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Epigenetic priming as a driver of memory recall and

dysfunction in T cells

Mieke Metzemaekers™ @, Niels J. Rinzema*@®, and Ralph Stadhouders'®

T cells are essential for protective immunity against pathogens and malignancies. While the initial activation of a naive T cell is
slow, antigen-experienced or memory T cells mount near-immediate protective responses through their remarkable capacity to
instantaneously reactivate inflammatory gene programs upon antigen rechallenge. Evidence is emerging that this
immunological memory is underpinned by dynamic changes at the chromatin level or epigenome of T cells. Here, we review
recent findings on how epigenetic mechanisms are a driving force guiding initial T cell activation and differentiation, and
durably endow memory T cells with the ability to remember gene regulatory processes essential for high-magnitude
protective immune responses. We discuss the molecular programs that may be involved in the establishment and maintenance
of chromatin-based information in memory T cells during homeostasis, and how undesired epigenetic priming may program
T cells for dysfunction in patients with chronic immune-related disease and cancer.

Introduction
Our adaptive immune system can build durable immunity
against harmful agents (Pulendran and Davis, 2020; Sallusto
et al., 2010). A central pillar of this immunological memory
comprises memory T cells: previously activated T lymphocytes
that “remember” a prior interaction with their target antigen,
such as proteins derived from tumors or pathogens, enabling
them to mount vigorous and rapid recall responses upon antigen
reexposure (Farber et al., 2014; Kiinzli and Masopust, 2023;
Turner et al., 2021). Memory T cells provide the host with im-
munological protection against tumors and previously encoun-
tered pathogens that may last a lifetime (Derksen et al., 2023;
Soerens et al., 2023). Current vaccination strategies—among the
most effective medical interventions used today—are based on
the concept of immunological memory formation (Pulendran
and Davis, 2020; Sallusto et al., 2010). Nevertheless, generat-
ing memory T cells is not without risk. Aberrant memory T cells
targeting harmless (self-)antigens can cause allergy or autoim-
mune disease (Collier et al., 2021; Hammad and Lambrecht,
2021). In addition, in the setting of cancer or persistent infec-
tion, chronically activated T cells often fail to adopt functional
memory phenotypes and enter a state of dysfunction, in part
explaining why long-term efficacy of current immunotherapies
remains relatively modest (McLane et al., 2019; Thommen and
Schumacher, 2018).

The importance of T cell memory to human health has raised
the fundamental question of how memory T cells can so

effectively and durably recall effector responses. Efforts to ad-
dress this question have revealed that the remarkable functional
qualities of memory T cells are strongly linked to their gene
expression (“transcriptional”’) program. However, the mecha-
nisms underpinning the unique transcriptional identity of
memory T cells have long remained enigmatic. At the most basic
level, gene expression is orchestrated by DNA-binding tran-
scription factors (TFs) that interact with gene regulatory
elements—such as promoters and enhancers—to activate or
repress gene transcription (Grosveld et al., 2021; Voss and Hager,
2014). A prerequisite for TF-dependent gene regulation is the
accessibility of their cognate binding sites within these gene
regulatory elements, which is regulated at the chromatin level or
“epigenome” of the cell. A first one-dimensional (“1D”) level of
epigenetic regulation is provided by the positioning of nucleo-
somes, which consist of histone proteins that package DNA into a
chromatin fiber, along with covalent modifications of histones or
DNA that may either facilitate or impede TF binding (Fig. 1)
(Klemm et al., 2019; Luo et al., 2018; Wang et al., 2008). On top of
this 1D composition, chromatin adopts a cell state-specific three-
dimensional (3D) folding pattern (Pongubala and Murre, 2021;
Zhao et al., 2022). Essential in shaping 3D genome organization
are the architectural protein CCCTC-binding factor (CTCF) and
the cohesin complex, which together extrude DNA into loops
that form topologically associating domains (TADs) (Fig. 1)
(Davidson and Peters, 2021). TADs are considered spatial
neighborhoods in which genomic sequences can frequently
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Figure 1. Overview of the various epigenomic features involved in the regulation of gene expression. At the largest genomic scales, chromosomes
segregate within 3D nuclear space into a nuclear lamina-associated, transcriptionally repressed B compartment and a transcriptionally active A compartment
that occupies the nuclear interior. Within these compartments, cohesin and CTCF together form TADs through a process called loop extrusion. TADs are
spatially insulated genomic regions that facilitate interactions between genes and their regulatory elements (e.g., promoters, enhancers). At the level of the
chromatin fiber, DNA is wrapped around nucleosomes consisting of histone octamers that can be posttranslationally modified (e.g., acetylation, methylation).
DNA itself can also carry methylation modifications. Nucleosome positioning and histone/DNA modifications, together with 3D chromatin architecture, shape a

local chromatin environment that either supports or inhibits the recruitment of TFs and RNA polymerases to control gene transcription.

