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Bringing natural killer cells to the clinic:
Opportunities beyond cancer
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Natural killer (NK) cells are cytotoxic and cytokine-producing innate lymphocytes with established roles in antiviral and
antitumor immunity. In recent years, the biology of NK cells has been exploited in innovative cancer immunotherapies, leading
to clinical advances including allogeneic NK cell infusions, chimeric antigen receptor NK cells, and NK cell engager
technologies. These studies pave the way to explore how advances in NK cell-based immunotherapies could be leveraged
outside of oncology to selectively target pathogenic cells and restore tissue homeostasis in viral infections, neurodegenerative

disorders, autoimmunity, and transplantation medicine.

Introduction

Natural killer (NK) cells are lymphocytes belonging to the innate
lymphoid cell (ILC) family (Vivier et al., 2018). Together with
ILC1, they constitute group 1 ILCs and have been recognized for
their ability to eliminate virally infected and malignant cells
without prior antigen-specific sensitization. Through a combi-
nation of activating and inhibitory receptors, NK cells can dis-
tinguish healthy self from altered self. Indeed, NK cells can
detect self-molecules that appear or increase on stressed
cell surfaces. A classic illustration of this stress-related self-
detection involves NK cell activation through activating sur-
face receptors like NKG2D and the natural cytotoxicity receptors
(NCRs), NKp46 and NKp30. These receptors bind to Major his-
tocompatibility complex (MHC) class I chain-related protein A
and B (MICA/B) and ULI16-binding proteins (ULBPs), ecto-
calreticulin, or B7-H6, respectively, which are displayed on
stressed cells. The expression of these ligands occurs following
DNA damage responses, excessive cell proliferation, or other
stress-triggered signaling cascades. NK cells also express in-
hibitory surface receptors such as killer cell immunoglobulin-
like receptors (KIRs) that recognize major histocompatibility
complex (MHC) class I molecules and CD94/NKG2A that recog-
nizes the nonclassical MHC class I molecule, HLA-E (Vivier et al.,
2024). Once activated, NK cells ensure a rapid immune response
by killing distressed cells and releasing an array of chemokines
and cytokines that shape a broader immune response. Advances
in understanding NK cell biology have spurred innovative
therapies that leverage their unique functional capacities
(Laskowski et al., 2022; Myers and Miller, 2021; Vivier et al.,
2024).

Candidate therapeutic strategies aimed at harnessing NK
cells for cancer treatment comprise monoclonal antibody-based
therapies, such as bispecific or multispecific NK cell engagers
and immune checkpoint inhibitors (targeting NKG2A, LAG-3,
TIGIT, or TIM-3), or cell-based therapies infused directly into
patients such as ex vivo-expanded or genetically modified NK
cells including CAR-NK cells (Laskowski et al., 2022; Myers
and Miller, 2021; Vivier et al., 2024). NK-based therapies ex-
hibit a favorable safety profile; notably, NK cells do not trigger
graft-versus-host disease. Their potential for “off-the-shelf”
manufacturing from allogeneic sources is an attractive feature to
increase scalability and cost-effective manufacturing. Clinical
trials based on NK cell-based therapies are in phase I and I/II
stages, and are targeting a broad spectrum of cancers, including
various lymphomas, leukemias, and solid tumors (Biederstadt
and Rezvani, 2025; Laskowski et al., 2022; Myers and Miller,
2021; Vivier et al., 2024). However, there are still some chal-
lenges, particularly with regard to the persistence and fitness of
NK cells in vivo in the immunosuppressive tumor microenvi-
ronment, as well as the manufacturing and scalability of the
therapies (Shi et al., 2024). Despite these hurdles, the field is
exploring new strategies such as metabolic engineering, next-
generation “armored” NK cells with improved homing and
survival capabilities, and computational tools to refine target
identification and predict therapeutic responses (Burga et al.,
2019; Du et al., 2021; Foo et al., 2023).

While NK cell-based therapies are emerging, the most
transformative immunotherapy successes to date have come
from the harnessing of T cell immunity. The use of immune
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checkpoint inhibitors, bispecific antibodies, and CAR-T cells has
led to major clinical advances in cancer. Recently, T cell-based
immunotherapies have been pivoted to other disease conditions.
In particular, CAR-T cells targeting B cell surface molecules have
been used in patients presenting B cell-mediated autoimmunity
with groundbreaking clinical benefit. Similarly, although NK
cell therapies currently focus on cancer, their functional rep-
ertoire and excellent safety record suggest broader therapeutic
potential. Indeed, NK cells are more than killers of tumor cells.
Their effector functions can be redirected against normal cells in
an autologous setting with stimulating engagers binding to de-
fined target surface molecules. In addition, accumulating evi-
dence reveals that NK cells can be present in nearly all tissues
(Bjorkstrom et al., 2016; Dogra et al., 2020). Together, these
findings support the investigation of NK cell therapies beyond
cancer. We review current insights into human NK cell hetero-
geneity and function, their roles in viral infection, autoimmu-
nity, neurodegeneration, and transplantation, and the emerging
therapeutic opportunities they offer.

What are NK cells?

Over the five decades since their discovery, major advances have
been made in deciphering the heterogeneity of NK cells
(Kiessling et al., 1975). In human, NK cells were initially classi-
fied into two main subsets based on the surface expression of
CD56, encoded by the neural cell adhesion molecule 1 NCAMI
gene, and the Fcy receptor III (CD16), encoded by FCGR3A
(Cooper et al., 2001; Lanier et al., 1983; Lanier et al., 1986). These
subsets commonly referred to as CD564™ and CD56P"8ht NK cells
(Moretta, 2010; Vivier et al., 2008) differ not only in phenotype
but also in function and tissue localization. CD564™ cells exhibit
strong cytotoxic potential and highly express perforin, gran-
zymes, and CD16, endowing them with an antibody-dependent
cellular cytotoxicity (ADCC) capacity. They also express KIRs
and chemokine receptors such as CX3CR1 and CXCR1, which
enable peripheral tissue recruitment. CD56%™ cells also produce
an array of proinflammatory cytokines (IFN-y, TNF-a), chemo-
kines (CCL3/4/5), and immunomodulatory molecules (TGF-B,
IL-10). By comparison, CD56""igbt NK cells are professionalized
in soluble factor production (Horwitz et al., 1999; Vivier and
Ugolini, 2009). They express little or no CD16 or KIRs, but are
enriched in CCR7 and CD62L (L-selectin), which supports
homing to secondary lymphoid tissues (Collins et al., 2019;
Cooper et al., 2001; Freud et al., 2017; Jacobs et al., 2001). CD56%m
are the predominant population in peripheral blood and highly
vascularized tissues, including bone marrow, spleen, lung, and
breast. CD56P"8t are preferentially enriched in lymph nodes,
tonsils, liver, uterus, and throughout the gastrointestinal tract
(Dogra et al., 2020; Ferlazzo and Carrega, 2012; Melsen et al.,
2016; Sender et al., 2023; Subedi et al., 2022; Vivier et al., 2024;
Yu et al., 2013). However, accumulating evidence has revealed
that NK cells span a broader and more nuanced continuum,
thereby challenging the traditional dichotomy (Freud et al.,
2017). For instance, a third subset of CD56"°8 NK cells has been
described. These cells are rare in healthy individuals and pro-
liferate in certain pathological conditions such as chronic and
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acute viral infections (e.g., human immunodeficiency virus,
hepatitis C virus) and acute myeloid leukemia, but their function
remains debated (Bjorkstrom et al., 2010b; Gonzalez et al., 2009;
Gyurova et al., 2019; Stary et al., 2020; Wlosik et al., 2025).

