://doi.org/10.1073/pnas.1000546107
https://doi.org/10.1073/pnas.1000546107
https://doi.org/10.1159/000017040
https://doi.org/10.1159/000017040
https://doi.org/10.1111/j.1749-6632.2000.tb05399.x
https://doi.org/10.1111/j.1749-6632.2000.tb05399.x
https://doi.org/10.1189/jlb.4RU0315-081RR
https://doi.org/10.1038/ni.3482
https://doi.org/10.1038/ni.3482
https://doi.org/10.1126/sciimmunol.aba6232
https://doi.org/10.1126/sciimmunol.aba6232
https://doi.org/10.1038/srep26157
https://doi.org/10.1056/NEJMoa0909905
https://doi.org/10.1016/j.cellimm.2022.104497
https://doi.org/10.1016/j.ejca.2024.114071
https://doi.org/10.1038/nature22815
https://doi.org/10.1038/nature07665
https://doi.org/10.1038/nature07665
https://doi.org/10.1038/nrneurol.2017.188
https://doi.org/10.1038/nrneurol.2017.188
https://doi.org/10.1016/j.cell.2023.07.034
https://doi.org/10.3389/fimmu.2022.884648
https://doi.org/10.1016/j.it.2016.04.006
https://doi.org/10.1016/j.ajt.2025.06.030
https://doi.org/10.1038/s41531-021-00271-x
https://doi.org/10.1038/s41531-021-00271-x
https://doi.org/10.1016/j.jaut.2012.08.001
https://doi.org/10.1002/eji.201948129
https://doi.org/10.1002/eji.201948129
https://doi.org/10.1038/s41593-019-0393-4
https://doi.org/10.1038/s41593-019-0393-4
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Zimmer, C.L., M. Cornillet, C. Solà-Riera, K.-W. Cheung, M.A. Ivarsson, M.Q. 
Lim, N. Marquardt, Y.-S. Leo, D.C. Lye, J. Klingström, et al. 2019. NK 
cells are activated and primed for skin-homing during acute dengue 
virus infection in humans. Nat. Commun. 10:3897. https://doi.org/10 
.1038/s41467-019-11878-3

Zu, S., Y. Lu, R. Xing, X. Chen, and L. Zhang. 2024. Changes in subset dis
tribution and impaired function of circulating natural killer cells in 
patients with colorectal cancer. Sci. Rep. 14:12188. https://doi.org/10 
.1038/s41598-024-63103-x
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