interact, facilitating correct interactions between regulatory
elements such as enhancers and their target gene promoters—
which can be separated by large 1D genomic distances. At larger
megabase scales, TADs and loops segregate into transcriptionally
active (“A”) and repressed (“B”) nuclear compartments, which
may further promote efficient transcriptional control of gene
expression programs (Cuartero et al., 2023; Misteli, 2020;
Stadhouders et al., 2019). Together, this multidimensional epi-
genome controls TF activity, gene regulation, and ultimately
cellular identity and function (Fig. 1).

Excitingly, recent technological advancements have offered
immunologists new tools to unravel the molecular basis of T cell
memory. From these endeavors, it is becoming increasingly
clear that epigenetic priming mechanisms control the tran-
scriptional programs that underlie the rapid recall ability of
memory T cells (Frias et al., 2021; Tough et al., 2020). Despite
residing in a quiescent state under homeostatic conditions,
resting memory T cells appear to utilize a dynamic interplay
between dedicated TFs and a three-dimensionally organized
chromatin landscape, which both foreshadows and facilitates
adequate changes in gene expression upon antigen reencounter.
These findings have begun to transform our understanding of
the fundamental mechanisms of T cell-mediated immunity and
how these may be exploited therapeutically. In this review, we
will discuss recent insights into how memory T cells leverage
an “epigenetic imprint” to stably store information and in-
structions received during their initial activation, granting
them the capacity to “memorize” gene regulatory processes
essential for high-magnitude effector responses. In addition,
we will discuss how aberrant epigenetic imprints may drive
(memory) T cells into a dysfunctional state in patients with
chronic diseases.
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Epigenetic regulation of T cell activation and differentiation

Equipped with highly specific af T cell antigen receptors, T cells
continuously monitor their surroundings to detect pathogens
and malignancies. T cells are classically subdivided into CD4*
T cells, which recognize antigens presented by major histo-
compatibility complex (MHC) class II molecules and orchestrate
immune responses by modulating the activity of other (immune)
cells, and MHC I-restricted cytotoxic CD8* T cells, which can
directly kill aberrant cells (Taniuchi, 2018). Activation of both
CD4* and CD8* T cells follows the same general course, and re-
quires the integration of three crucial signaling routes: antigen-
dependent signaling through the T cell receptor (TCR; signal 1),
costimulation provided by interaction between costimulatory
receptors on the antigen-presenting cell (e.g., CD80/CD86) and
their counter-receptors (e.g., CD28) on the T cell (signal 2), and
the influence of cytokines (signal 3) (Hwang et al., 2020). The
initial activation of a naive T cell—which has never seen its
target antigen—licenses its clonal expansion and differentiation
into a pool of numerically expanded effector cells that have ac-
quired the ability to fight the threat. Following successful anti-
gen elimination, the majority of the differentiated effector cells
die, while a small fraction (~5-10%) of the activated, antigen-
experienced population develops into long-lived memory T cells
(Farber et al., 2014; Kiinzli and Masopust, 2023; Turner et al.,
2021). These memory T cells return to quiescence, yet remain
poised to mount near-immediate recall responses upon antigen
rechallenge that are both faster and greater in magnitude com-
pared with the primary response of naive T cells. The rapid recall
ability of memory T cells resides, at least in part, in their ability
to near-instantly reactivate the expression of genes essential for
effector functions. These include the secretion of cytokines
to stimulate other immune cells and/or inhibit pathogen
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replication (CD4* and CD8" T cells) and the production of cy-
totoxic molecules to directly kill infected or malignant cells
(mostly CD8* T cells; Annunziato et al., 2015).