Furthermore, terminally differentiated “adaptive” NK cells
exhibiting memory-like features, originally described in mouse
models of cytomegalovirus (CMV) infection (Sun et al., 2009),
are now also characterized in humans (Hammer and
Romagnani, 2017; Lopez-Vergés et al., 2010). They show selec-
tive target recognition of human cytomegalovirus (HCMV)-in-
fected cells via the CD94-NKG2C receptor complex and enhanced
functionality. Paralleling memory T cell differentiation, adaptive
NK cells acquire epigenetically imprinted transcriptional pro-
grams that promote long-term persistence and antigen-specific
recall responses (Lee et al., 2015; Riickert et al., 2022; Tesi et al.,
2016). Memory-like NK cell responses are not restricted to
HCMV exposure, as subsets with similar properties have also
been observed following infection with hantavirus (Bjorkstrém
et al., 2010a), human immunodeficiency virus (Vendrame et al.,
2020), influenza virus (Jost et al., 2023), and SARS-CoV-2 (Hasan
etal., 2024), suggesting a broader paradigm (Lopez-Verges et al.,
2011). In addition, cytokine-induced memory-like (CIML) NK
cells can be generated independently of virus recognition, fol-
lowing stimulation with a cocktail of IL-12, IL-15, and IL-18
(Cooper et al., 2009; Cooper and Yokoyama, 2010; Romee et al.,
2012). CIML cells persist long term and show an enhanced re-
sponse to further restimulation that partially recapitulates
properties associated with adaptive NK cells (Hammer and
Romagnani, 2017; Terrén et al., 2022).

Over the past decade, advances in single-cell “omics” tech-
nologies, such as single-cell RNA sequencing, have transformed
our ability to study immune cell diversity and substantially re-
fined our understanding of NK cell heterogeneity (Subedi et al.,
2022). In particular, three major subsets in healthy blood—NK1,
NK2, and NK3—have been identified (Rebuffet et al., 2024;
Vivier et al., 2024). NK1 corresponds to CD564™CD16* NK cells,
NK2 to CD56""8hCD16" and early-stage CD56%™, while NK3 in-
cludes, but is not limited to, CD164™ NKG2C*CD57* adaptive NK
cells. The subpopulations within the NK1 and NK2 clusters—
namely, NK1A, NK1B, NKIC, and NKint—recapitulate subsets
identified in previous single-cell transcriptomics analyses
(Crinier et al., 2018; Jaeger et al., 2024; Melsen et al., 2016; Smith
et al., 2020; Yang et al., 2019). An alternative strategy has been
obtained based on the label transfer of transcriptional signatures
derived from sorted populations based on CD56, NKG2A, KIR,
CD57, and NKG2C cell surface expression (Bjorkstrom et al.,
2010c; Netskar et al., 2024). There is some overlap with the
NK1-3 framework (Rebuffet et al., 2024), but a key distinction
lies in the presumed fate of CD56P"g"¢ cells. Indeed, the CD56%4™
and CD56Prigbt subsets have been interpreted through a matu-
ration lens (Holmes et al., 2021; Netskar et al., 2024; Subedi et al.,
2022), with CD56Pright NK cells possibly representing the most
immature or naive state (Chan et al., 2007; Dulphy et al., 2008),
while CD56%™ NK cells comprising more differentiated stages,
which has been associated with a gradual downregulation or
upregulation of surface molecules such as CD62L (SELL), NKG2A
(KLRC1), or CD57, KIRs, and NKG2C (KLRC2), respectively
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(Bjorkstrom et al., 2010c; Juelke et al., 2010). This trajectory of
NK cell differentiation from CD56P'8MKIR" to CD564™KIR* cells
is challenged by the absence of experimental data showing such
a transition. In addition, data in human and mouse support two
development routes for NK cells: one from early NK cell pro-
genitors giving rise to NK1 and NK3, and the other from the
innate lymphoid common progenitor leading to NK2 (Ding et al.,
2024).

Another layer of heterogeneity arises from the tissue in
which NK cells reside, with the local microenvironment exerting
a strong imprint on differentiation (Bjorkstrom et al., 2016),
transcriptomics profile (Crinier et al., 2018), and functional
properties (Subedi et al., 2022). Tissue-resident NK cells express
residency markers such as CD69 and CXCR6 in the liver (Aw
Yeang et al., 2017; Cuff et al., 2016; Hudspeth et al., 2016;
Stegmann et al., 2016) and lymphoid tissues (Crinier et al., 2021a;
Lugthart et al., 2016), CD49a and CD103 in the uterus, tonsil, and
lung, and various chemokine receptors (Carrega et al., 2014;
Maghazachi, 2010) that limit their egress into the circulation
(Bjorkstrom et al., 2016; Melsen et al., 2016; Subedi et al., 2022).
An analysis identified RGSI (regulator of G protein signaling 1) as
a transcriptional marker for tissue-infiltrating NK cells (Tang
et al., 2023). In several tissues, they have been shown to have
functional differences from their blood counterparts (Dogra
et al., 2020; Marquardt et al., 2017; Robinson et al., 1984), the
most prominent example being uterine NK cells, which have
been proposed to play a role in placental vascular remodeling
and regulation of trophoblast invasion (Gaynor and Colucci,
2017).

Similarly, NK cells are significantly altered by the tumor
microenvironment (de Andrade et al., 2019; Li et al., 2025; Liang
etal., 2022; Pietropaolo et al., 2021; Zu et al., 2024), conditions in
which a terminal stage CD56%™ population was identified and
therefore termed tumor-associated NK cells. These cells are
poorly cytotoxic, display a stressed phenotype, and are poten-
tially dysfunctional. This subset is associated with poor survival
and immunotherapy resistance in various cancers.

Finally, the last piece of the puzzle lies in the close ontological
and functional proximity between NK cells and ILCI. Increasing
evidence highlights a high degree of plasticity between those two
populations, which can have overlapping phenotypes, local-
izations, and functions to some extent (Bjorklund et al., 2016;
Chaudhry and Belz, 2024; Jaeger et al., 2024; Spits et al., 2016).
Importantly, cytotoxicity, once considered a defining feature of
NK cells, can also be attributed to subsets of ILC1, further blur-
ring their distinction. The NK-ILC1 convergence has been de-
scribed in the tumor microenvironment, where transforming
growth factor B (TGF-B) in particular has been shown to re-
program NK cells into resident ILCl-like cells with impaired
antitumor capacity (Cortez et al., 2017; Crinier et al., 2021b;
Picant et al., 2025).

Regardless of these different characteristics of NK cells, the
standardized NK1, NK2, and NK3 terminology aims to promote
clarity and consistency in future research, thereby improving
the comparability of studies. This last point is crucial, consid-
ering that CD56 is not expressed in mouse NK cells, while NK1
and NK2 have been identified in both humans and mice (Crinier
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et al., 2018; Lopes et al., 2022). Despite the limitations of the
CD56%™ and CD56P g NK cell classification and the improve-
ment offered by the NK1, NK2, and NK3 terminology, published
studies on NK cell subsets that employed the CD56%™ and
CD56Prieht nomenclature will be presented herein using their
original terminology.