Distinct T cell states emerge through changes in gene ex-
pression programs imposed by TFs and multidimensional epi-
genetic mechanisms in response to environmental signals
(Bediaga et al., 2021; Henning et al., 2018; Hosokawa and
Rothenberg, 2021; Liu et al.,, 2024b; Tough et al., 2020; Yu
et al.,, 2017). In fact, all three signaling routes required for
T cell activation eventually lead to the engagement of signal-
responsive TFs, including members of the STAT, AP-1, IRF,
and NFAT families (Esensten et al., 2016; Hwang et al., 2020).
Although the importance of these TFs for T cell activation and
fate specification is broadly recognized, their individual roles
and the mechanisms that regulate their activity and binding site
accessibility are only beginning to unfold. Moreover, it is im-
portant to mention that current knowledge in the field is pri-
marily based on the analysis of murine T cells, and translating
these findings to human T cell biology remains pivotal.

Naive T cell activation

Prior to encountering an antigen, naive T cells exploit epi-
genetic mechanisms to actively maintain their naive pheno-
type and to remain quiescent. This includes large-scale
chromatin compaction driven by the condensin II complex
and H1 linker histone deposition (Rawlings et al., 201l;
Willcockson et al., 2021), which prevent premature naive
T cell activation, for example, by keeping binding sites for TFs
implicated in T cell activation inaccessible. In addition, the 3D
organization of chromatin into loops plays an important role
in maintaining T cell naivety and homeostasis (Burren et al.,
2017; Onrust-van Schoonhoven et al., 2023; Russ et al., 2023;
Shan et al., 2022b). In CD8" T cells, key TFs such as TCF-1,
LEF1, and BACH2 provide supervision of naive-specific
chromatin accessibility and 3D genome organization—the
latter through recruitment of CTCF (Roychoudhuri et al,,
2016; Russ et al., 2023; Shan et al., 2021; Shan et al., 2022b).
Importantly, the cooperation between TCF-1 and CTCF not
only preserves the chromatin architectural landscape of naive
T cells, but also enables changes in CTCF occupancy and
chromatin interactions in response to IL-7 and IL-15 signaling,
facilitating the transcriptional adaptations essential for ho-
meostatic proliferation induced by these cytokines (Shan
et al., 2022b). An inappropriate expression of genes encod-
ing inflammatory cytokines is further precluded at the level of
histone modifications and DNA methylation (Fields et al.,
2002; Kersh et al.,, 2006; Wei et al.,, 2009; Zebley et al,,
2021a). Moreover, gene silencing elements may contribute
to preventing premature cytokine expression in naive T cells
by diminishing enhancer-promoter interactions, as was re-
cently shown for the Ifng gene (Cui et al., 2023).

Upon activation of a naive T cell, the mobilization of Ca2*
downstream of TCR signaling induces large-scale chromatin
decompaction (Lee et al., 2015) (Fig. 2 A). Protein kinase C (PKC)
plays a crucial role in initiating Ca**-dependent chromatin de-
condensation, through activation of p38 MAPK and NF-«B
pathways (Funsten et al, 2020). NF-«B then induces the
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synthesis of IL-2 and its high-affinity receptor IL-2RA/CD25
(Pimentel-Muifios et al., 1994; Prasad et al., 2002). Additionally,
PKC activates p44/42 MAPK (ERK1/2), which promotes phos-
phorylation of AP-1 family TFs and is required for T cell com-
petence to respond to IL-2 (Funsten et al., 2020). Combined,
these early signaling events ensure that only activated, antigen-
specific T cells become receptive to IL-2-induced proliferation
and chromatin remodeling orchestrated by the main target of
IL-2 signaling, the STAT5 TF (Li et al., 2017). AP-1 family TFs,
acting downstream of TCR and coreceptor signaling, also con-
tribute to initial chromatin opening and the reorganization of
chromatin loops in recently activated T cells (Ciofani et al., 2012;
Pham et al., 2019; Tsao et al., 2022; Yukawa et al., 2020). In
support of the pioneering role of AP-1family TFs in this context,
the ectopic expression of the AP-1 family member BATF, to-
gether with its partner IRF4, in fibroblasts was found to be
sufficient to induce chromatin accessibility and transcription at
several loci associated with T cell function (Tsao et al., 2022).
AP-1TFs may exert their chromatin remodeling activities either
directly via binding to DNA or by recruiting the prototype
mammalian chromatin remodeling complex, c-BAF (Phametal.,
2019; Tsao et al., 2022; Vierbuchen et al., 2017; Yukawa et al.,
2020). For CD8* T cells, it was recently shown that c-BAF plays
an essential role in facilitating de novo opening of enhancers
shortly after activation (McDonald et al., 2023).