NK cells in viral infections

NK cells recognize virus-induced molecules on infected cell
surfaces, triggering direct cytotoxicity and secretion of cyto-
kines (IFN-y, TNF-a) that control viral replication. Paradoxi-
cally, long-term follow-up of patients with selective ILC
deficiency revealed no increased susceptibility to common viral
infections (Vély et al., 2016), suggesting that under conditions
of modern hygiene and medical care, NK cell functions against
most viruses may be redundant or compensated by other
immune mechanisms. However, studies of primary im-
munodeficiencies affecting—though not restricted to—NK cells
(Abdalgani et al., 2025; Mace and Orange, 2019) support a role of
NK cells in controlling flaviviruses (Blom et al., 2016; Marquardt
et al., 2015; Zimmer et al., 2019) and herpesviruses. Among
herpesviruses, CMV represents the best-characterized example
of NK cell-mediated immune control.

NK cells may serve as essential effectors against specific vi-
ruses in contexts where other immune compartments are
compromised. During pregnancy, for instance, the maternal-
fetal interface develops as an immunosuppressive environ-
ment that maintains T cell tolerance toward the fetus. In this
setting, intrauterine immune surveillance—notably against
CMV —appears to be mediated by decidual NK cells (Pighi et al.,
2024; Siewiera et al., 2013; Yockey and Iwasaki, 2018). Similarly,
increased CMYV susceptibility has been observed in patients ex-
periencing delayed NK cell reconstitution following hemato-
poietic stem cell transplantation (HSCT) (Cook et al., 2006; Park
et al., 2020). Furthermore, in pediatric patients with immature
immune systems, complete NK cell functional impairment
(though the selectivity of this deficiency remains unclear) has
been associated with heightened susceptibility to Epstein-Barr
virus (EBV) (Fleisher et al., 1982).

Beyond their physiological role in antiviral immunity, ther-
apeutic strategies exploiting NK cell antiviral properties are
being explored for chronic viral infections with potential for
severe disease progression. In a clinical study of 16 patients,
early adoptive NK cell infusion following HSCT protected
against human herpesvirus-6B reactivation (Gasior et al., 2021).
In HIV-infected patients, observations of NK cells dysfunction
have prompted two phase I clinical trials evaluating combined
NK cell infusion with IL-2 or IL-15 superagonists to enhance NK
cell fitness (NCT03346499 and NCT03899480 [Miller et al.,
2024], respectively). These trials reported favorable safety pro-
files and modest reductions in HIV RNA-positive cells. Despite
the success of SARS-CoV-2 vaccines, several clinical trials have
evaluated whether NK cell-based therapies could improve dis-
ease outcomes. A phase I/1I trial (NCT04578210) demonstrated
that infusion of allogeneic NK cells from convalescent donors
into patients with moderate-to-severe COVID-19 was safe and
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well tolerated (Herndndez-Blanco et al., 2025). Similarly, ongo-
ing phase I trials are assessing the safety of genetically modified
placental-derived NK cells (NCT04365101), iPSC-derived NK cells
expressing noncleavable CD16 (NCT04363346), and cord blood-
derived allogeneic NK cells—either unmodified (NCT04900454)
(Liu et al., 2024) or as CAR-NK cells overexpressing NKG2D, the
SARS-CoV-2 receptor ACE2, an IL-15 superagonist, and a GM-
CSF-neutralizing antibody (NCT04324996). Most trials remain
ongoing and are at early stages. Completed phase I studies col-
lectively demonstrate the safety of NK cell-based therapies for
viral infections; however, additional studies are required to estab-
lish their therapeutic efficacy (Fig. 1). Leveraging NK cell immunity
to target infected cells through specific antigen recognition may
represent a promising complementary strategy for future thera-
peutic development.

NK cells in neurodegenerative diseases

The traditional view of the central nervous system (CNS) as an
“immune-privileged” ecosystem, firmly independent and sealed
from peripheral immune cells, has drastically evolved. This shift
stems from the discovery of neuroimmune interfaces that per-
mit afferent cell trafficking and immune surveillance, including
by NK cells, which are necessary for CNS homeostasis (Castellani
et al., 2023; Rustenhoven et al., 2021). Despite their clinical di-
versity, many neurodegenerative diseases share pathological
hallmarks, suggesting a convergence of the underlying pro-
cesses. It is possible to distinguish neurodegenerative disorders
relying on genetic mutations and intraneuronal mechanisms
(Kamatham et al., 2024; Wilson et al., 2023) from diseases in
which pathogenesis is driven by extracellular elements. These
include misfolded protein aggregates, autoreactive T cells
(Campisi et al., 2022; Huseby et al., 2001; Lalle et al., 2024;
Liickel et al., 2019; Machado-Santos et al., 2018; Monsonego etal.,
2003), or chronically activated microglial cells (Melchiorri et al.,
2023; Webers et al., 2020), which cumulatively disrupt brain
barriers and create a persistent neurotoxic inflammatory envi-
ronment (Sweeney et al., 2018).

There are several lines of evidence for the presence of a small
population of tissue-resident NK cells in the CNS of healthy in-
dividuals. In humans, although studies are limited due to inac-
cessibility of the tissue, NK cells, mostly with a CD56Pright (NK2)
phenotype, have been detected in both the cerebrospinal fluid
and brain parenchyma (Gross et al., 2016; Qin et al., 2024). In
vitro experiments using human brain microvascular endothelial
cells demonstrated a higher adherence and transmigration ca-
pacity of CD56""8bt cells (Gross et al., 2016). In mice, NK cells have
consistently been observed in limited numbers within the brain
parenchyma (Korin et al., 2017; Mrdjen et al., 2018) and in prox-
imal immune cell niches (i.e., subdural meninges, dura mater, and
choroid plexus) (Van Hove et al., 2019). These findings collectively
indicate that NK cell passage across the CNS barriers is rare under
homeostatic conditions. Yet, peripheral NK cells have been shown
to infiltrate CNS in various inflammatory contexts (Lepennetier
etal.,, 2019) and increasing number of studies implicate NK cells in
the pathophysiology of inflammatory-driven neurodegenerative
diseases (Fig. 1 and Table 1).
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In multiple sclerosis (MS), a chronic autoimmune disease
(AID) of the CNS (Jilek et al., 2007; Rodriguez Murta et al.,
2022), NK cells, mainly of the CD56""i8bt phenotype, are found
in increased frequencies both in the cerebrospinal fluid (Gross
etal., 2016; Rodriguez-Martin et al., 2015; Schafflick et al., 2020)
and in the brain parenchyma of patients (Liu et al., 2016;
Rodriguez-Lorenzo et al., 2022), with an accumulation observed
in active lesions and in close proximity to T cells. Mechanisti-
cally, NK cell recruitment is mediated by CXCL9, CXCL10, and
CCL2 secreted by astrocytes and microglia, as well as neuron-
derived CX3CL1 (Huang et al., 2006). Once in the CNS paren-
chyma, neuron stem cell IL-15 secretions sustain NK cell
survival, proliferation, and fitness (Liu et al., 2016). In MS
animal models, NK cell depletion exacerbates disease severity,
while adoptive transfer alleviates symptoms (Hao et al., 2010;
Zhang et al., 1997). These protective effects are mediated
through both the secretion of immunosuppressive factors
(i.e., acetylcholine and cytokines) (Jiang et al., 2017; Sanmarco
et al., 2021) and direct cytotoxicity against autoreactive T cells
(Jiang et al., 2011). Consistently, expansion of intrathecal
CD56Pright in MS patients treated with a CD25 blocking anti-
body (daclizumab) correlated with therapeutic outcomes
(Bielekova et al., 2006; Bielekova et al., 2011; Martin et al., 2010;
Wynn et al., 2010), whereas active phases or relapses are fre-
quently associated with altered NK cell number, phenotype,
and cytolytic activity against autoreactive CD4* T cells
(Caruana et al., 2017; Gross et al., 2016; Laroni et al., 2016).
Although few studies report a detrimental role of NKp46*/
NK1.1* ILCs in disease recovery in mouse models (Kwong et al.,
2017; Liu et al., 2016), notably by promoting brain barrier
permeabilization and T cell entry into the CNS, NK cells are
generally associated with treatment efficacy and clinical re-
mission. Another study links poor NK cell function to ineffec-
tive control of EBV-induced autoimmunity, leading to an
increased risk of MS (Vietzen et al., 2023). In individuals with
high antibody titers to EBNA386-405, which cross-reacts with
the glial protein GlialCAM, autoreactive T and B cells may
emerge but are normally eliminated by NK cells. Two subsets
are particularly important: NKG2C* adaptive NK cells, primed
by prior HCMYV infection, and NKG2D* NK cells, which recog-
nize stressed lymphocytes. The protective effect requires spe-
cific host and viral traits, such as HCMV strains that stabilize
HLA-E and highly active NKG2D genotypes, which are common
in healthy EBNAPigh individuals but rare in MS patients. In MS,
autoreactive B cells evade NK killing by upregulating HLA-E
through EBV-driven mechanisms, engaging inhibitory NKG2A
receptors, and blocking cytotoxicity. Overall, NK cells emerge
as sentinels eliminating autoreactive clones induced by viral
mimicry, with outcomes determined by the balance of activating
(NKG2C, NKG2D) and inhibitory (NKG2A-HLA-E) signals. Ge-
netic variation, prior viral exposures, and viral strain diversity
modulate this balance, highlighting therapeutic opportunities in
boosting protective NK subsets, enhancing activating pathways,
or blocking inhibitory checkpoints to restore tolerance in EBV-
associated autoimmunity.

Alzheimer’s disease (AD) is a multifactorial disorder tradi-
tionally characterized by the accumulation of extracellular A
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Figure 1. Endogenous role and harnessing possibilities of NK cells in cancer and beyond. NK cells are well recognized for their capacity to detect and
eliminate tumor cells. Several strategies to harness these functions have been developed and are currently being evaluated in clinical trials for both hematologic
malignancies and solid tumors. These advances are now being extended to investigate the potential of NK cell manipulation in other clinical contexts, including
viral infections, neurodegenerative disorders, AIDs, and solid organ transplantation.

aggregates and neuroinflammation (Leng and Edison, 2021).
However, recent evidence revealed a significant contribution
from intrathecal chronically activated T cells, establishing au-
toimmune responses as a hallmark of AD pathology (Afsar et al.,
2023; Gate et al., 2020). While not all patients diagnosed with
mild cognitive impairment (MCI) will progress to AD, they are at
increased risk, suggesting that MCI may represent an early stage
of the disease (Bradfield, 2023; Levey et al., 2006). Although
there are no studies comparing the CNS NK cells of MCI and AD
patients with age-matched healthy individuals, most available
data indicate that the number of circulating NK cells remains
unchanged in these groups (Huang et al., 2022; Le Page et al.,
2015; Richartz-Salzburger et al., 2007). In contrast, NK cell fre-
quencies have been shown to increase specifically in the
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cerebrospinal fluid of MCI and AD patients (Busse et al., 2021),
possibly due to an increase in CX3CL1 (Kulczyniska-Przybik
et al., 2020). Their precise functional state and role are still
unknown: a proinflammatory phenotype has been observed
specifically in CSF NK during the MCI stages (Le Page et al.,
2015), while ex vivo assays of blood NK cells reported variable
alterations in their fitness, ranging from increased to impaired
cytotoxic functions (Araga et al., 1991; Le Page et al., 2015; Solerte
et al., 1998). Both human studies and animal models support a
protective role of NK cells through their ability to clear AP ag-
gregates, either by direct uptake and degradation (Zufiiga et al.,
2025) or by reinvigorating the phagocytic capacity of microglia
(Hwang et al., 2022). As described in MS, NK cells may also re-
duce neuroinflammation and glial proinflammatory phenotype
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Table 1. NK cell characteristics in neurodegenerative diseases
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Disease Circulating CSF CNS parenchyma Predominant  Activation/ Protective mechanisms Detrimental effects
NK cells NK  NKcells phenotype functional status
cells
MS Altered 0 1 Accumulate in CD56Pright Variable cytolytic Kills autoreactive CD4* NKp46*/NK1.1* ILCs
number active lesions near activity during relapses T cells; secretes promote brain barrier
T cells acetylcholine and permeabilization and
immunosuppressive T cell CNS entry;
cytokines; NKG2C* and autoreactive B cells evade
NKG2D* subsets eliminate killing via HLA-E
EBV-induced autoreactive upregulation
clones
AD Unchanged 7 Not well defined CD56Pright Proinflammatory in CSF  Direct uptake/degradation Chronic activation leads
(predominant in  during MCl; variable of AB; restores microglial  to overproduction of IFN-
CNS) blood; NK cytotoxicity ~ phagocytosis; reduces y and TNF-a (inversely
(increased to impaired) neuroinflammation; correlates with cognition);
meningeal NK-derived depletion in mouse
IFN-y promotes memory ~ models reduces
formation neuroinflammation but
impairs early protective
effects
PD 0 0 1 Infiltrate CD56%™ (blood)  Elevated activation Clear a-syn aggregates; a-syn clearance reduces

substantia nigra;
colocalize with a-syn
aggregates and
dopaminergic
neurons

markers; correlates
with severity/
progression

likely eliminates
autoreactive T cells

NK cytolytic capacity and
IFN-y secretion, potential
dysfunction with chronic
activation

by selectively eliminating pathogenic T cells and secreting im-
munosuppressive factors (IL-10, TGF-B) (Zuiiiga et al., 2025).
IFN-y produced by meningeal NK cells has been shown to par-
ticipate in memory formation in healthy mice (Garofalo et al.,
2023). Conversely, circulating NK cells from AD patients exhibit
increased secretions of the proinflammatory cytokines IFN-y
and TNF-a, an overproduction inversely correlated with cogni-
tive performance (Solerte et al., 2000). Depletion of NK cells in
an AD mouse model has been associated with reduced neuro-
inflammation, enhanced neurogenesis, and improved cognitive
function (Zhang et al., 2020). Those data suggest that while NK
cells may exert beneficial effects in the early stages by naturally
targeting different pathogenic drivers, their chronic activation
could lead to dysfunction and progressively contribute to the
pathological burden. Considering that the prevalence of AD
strongly correlates with age and that the frequency of CD56Pright
cells decreases with age (Wang et al., 2025c), one could hypothesize
a link between immunoaging-induced NK impairment and the
occurrence of AD. Interestingly, increased frequency of NK cells in
the cerebrospinal fluid has also been reported in frontotemporal
dementia patients, suggesting a potential role in other dementia-
inducing neurodegenerative diseases (Busse et al., 2021).