Effector T cell differentiation

T cell differentiation is accompanied by extensive rewiring of
chromatin landscapes (Fields et al., 2002; Liu et al., 2023; Quon
et al., 2023; Scott-Browne et al., 2016; Wei et al., 2009; Zhang
et al., 2023). According to the current view, the pioneering
activation-induced chromatin remodeling events mediated by
STATS5, AP-1, and c-BAF render local chromatin environments
permissive to subsequent binding by fate-determining TFs
(Bevington et al., 2020; McDonald et al., 2023; Tsao et al., 2022).
Within this framework, the cytokine milieu (signal 3) plays a
decisive role in determining the functional properties that the
activated T cell will acquire. For CD4* T cells, specific cytokines
and their target STAT proteins induce differentiation into spe-
cialized T helper (Th) subsets through the induction of fate-
determining TFs (Fig. 2 B). Specifically, IL-12/STAT4 signaling
induces T-Bet expression and Thl differentiation; IL-4/STAT6
signaling mediates GATA3 upregulation and Th2 differentia-
tion; and IL-6/STAT3 evokes RORyt expression and Th17 dif-
ferentiation (Annunziato et al., 2015; Zhu et al., 2010). These
distinct TF combinations drive the expression of a unique rep-
ertoire of cytokines and functional qualities by the individual Th
populations: Thl cells secrete interferon-y (IFN-y) to fight in-
tracellular microbes; Th2 cells produce interleukin (IL)-4, IL-5,
IL-9, and IL-13 during anti-helminth responses; and Th17 cells
use IL-17 to eradicate fungi and extracellular bacteria. Most
activated CD8* T cells gain cytolytic activity and the capacity to
produce IFN-y through the expression of the EOMES and T-Bet
TFs (Annunziato et al., 2015; Cruz-Guilloty et al., 2009). IL-12
and IFN-o/B—in addition to autocrine IFN-y—are the main
cytokines promoting this effector program (Curtsinger et al.,
2012; Starbeck-Miller et al., 2014; Valbon et al., 2016) (Fig. 2
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Figure2. Molecular events driving naive T cell activation and subsequent effector differentiation. (A) Antigen-dependent stimulation of the TCR (signal
1) on a naive T cell combined with CD28-mediated costimulation (signal 2) results in the activation of NFAT, AP-1, and NF-kB TFs that increase chromatin
accessibility at regulatory elements controlling genes important for T cell activation. These include genes encoding IL-2 and its high-affinity receptor, which
then establish an autocrine positive feedback loop that activates the STAT5 TF. In cooperation with the TCR-induced TFs, STATS is critical for chromatin
remodeling and full activation of the general activation program. (B and C) After initial activation, exposure to specific cytokines (signal 3) induces effector cell
differentiation toward specific Th (panel B) or cytotoxic T (Tc; panel C) cell subsets. These cytokines activate specific members of the STAT TF family that in turn
activate lineage-defining TFs (i.e., T-bet, GATA3, RORyt, EOMES, and RUNX3), which team up with STAT proteins and TCR-induced TFs to activate the different
effector programs.
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C). However, in addition to these classical type I cytotoxic ef-
fector CD8* T (Tcl) cells, other subsets have been identified,
including Tc2 and Tcl7 cells that exhibit differentiation trajec-
tories and functional characteristics that mirror Th2/Th17
populations (Annunziato et al., 2015). However, it remains
poorly understood whether such Tc2/Tcl7 properties are stably
maintained over time within the pool of memory CD8* T cells or
solely reflect transient biological variability.