In Parkinson’s disease (PD), an a-synucleinopathy, the in-
creased numbers of NK cells, particularly CD564™ [NK1], along
with elevated activation markers, have been reported in the
blood and substantia nigra of both early- and late-onset PD pa-
tients (Earls et al., 2020; Holbrook et al., 2023; Niwa et al., 2012;
Tian et al., 2022; Zhang et al., 2024). These changes correlate
with disease severity and progression. In PD models, NK cells are
increased in the cerebrospinal fluid and infiltrate the affected
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brain regions, colocalizing with a-syn aggregates and dopa-
minergic neurons (Guan et al., 2022; Xiong et al., 2024). Anal-
ogous to their scavenger role in AD, NK can clear a-syn
aggregates, mitigating disease severity. However, this process
has been reported to reduce their ability to lyse target cells and
secrete IFN-y. Concurrently, specific reactivity against several
products of PD-associated genes (a-syn, PINK1, C9orf72) has
been observed in PD patient T cells, driving autoimmune events
from the early stages of the disease (Lindestam Arlehamn et al.,
2020; Michaelis et al., 2025; Sulzer et al., 2017; Williams et al.,
2024). Although direct evidence is lacking in PD, it is plausible
that NK cells can limit the harmful adaptive responses as ob-
served in MS and AD. Consistently, murine NK cell depletion
promotes disease incidence and severity (Earls et al., 2020;
Zuiiiga et al., 2025). Since the deposition of a-syn is a central
hallmark of multiple system atrophy and Lewy body dementia
(McCann et al., 2014), it is possible that NK cells play a similar
role in these diseases.

Over the years, our understanding of the constant, dynamic,
and reciprocal interactions between the nervous and immune
systems has deepened considerably. The traditional neuron-
centric vision of neurodegenerative diseases has evolved, and
it is now becoming clear that immune dysregulation is a hall-
mark of many CNS disorders. Drawing parallels between neu-
rodegenerative diseases and classic AIDs offers new hope for the
development of effective therapies. A major challenge in CNS
drug development remains the brain barrier impermeability,
which, even in case of neurodegenerative disease-driven dys-
function, still significantly restricts the CNS biodistribution of
molecular therapies to the perivascular space (Lamptey et al.,
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2022; Pandit et al., 2020). In this context, the biology of NK cells
and their ability to efficiently cross such barriers upon activation
have led to the idea that enhancing NK cell recruitment or
functions may represent a promising approach to resolve neu-
roinflammation. Adoptive NK cell transfers are being considered
in several indications. Troculeucel (SNKO1), a nongenetically
modified, cytokine-preconditioned autologous NK cell therapy
candidate, displays a highly activated phenotype, secretes im-
munosuppressive cytokines (IL-10, TGF-B), selectively kills ac-
tivated T cells, and clears AP aggregates in vitro. In a phase
1 clinical trial (NCT04678453), SNKO1 was administrated intra-
venously as a single agent to mild- to severe-stage AD patients
and was found to be safe and well tolerated, with no severe ad-
verse events reported (Zufiiga et al., 2025). Over the 22-wk
study, SNKOI might have demonstrated an early sign of clini-
cal efficacy, as suggested by a stabilization of clinical score and
cerebrospinal fluid biomarkers, although longer studies are re-
quired to confirm these hypotheses. Following FDA Fast Track
designation, SNKO1 is currently being evaluated in a phase 2a
trial targeting moderate AD stages (NCT06189963). A phase
1 trial (NTC06677710) has also been initiated to evaluate an al-
logeneic NK cell product (IDP-023) combined with the depleting
anti-CD20 antibody ocrelizumab in MS patients. NK cell en-
gagers (NKCE) may also represent promising agents for en-
hancing the neuroprotective functions of NK cells. They could be
engineered to trigger NK cell-mediated killing of autoreactive
T cells (Naatz et al., 2025), to potentiate NK cell activation and
homeostatic roles (Demaria et al., 2022), and/or to have opti-
mized CNS delivery by targeting receptors involved in trans-
cytosis across barriers (e.g., TfR1, CD98hc, IGRF1) (Alata et al.,
2022; Chew et al., 2023; Schumacher et al., 2025), as cur-
rently tested in AD (NCT07169578, NCT07170150) and MS
(NCT05704361) patients (Schumacher et al., 2025). Although
these approaches are still limited, they reflect a changing per-
spective in which NK cells are recognized as possible contrib-
utors in neuroinflammation and neurodegeneration. This
opens new therapeutic possibilities in diseases previously
thought to be outside the realm of immune modulation.

Thus, NK cells are emerging as regulators at the intersection
of neuroinflammation and neurodegeneration. Their ability to
eliminate multiple pathogenic drivers such as autoreactive
lymphocytes and protein aggregates, and regulate dysfunctional
microglia positions them as multifunctional agents. However,
their roles are highly context dependent, with protective func-
tions predominating in early disease stages and potential detri-
mental contributions emerging with chronic activation. The
balance between activating and inhibitory signals (exemplified
by NKG2C/NKG2D versus NKG2A-HLA-E in MS) represents a
critical determinant of outcomes and a possible therapeutic
target. As understanding of neuroimmune crosstalk deepens,
NK cell-based therapies, including adoptive transfer, genetic
modification, and engager platforms, are transitioning from
theoretical constructs to possible clinical assets, offering new
hope for diseases that have long resisted effective immune-based
interventions. The challenge ahead lies in optimizing timing and
delivery across brain barriers, and maintaining the delicate
balance between neuroprotection and inflammation resolution.

Cayatte et al.
NK cells beyond cancer

22 JEM
QD D
03'-

NK cells in AIDs
AIDs affect 10% of the global population, and the incidence and

prevalence of many AIDs are increasing worldwide (Scherlinger
et al.,, 2020). AIDs are chronic diseases arising from a complex
interplay of genetic, environmental, hormonal, and immuno-
logical factors that ultimately lead to a breakdown in immune
tolerance. Many details of their pathogenesis and etiology have
yet to be elucidated, and further research is needed to address
these gaps. As contributors to immune surveillance and regu-
lation via cytotoxic activity and cytokine production, NK cells
may play a role in the pathogenesis of AID by promoting in-
flammation through IFN-y production, or by alleviating in-
flammation through the killing of activated T cells (Cerboni
et al., 2007; Kilian et al., 2024; Rabinovich et al., 2003) and
macrophages (Table 2).