The distinct effector T cell populations are characterized by
unique enhancer repertoires, suggesting an important role of
dynamic changes in 3D chromatin organization during T cell
differentiation. TFs belonging to the STAT family play a key role
in establishing the chromatin landscapes that control the gene
expression programs characteristic of functionally distinct ef-
fector T cell populations (Vahedi et al., 2012). The importance of
STAT family TFs in this context is illustrated by the inability of
the fate-specifying TFs T-Bet and GATA3 when overexpressed in
STAT-deficient CD4* T cells to reestablish the enhancer reper-
toires underpinning Thl and Th2 effector fates, respectively
(Vahedi et al., 2012). Further supporting a key role of 3D chro-
matin rewiring during T cell differentiation is the recently
demonstrated critical involvement of the architectural protein
CTCF in this process. Indeed, extensive redistribution of CTCF
binding sites characterizes T cell activation and effector differ-
entiation, and its absence results in failed terminal effector cell
differentiation (Liu et al., 2023; Quon et al., 2023). In activated
CD8* T cells, CTCF acquires de novo binding sites and mediates
effector T cell differentiation by inducing the formation of
chromatin loops that favor the expression of genes associated
with an effector phenotype, including inflammatory mediators
such as Ifng and Gzma and TFs such as Zeb2, Bhleh40, and Thx21
(encoding T-Bet) (Liu et al., 2023). Importantly, T-Bet, in turn,
contributes to CTCF recruitment in early effector CD8* T cells,
setting up a feed-forward loop that enforces the effector fate (Liu
et al., 2023). In addition, chromatin regions that gain accessi-
bility and CTCF occupancy in effector CD8* T cells compared
with naive CD8* T cells are enriched for binding motifs of AP-1
family TFs (Liu et al., 2023). This finding suggests that in-
ducible TFs downstream of TCR signaling—such as BATF and
FOS-JUN—further facilitate CTCF recruitment and chromatin
opening (Liu et al., 2023). Cooperation between BATF and
CTCF has also been implicated in CD4* T cell fate specification
(Chandra et al., 2023; Liu et al., 2024a; Pham et al., 2019).
Here, the BATF TF recruits CTCF to its binding sites, facili-
tating the restructuring of chromatin architecture to enable
transcription of genes important for effector T cell differen-
tiation. Moreover, cooperation between CTCF and the T-Bet
and GATA3 TFs facilitates the expression of signature cyto-
kine genes in Thl and Th2 cells, respectively (Ribeiro de
Almeida et al., 2009; Sekimata et al., 2009).

Memory T cell differentiation

Most of the differentiated effector T cells only provide protection
against immediate threats and go into apoptosis following suc-
cessful antigen elimination, leaving behind a relatively small
population of cells that have developed into long-lived memory
T cells. While effector T cells are strongly linked to the presence
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of antigen, memory T cells persist in a manner that does not
depend on antigen exposure, but rather on cytokines belonging
to the common y-chain family, in particular the IL-2-related
cytokines IL-7 and IL-15 (Raeber et al., 2018). It remains in-
completely understood when and how the offspring of an
activated naive T cell becomes committed to a short-lived
effector versus memory T cell fate. The strength and dura-
tion of TCR signaling, clonal competition, and the cytokine
milieu are likely to play an important role in these fate de-
cisions, but the underlying mechanisms remain unclear
(Muroyama and Wherry, 2021; Raeber et al., 2018; Ramos
et al., 2009; Sarkar et al., 2007). Current knowledge on this
topicislargely based on CD8* T cells, as antigen-specific CD4*
memory T cell clones are usually of low abundance and
technically more difficult to detect (Osum and Jenkins, 2023).
There has been considerable debate over whether memory
T cells develop through dedifferentiation of effector cells
or arise at an earlier stage of activation, with published lit-
erature supporting both hypotheses (Akondy et al., 2017;
Henning et al., 2018; Smith et al., 2018; Tough et al., 2020).
Interestingly, it was recently shown that fate specification
may occur as early as during the first division of the activated
naive T cells, through asymmetrical distribution of c-BAF and
the MYC TF among the two daughter cells (Guo et al., 2022).
According to this model, cells with high levels of both c-BAF
and MYC are destined to become short-lived effector cells,
whereas those with low levels of both factors will become
memory cells. Supporting this view is the observation that
the c-BAF component ARID1A promotes the expression of key
TFs associated with an effector phenotype and the accessi-
bility of their cognate binding sites in recently activated
T cells (McDonald et al., 2023).

In CD8* T cells, a series of TFs, including—but not limited
to—ID3, TCF-1, BCL6, STAT3, FOXO01, EOMES, and ZEBI, have
been linked to memory formation (Banerjee et al., 2010; Cui
et al., 2011; Delpoux et al., 2018; Ichii et al., 2002; Utzschneider
et al., 2018; Yang et al., 2011; Zhou et al., 2010). Among these,
TCF-1 levels appear particularly critical for promoting memory
T cell differentiation. During differentiation, downregulation of
TCF-1 by DNMT3a-mediated DNA methylation of its encoding
gene, Tcf7, marks an important event in early fate decisions and
is associated with the loss of self-renewal capacity, the silencing
of memory-associated genes, and the acquisition of an effector
cell phenotype (Abadie et al., 2024; Ladle et al., 2016; Lin et al.,
2016; Silva et al., 2023). Meanwhile, cells that retain high TCF-
1levels are destined to seed the pool of memory T cells. Impor-
tantly, although loss of TCF-1was originally considered to mark a
point of no return in T cell differentiation, recent evidence
suggests that epigenetic silencing of Tcf7 is a stochastic and re-
versible process that allows effector-to-memory cell dediffer-
entiation (Abadie et al., 2024). This implies that transcriptional
programming toward a memory phenotype can occur both early
on and during later stages of naive T cell activation. In this
context, it is important to note that chromatin-modifying
enzymes—recruited to genomic loci by, for example, TFs
(Gourisankar et al., 2024)—play critical roles in regulating
(early) memory T cell formation (reviewed in Henning et al.
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[2018]). For example, the EZH2 histone methyltransferase
controls the balance between effector and memory cell differ-
entiation through regulating the expression of key genes such as
1d3, Prdmi, and Eomes (He et al., 2017).

Memory T cell heterogeneity

T cells with memory potential can differentiate into various
memory T cell subsets that differ in their multipotency, capacity
for self-renewal, migratory properties, and functional qualities
(Muroyama and Wherry, 2021). Originally, memory T cells were
subdivided into lymph node-homing central memory cells
(Tcm), and effector memory T cells (Tgy) that are capable of
rapid infiltration into inflamed tissues (Sallusto et al., 1999).
Relative to each other, Ty have a higher proliferative potential
and produce IL-2, while Tgy have a heightened ability for ef-
fector functions. Today, additional subsets of memory T cells
have been identified, including a population of more differen-
tiated Tgy that reexpresses CD45RA—a marker usually associ-
ated with naive T cells—designated Trmra, and a population of
stem cell-like memory cells (Tscy) that shares features with Tey
and naive T cells (Gattinoni et al., 2011; Larbi and Fulop, 2014).
Temra are mostly CD8* and arise in settings of repeated antigenic
stimulation (e.g., in humans infected with cytomegalovirus
[Henson et al., 2012]). Despite their high capacity for producing
inflammatory molecules, their absolute role in providing im-
munological protection remains obscure. This can be explained,
at least in part, by the absence of a known murine homolog for
human Tgygra. In addition to Tsem, Tem, Tem, and Temgra that
circulate through blood and (lymphoid) organs, a pool of sessile
memory T cells exists that permanently resides in peripheral
tissues (Christo et al., 2024; Kumar et al., 2017; Szabo et al.,
2019). These tissue-resident memory T cells (Tgy) are believed
to act as first responders, conferring local protection of the host
tissue in which they reside.

The distinct memory T cell subsets exhibit specific gene
expression programs, chromatin landscapes, and enhancer
repertoires (Giles et al., 2022; He et al., 2016; Hombrink
et al., 2016; Kumar et al., 2017; Muroyama and Wherry,
2021). In addition, for CD8* T cells, a unique combination
of key TFs has been assigned to each memory T cell sub-
population, most likely enforcing its unique phenotypic and
functional attributes: Tscy are TCF-1Mc-Myb?, Ty are TCF-
1MFOXO1MBLC6MSTAT3MID3MEOMESMT-Bet!°, Tgy are
Blimp1hiZeb2hSTAT4MID2MT-Beth, and Tgy are BlimplMR-
UNX3MHobitMKLF21°EOMES!°T-Bet!l°TCF-11°  (reviewed in
Christo et al. [2024], Martin and Badovinac [2018], Muroyama
and Wherry [2021], Park and Mackay [2021]). In comparison,
the CD4* T cell field is somewhat lagging behind, at least in
part because the Th1/Th2/Thl17 framework still awaits full
integration with the concept of Tcy/Tem subset specification
(Osum and Jenkins, 2023). For both CD4* and CD8* T cells, a
unifying framework for the development of the distinct cir-
culating and tissue-resident memory T cell populations is
lacking, and both the hierarchy between the individual sub-
sets and the timing of fate commitment remain controver-
sial. Based on DNA methylation states and chromatin
accessibility landscapes, a linear differentiation model has
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been proposed, progressing from naive to Tscy, Tem, Tems
and Temra (Abdelsamed et al., 2017; Durek et al., 2016;
Moskowitz et al., 2017). Notably, these analyses are solely based
on the study of blood-derived T cells. As we are only beginning
to understand the spatial control of T cell fate decisions, re-
visions of these models are likely needed in the future.