Key features of systemic lupus erythematosus (SLE) include
excessive activation of type I IFN pathways, persistent produc-
tion of diverse autoantibodies targeting nuclear antigens, and
the formation of immune complexes in multiple organs, such as
the skin, kidneys, lungs, blood, joints, and CNS, resulting in
inflammation and tissue damage, exemplified by lupus nephri-
tis. Distinct NK cell subset alterations have been documented
(Hervier et al., 2011; Li et al., 2023; Liu et al., 2021). The pro-
portion of CD56%™ NK cells is reduced, whereas CD56"right cells
are relatively expanded in SLE peripheral blood. Moreover,
CD56%™ in SLE patients display an activated phenotype, with
upregulation of NKp44, NKp46, NKp30, and CD69, alongside
downregulation of CD16 and inhibitory KIRs (Hudspeth et al.,
2019). The reduced number of circulating NK cells in SLE could
be attributed to their migration from the peripheral blood to the
damaged tissue. This possibility is supported by the increased
expression of the NKG2D ligand MICA in kidneys of patients
with lupus nephritis paralleling greater infiltration of activated
NK cells into glomeruli in murine SLE models (Spada et al.,
2015). NK cells of SLE patients demonstrated reduced cytotox-
icity, while the production of IFN-y remained elevated (Hervier
et al., 2011; Lin et al., 2017; Liu et al., 2021; Lu et al., 2022). Pa-
tients with SLE present higher levels of circulating IL-15 and an
increased proportion of NK cells expressing the proliferation
marker Ki67, which are strongly correlated with clinical severity
(Hudspeth et al., 2019; Lin et al., 2017). Mechanistically, a recent
study has revealed that mitochondrial dysfunction and defective
mitophagy are key drivers of NK cell abnormalities in SLE
(Fluder et al., 2025, Preprint). Alongside, tissue-resident NKp46*
group 1ILCls appear to be key amplifiers of kidney inflammation
in lupus nephritis. These cells promote macrophage expansion
and epithelial cell injury through GM-CSF production, and
blocking or deleting NKp46 prevents tissue damage, revealing a
new mechanism driving organ injury in AID (Biniaris-Georgallis
et al., 2024). Further research using single-cell RNA sequencing
on peripheral blood and kidney or skin tissue from individuals
with SLE could yield a clearer understanding of the contribution
of NK cells to disease pathogenesis.

Rheumatoid arthritis (RA) is a highly prevalent chronic in-
flammatory disorder characterized by persistent synovial
inflammation, progressive cartilage degradation, and bone
erosion. While autoimmune T and B cell responses are
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Table 2. NK cell characteristics in AIDs
Disease Circulating  Tissue NK  Predominant  Activation/functional Protective mechanisms Detrimental effects
NK cells cells phenotype status
SLE \ 1 (kidneys,  CD5618" (blood) Activated phenotype, Not well defined Tissue-resident NKp46* ILCls
glomeruli) upregulation of NCRs; amplify kidney inflammation
downregulation of CD16 and through GM-CSF production
KIRs (blood); upregulation
of MICA (kidneys); reduced
cytotoxicity; increased IFN-
y production
RA 1 1 (synovial ~ CD56bright Activated phenotype; Not well defined Likely promotes synovial
fluid) (synovial fluid)  reduced cytotoxicity; inflammation through IFN-y
increased IFN-y production and TNF-q; osteoclastogenesis
(synovial NK cells) and bone destruction via
RANKL and M-CSF expression;
exacerbates inflammation
through GM-CSF production
pSS N 1 (salivary CD56Pie"t (blood) IFN-y secretion (via Tissue-resident NK shield NK infiltration correlates with
glands) interaction with B7-H6 target cells from T cell- glandular inflammation;
expressed on salivary gland mediated cytotoxicity contributes to ectopic
epithelial cells) lymphoid structures
formation; amplifies
autoimmune responses in the
glands via IFN-y production
SSc Debated/vary ~ Not well Not well defined  Not well defined Not well defined Not well defined
with stage defined
TiD 2 1 (pancreatic Activated phenotype, Secretion of Promotes adaptive

islets)

spontaneous IFN-y at early
stages; dysfunctional state
at later stages

immunosuppressive cytokines
and killing of autoreactive
T cells

autoimmune response and 3
cell destruction through IFN-y
production and NKp46-

dependent cytotoxicity

predominant, innate immune cells have also been implicated in
RA pathogenesis. Several studies have demonstrated that pa-
tients with RA have higher levels of NK cells in their peripheral
blood than healthy controls. However, these NK cells have re-
duced cytotoxic activity (Fathollahi et al., 2021; Lin et al., 2020;
Zhao et al., 2025). Analyses of synovial fluid consistently re-
vealed an enrichment of CD56P"ight cells (Coyle et al., 2024;
Dalbeth and Callan, 2002; Pridgeon et al., 2003). These syn-
ovial NK cells frequently exhibit increased activation mark-
ers, production of inflammatory cytokines (IFN-y and TNF-a),
and impaired cytotoxicity (Yamin et al., 2019); phenotypic
and functional features that have been inversely associated
with disease remission (Coyle et al., 2024). NK cells within RA
synovial tissues express both RANKL and M-CSF, which may
contribute to osteoclastogenesis and subsequent bone de-
struction. Depletion of NK cells from mice before the induc-
tion of collagen-induced arthritis reduces the severity of
subsequent arthritis and almost completely prevents bone
erosion (Séderstrom et al., 2010). Another murine study in the
collagen-induced arthritis model found that NK cell infiltra-
tion in joints correlated positively with arthritis score, his-
topathology, and bone destruction. Adoptive transfer of NK
cells increased arthritis severity, while NKp46 knockout had
no effect on incidence/severity (Wu et al., 2022). Finally, in an
autoantibody-mediated inflammatory arthritis mouse model,
synovial NK cells were shown to produce GM-CSF and
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exacerbate inflammation by promoting a neutrophil infiltrate
(Louis et al., 2020).

In primary Sjégren’s syndrome (pSS), the lacrimal and sali-
vary glands are the main organs affected. The presence of au-
toantibodies and hypergammaglobulinemia is a key feature of
this condition, highlighting the important role of B cells in its
pathogenesis. However, accumulating evidence indicates sig-
nificant alterations within the innate immune system, particu-
larly involving NK cells. Several studies have demonstrated that
patients with pSS exhibit lower levels of circulating NK cells
than healthy controls (Cheng et al., 2023; Davies et al., 2017;
Ming et al., 2020; Shi et al., 2022). Like in SLE, the proportion of
CD56%m cells is reduced, while the CD56P*igbt subset is increased
in the peripheral blood of pSS patients. Salivary glands from pSS
patients show NK cell enrichment, which correlates with glan-
dular inflammation. Interactions between NKp30 and B7-Hs,
where B7-H6 is expressed by dendritic cells and salivary gland
epithelial cells, can induce IFN-y secretion (Rusakiewicz et al.,
2013). These data suggest a mechanism by which NK cells may
foster local immune activation and contribute to the formation
of ectopic lymphoid structures (Pontarini et al., 2021). Clinical
observations indicate that belimumab, an antibody blocking the
B cell-activating factor BAFF, is less effective in patients with a
high frequency of NK cells in their peripheral blood and glan-
dular tissue, suggesting that elevated NK infiltration may indi-
cate a poorer response to treatment (Seror et al., 2015). In a pSS

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20250612

920z Areniged 1| uosenb Aq jpd'z1 905202 Wel/9615561/2 19052029/ L/czz/spd-ajomie/wal/bio ssaidny//:dpy woy papeojumoq

80f18



mouse model, salivary gland NK cells were found to amplify
autoimmune responses within the glands via IFN-y production,
thereby impairing gland function. Conversely, tissue-resident
NK cells appeared to exert protective effects, shielding target
cells from T cell-mediated cytotoxicity (Sato et al., 2022).

Systemic sclerosis (SSc) is a multifaceted autoimmune
connective-tissue disorder hallmarked by collagen and extra-
cellular matrix deposition, leading to fibrosis of the skin, lungs,
heart, and gastrointestinal tract. Additionally, it is associated
with pronounced microvascular stenosis and the presence of
disease-specific autoantibodies that reflect immune dysregula-
tion driving fibrotic progression. The degree of NK cell alter-
ations in the peripheral blood of patients with SSc remains
debated (Almeida et al., 2015; Benyamine et al., 2018;
Gumkowska-Sroka et al., 2019; Guo et al., 2025; Van Der Kroef
etal., 2020). The discrepancies could come from the stage of the
disease, as an increased frequency and number of NK cells have
been reported in diffuse cutaneous SSc, whereas they were
normal in limited cutaneous SSc in the same cohort.

Type 1 diabetes (T1D) is a chronic disease resulting from
autoimmune destruction of pancreatic insulin-producing {3 cells.
Multiple lines of evidence implicate NK cells in both the initia-
tion and the progression of T1D. Under homeostatic conditions,
NK cells are present at low levels in the pancreas (Radenkovic
et al.,, 2017; Shi et al., 2011); however, their number increases in
diabetes-prone conditions from the early stages of the disease. In
patients with T1D, peripheral NK cell counts and frequencies
have been repeatedly reported to be reduced compared with
healthy individuals (Gomez-Mufioz et al., 2021; Qin et al., 2011;
Sieniawska et al., 2023), a change suggested as a potential reflect
of their extravasation into the pancreas. Consistently, NK cells
are among the first immune cells to invade the pancreas in mice,
localizing to islets before T cells (Brauner et al., 2010). From the
prediabetic stages, NK cells locally acquire an activated pheno-
type and display spontaneous IFN-y secretions and progres-
sively adopt a dysfunctional/hyporesponsive state (Brauner
et al.,, 2010; Qin et al., 2011). Mechanistically, NK cells play a
multifaceted role in T1D pathogenesis. They contribute to dis-
ease progression by promoting the adaptive autoimmune re-
sponse and B cell destruction through both the secretion of
T cell-stimulating IFN-y (Alba et al., 2008; Feuerer et al., 2009;
Poirot et al., 2004) and NKp46-dependent direct cytotoxicity
(Gur et al., 2011). Additionally, NKG2D blockade limits T1D onset
in mouse models, although it remains uncertain whether these
effects are mediated by autoreactive NKG2D* T and/or NK cells
(Ogasawara et al., 2004; Van Belle et al., 2013). NK cells have been
shown to recognize enterovirus-infected B cells, implicating them
in virus-triggered T1D onset (Dotta et al., 2007; Flodstrom et al.,
2002). Conversely, NK may also exert protective roles via the
secretion of immunosuppressive cytokines and the killing of au-
toreactive T cells, a property likely to be decreased as they lose
their cytotoxic capabilities during TID progression (Qin et al.,
2011; Yoon Kim and Kwon Lee, 2022). Longitudinal blood tran-
scriptomics analyses from the TEDDY cohort identified strong
enrichment of NK cell-specific transcripts in association with the
development of islet autoimmunity in both patients developing
autoantibodies to insulin (IAA) and glutamic acid decarboxylase,
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and with progression to diabetes in IAA patients (Xhonneux et al.,
2021). Similarly, NK cell signatures have been associated with the
rate of decline in C-peptide, a marker of functional B cell, in the
INNODIA cohort (Armenteros et al., 2024) and with patient re-
sponses to teplizumab, a Fc-silenced anti-CD3 antibody in the
ADbATE study (Sassi et al., 2025). Further studies are required to
fully elucidate the role of NK cells in TID pathogenesis.

There is even less evidence for the role of NK cells in other
systemic AIDs such as anti-neutrophil cytoplasmic antibody-
associated vasculitis (Fuchs et al., 2022) and inflammatory
myopathies. Overall, there is some evidence suggesting that NK
cells may amplify inflammation by releasing cytokines and re-
cruiting or activating other immune cells. At the same time, they
could play a protective role by eliminating autoreactive T and B
lymphocytes. However, mechanistic data are still needed to
definitively clarify the exact role of NK cells in AID.

Despite the heterogeneity of AIDs, several unifying patterns
of NK cell alterations thus emerge across conditions. The fre-
quent reduction of circulating NK cells suggests active tissue
migration rather than systemic depletion, as evidenced by their
enrichment in target organs where they can contribute to local
pathology. A consistent phenotypic shift characterized by de-
creased CD56%™ and relatively expanded CD56P"€ populations
in peripheral blood suggests a common underlying mechanism
of NK cell dysregulation. Notably, a functional dissociation is
observed across multiple AIDs, wherein NK cells exhibit im-
paired cytotoxicity yet maintain or increase their capacity for
inflammatory cytokine production, particularly IFN-y. This
imbalance may contribute to sustained inflammation while di-
minishing their potential regulatory function of eliminating
autoreactive lymphocytes. Additionally, tissue-resident NK cells
and related ILCls play distinct and often pathogenic roles within
affected organs, amplifying local immune responses through
cytokine secretion and immune cell recruitment. The correla-
tion between NK cell alterations and disease severity or treat-
ment responses in conditions such as SLE, pSS, and T1D
underscores their clinical relevance. Collectively, these findings
highlight a role of NK cells, yet incompletely understood, as
contributors to autoimmune pathogenesis warranting further
mechanistic investigation to clarify their potential as thera-
peutic targets or biomarkers of disease activity.