Mechanisms of transcriptional priming in memory T cells
Various mechanisms have been described that prepare
memory T cells for future challenges. These mechanisms in-
clude changes in metabolism and altered TCR signal trans-
duction, as well as the maintenance of a preformed pool of
(translationally repressed) cytokine mRNAs (Farber, 2009;
Geltink et al., 2018; Salerno et al., 2018). In addition, inducible
effector gene programs can remain epigenetically primed for
rapid reactivation during secondary responses. Indeed, al-
though the majority of activation-induced chromatin changes
revert back to baseline (i.e., naive) levels upon antigen clear-
ance, part of the effector epigenomic landscape is maintained
as an “epigenetic recording” of previous transcriptional acti-
vation in resting memory T cells (Bevington et al., 2016)—
allowing for more rapid (re)activation during future chal-
lenges. In this section, we will discuss the various molecular
mechanisms through which genes can be transcriptionally
primed for recall.

DNA methylation

The chromatin at primed gene loci often carries specific epi-
genetic markings, remains accessible due to DNA-bound TFs,
and/or adopts specific 3D configurations that facilitate rapid
transcriptional reactivation (Fig. 3). While different in na-
ture, all these molecular adaptations take away particular
roadblocks that need to be resolved before robust gene acti-
vation can be achieved. The most evolutionary ancient epi-
genetic mark associated with transcriptional memory may
well be DNA methylation at cytosines in CpG dinucleotides.
Although the relationship between DNA methylation and
transcription is complex, DNA methylation—particularly in
promoters—is often linked to gene repression (Mattei et al.,
2022). Mechanistically, DNA methylation of cytosine residues
can inhibit binding of certain TFs (Yin et al., 2017; Zhu et al,,
2016) and recruit repressive methyl-CpG-binding domain
protein complexes (Mattei et al., 2022). Importantly, activation-
induced DNA demethylation of effector loci is often maintained
by memory T cells, even during sustained rounds of homeostatic
proliferation (Abdelsamed et al., 2017; Youngblood et al., 2017).
Interestingly, disruption of DNA methyltransferase (e.g.,
DNMT3A) or demethylase (e.g., TET2) activity can promote
early memory CD8* T cell formation with more potent recall
abilities during antiviral responses (Carty et al., 2018;
Youngblood et al., 2017), although this may also disrupt stable
commitment to specific memory T cell identities (e.g., Thl
[Baessler et al., 2023]).

Nucleosome remodeling and histone modifications
Altered local nucleosomal organization provides another op-
portunity for transcriptional priming. Several studies have
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Figure 3. Epigenomic features contributing to transcriptional priming in memory T cells. TCR and cytokine signaling induce large-scale chromatin
remodeling during naive-to-effector T cell differentiation, resulting in transcriptional induction of general activation and effector gene programs. Upon res-
olution of inflammation and under homeostatic conditions, memory T cells maintain a specific part of these activation-associated transcriptional programs in an
epigenetically primed state. At the genomic loci harboring these so-called “recall genes,” specific modifications to the local chromatin landscape at regulatory
elements (i.e., promoters and enhancers) help prepare for rapid transcriptional activation upon secondary challenge of the memory T cell. Compared with the
majority of NP genes, primed (P) genes can exhibit increased chromatin accessibility (i.e., through local loss of nucleosomes), reduced DNA methylation, altered
histone modifications (e.g., increased histone methylation), paused RNAPII, recruitment of specific TFs, and changes in 3D genome topology (e.g., preformed
promoter-enhancer contacts). All these molecular adaptations together prepare recall genes for near-instant transcriptional induction upon antigen re-
encounter, and can be maintained and propagated as memory T cells undergo homeostatic proliferation. TSS, transcription start site; RNAPII, RNA polymerase