Although the pathogenesis of systemic AIDs is complex, part
of them seem to rely on autoantibody-producing cells. Indeed,
B cell-targeting therapeutics have produced positive clinical
outcomes in certain cases, such as anti-neutrophil cytoplasmic
antibody-associated vasculitis. Rituximab, a chimeric anti-CD20
monoclonal antibody, is commonly used for these conditions
(Hauser et al., 2008; Stone et al., 2010), and more recently,
obinutuzumab, a humanized Fc-optimized monoclonal anti-
body, has been approved by the FDA following positive results
from a phase III clinical trial in patients with lupus nephritis
(Furie et al., 2025). However, the most promising results to date
have emerged from the field of cell therapy. Building on their
successes in oncology, T cell-mediated therapies such as CAR-T
cells could transform the treatment of B cell-mediated AIDs.
Autologous CD19-targeted CAR-T cell therapies, originally de-
veloped for oncological conditions, have been administered to
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patients with refractory systemic AIDs, with early-phase clinical
cohorts reporting drug-free remission (Auth et al., 2025;
Fischbach et al., 2024; Merkt et al., 2024; Minopoulou et al.,
2025; Miiller et al., 2024; Shu et al.,, 2025). Other autologous
CAR-T cell products that target the plasma cell antigen BCMA, or
BCMA and CD19, as well as off-the-shelf allogeneic products, are
also showing promising results (Hu et al., 2025; Qin et al., 2025;
Wang et al., 2024). Strategies to overcome the limitations of cell
therapy were engineered using T cell-targeted lipid nano-
particles to deliver CD19 CAR mRNA, and are now beginning to
show their first encouraging results (Wang et al., 2025a). T cell
engagers offer a promising alternative to cell therapies, as they
are off-the-shelf assets that do not require preconditioning
regimens. Current clinical evaluations have yielded encouraging
results in RA and SSc (Bucci et al., 2024; Bucci et al., 2025; Hagen
etal., 2024; Subklewe et al., 2024). In this context, the biology of
NK cells positions them as possible candidates for such thera-
peutic strategies. AB-101, an allogeneic nongenetically modified
NK cell product, is currently assessed alone or in combination
with B cell-depleting agents (rituximab or obinutuzumab) in
multiple AIDs such as SLE, RA, pSS, and SSc (NCT06265220,
NCT06581562, NCT06991114). A recent report indicates that iPSC-
derived CAR-NK cells may offer distinct advantages over T cell-
centric therapies in the treatment of AIDs. In a proof-of-concept
case of diffuse cutaneous SSc, administration of an allogeneic
dual-targeting CAR-NK product (CD19 and BCMA) induced rapid
and durable clinical improvement, accompanied by a profound
resetting of the B cell compartment and reduction in autoantibody
titers (Wang et al., 2025b). Compared with CAR-T cells, CAR-NK
approaches are inherently safer in the allogeneic setting, with a
markedly reduced risk of cytokine release syndrome, immune
effector cell-associated neurotoxicity, and graft-versus-host dis-
ease, thereby improving the therapeutic risk-benefit profile in
nonmalignant settings. Their derivation from iPSCs also enables
scalable, standardized, and truly off-the-shelf manufacturing,
overcoming the logistical and economic barriers of autologous
CAR-T production. Dual targeting of both B cells and long-lived
plasma cells addresses a key limitation of CD19-directed strategies
and may yield deeper and more durable immune modulation.
Moreover, the CAR-NK platform supports multiplex genetic en-
gineering, including edits that improve persistence, prevent host
rejection, and incorporate safety switches, providing a level of
programmability and versatility difficult to achieve with indi-
vidualized CAR-T products. Collectively, these features position
CAR-NK therapies as an interesting next-generation strategy for
broad application across antibody-mediated AIDs, combining the
efficacy of targeted immune depletion with improved safety and
accessibility. These data are supported by an exploratory clinical
study investigating anti-CD19 CAR-NK cells for the treatment of
relapsed refractory SLE patients, which has demonstrated prom-
ising outcomes, including B cell immune reset and a good safety
profile (NCT06010472) (Gao et al., 2025).

NK cells in solid organ allografts
Organ transplantation necessitates a delicate balance within the
immune system: it must maintain tolerance toward genetically
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distinct grafts yet remain efficient against pathogens. Histori-
cally perceived as peripheral participants, NK cells are emerging
as pivotal agents influencing chronic rejection of solid organ
allografts. In the context of both hematopoietic and solid organ
transplantation, mismatches in MHC molecules between donor
and recipient can disrupt the inhibitory signals controlling NK
cells. This triggers NK cell-mediated cytotoxicity through a
“missing-self” mechanism, i.e., the absence of interaction be-
tween MHC class I molecules and their cognate inhibitory re-
ceptors such as KIR and NKG2A, expressed on NK cells (Karre,
2002). Additionally, NK cells can migrate toward grafts follow-
ing inflammatory chemokine signals (such as CXCL9 and
CXCL10) and adaptively modulate their phenotype within the
transplant environment. Finally, NK cells can also recognize
stressed cells within the allograft through NKG2D and NCRs, a
mechanism that may contribute to the elimination of the solid
organ graft, even in the absence of donor-specific antibodies
against the allograft. In addition, in sensitized solid organ
transplant recipients, preexisting donor-specific antibodies coat
the graft endothelium. Patient NK cells, through CD16, can then
exert antibody-mediated rejection (AMR) via ADCC (Koenig
et al., 2021; Thaunat et al., 2025). This activity significantly
contributes to microvascular inflammation, complement depo-
sition, and endothelial cell damage. Histological and tran-
scriptomics data have robustly associated infiltrating CD16* NK
cells with severe microvascular injury within graft tissues.
CD38, a molecule expressed by plasma cells and certain
NK cell subsets, has become a target of therapeutic interest be-
yond hematologic malignancies. Within transplantation, CD38
targeting simultaneously curbs alloantibody production and
dampens NK-mediated ADCC. A landmark phase II trial that
assessed the efficacy of felzartamab, a CD38-depleting antibody,
among kidney transplant recipients with chronic AMR at least 6
mo after transplantation demonstrated a marked histological
reversal of AMR (Mayer et al., 2024). Moreover, significant re-
ductions were observed in microvascular inflammation scores,
molecular rejection signatures, and donor-derived cell-free
DNA, indicative of reduced graft injury. Remarkably, these
therapeutic effects correlated with notable peripheral NK cell
depletion. Safety profiles indicated predominantly mild-to-
moderate infusion reactions, with fewer severe adverse events
and graft losses compared with placebo. Importantly, the re-
sponse durability was evident at 1 year, with only three initial
responders experiencing AMR recurrence. From a mechanistic
perspective, the felzartamab trial provides compelling evi-
dence that depletion of CD38-positive NK cells and plasma cells
substantially mitigates ADCC-driven endothelial injury. Thus,
it delivers unprecedented mechanistic validation, establishing
NK cells as direct contributors to late-stage AMR pathology and
highlights critical insights relevant to transplant immunobiol-
ogy. Firstly, NK cells actively drive late-stage AMR, as their
targeted depletion results in histological recovery. Secondly,
concurrent inhibition of B cell-derived alloantibodies and NK
cell effector functions offers synergistic therapeutic advantages.
Long-term monitoring of infections, malignancies, and immune
reconstitution will be critical as larger phase III trials progress.
Future research directions should emphasize refined NK cell
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characterization of CD38* NK populations implicated in graft
rejection. Furthermore, combining anti-CD38 therapy with IL-6
antagonists, complement inhibitors, or Fc receptor modulators
may optimize therapeutic strategies, enhancing graft tolerance
without significantly compromising overall immunity. Identi-
fying predictive biomarkers, such as baseline CD38 expression
on infiltrating NK cells, could further refine patient selection.

Overall, NK cells have transitioned from innate immune
guardians to mediators of transplant-associated immune re-
sponses, positioning them simultaneously as key pathogenic
agents and promising therapeutic targets.

Conclusion and perspectives

NK cells have long been studied in the context of infection and
cancer. New therapeutic technologies such as NK cell engagers
and engineered NK cells are paving the way for precision NK
cell-based immunotherapies. Although primarily developed for
oncology, these technologies may be adapted to treat noncan-
cerous diseases with high unmet needs in a broader range of
diseases, including viral infections, neurodegeneration, auto-
immunity, and transplantation. Moving forward, critical ques-
tions remain. Identifying disease-relevant NK cell subsets,
selectively targeting or expanding them, and safely monitoring
their effects in patients will be essential for clinical translation.
Nonetheless, the evolving landscape of NK cell research sug-
gests that these innate lymphocytes should be considered, not
only as defenders against infection and malignancy, but also as
modulators of chronic immune-mediated conditions.
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