II; NP, nonprimed.

shown that chromatin accessibility is maintained at inflamma-
tory gene loci in resting memory T cells (Barski et al., 2017;
Bevington et al., 2016; Mirabella et al., 2010; Tu et al.,, 2017,
Zediak et al., 2011) and that these changes in accessibility coin-
cide with enhanced transcriptional recall (Calderon et al., 2019;
Onrust-van Schoonhoven et al., 2023; Rose et al., 2023; Santosa
et al., 2023, Preprint; Scharer et al., 2017; Schauder et al., 2021).
Also in other cell types exhibiting forms of transcriptional
memory, keeping chromatin open at genomic loci of selected
genes offers a direct explanation for their rapid activation by
secondary stimuli (Naik and Fuchs, 2022; Natoli and Ostuni,
2019).

Apart from the presence or absence of histones, posttrans-
lational modifications of histone tails, such as acetylation or
methylation, have well-established associations with increased
gene transcription (Bannister and Kouzarides, 2011; Talbert and
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Henikoff, 2021). While many dozens of histone modifications
exist, only a handful have been investigated in the context of
(T cell) transcriptional memory. Most studied are histone 3 ly-
sine 4 methylation (H3K4me) and histone 3 lysine 27 acetylation
(H3K27Ac). The presence of H3K4me at promoters (H3K4me2/3)
or enhancers (H3K4mel/2) is a well-established marker of reg-
ulatory activity. Mono-, di-, and tri-methylated H3K4me can
accumulate on primed genes in various contexts (reviewed in
Naik and Fuchs [2022], Natoli and Ostuni [2019]), including
short-term transcriptional memory in IFN-exposed HeLa cells
(Siwek et al., 2020), cytokine-stimulated macrophages (Ostuni
et al.,, 2013), and memory-like “trained” innate immune cells
(Fanucchi et al., 2019; Saeed et al., 2014). Similar observations
were made in memory T cells, for example, at the type II cyto-
kine locus or in a more systematic fashion at primed genes in
mouse and human CD4* memory T cells (Barski et al., 2017;
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Bevington et al., 2016; Onrust-van Schoonhoven et al., 2023).
Whether H3K27Ac is also a reliable marker of transcriptional
memory remains debated. Whereas primed genes in mouse
skin and hematopoietic stem cells retain (moderate-to-
weak) H3K27Ac signals after initial stimulation (Kaufmann
et al., 2018; Larsen et al., 2021), our recent analysis of circu-
lating human memory T cells revealed an absence of robust
H3K27Ac on primed regulatory elements across the genome
(Onrust-van Schoonhoven et al., 2023). Still, an earlier
analysis of memory-like T cells generated in vitro did report
H3K27Ac maintenance on primed genes (Bevington et al., 2016).
However, “primed” T cells analyzed in this study were gener-
ated in vitro and still actively cycling in an IL-2-driven
manner at the time of analysis (Bevington et al., 2016),
which complicates comparisons with bona fide quiescent
memory T cells generated in vivo. Loss of repressive histone
marks, in particular H3K27me3, at effector genes in memory
cells has also been proposed to contribute to transcriptional
priming (Araki et al., 2009; Russ et al., 2014). Interesting to
mention are the noncanonical histone variant proteins H2A.Z
and H3.3, which can replace canonical H2A and H3 histones,
respectively. These variants mark transcriptionally primed
genes in model organisms such as budding yeast (Brickner
et al., 2007) and fruit flies (Pascual-Garcia et al., 2017) or in
cytokine-stimulated cultured cells (Kamadaa et al., 2018;
Siwek et al., 2020). Interestingly, we noticed that H2A.Z also
decorated the regulatory elements of primed recall genes in
human memory CD4" T cells (Onrust-van Schoonhoven et al.,
2023). Surprisingly, similar H2A.Z enrichment was already
observed in naive T cells, suggesting that these elements may
be premarked to be “memorized” at an even earlier stage of
T cell development.

Collectively, these findings present a compelling case for the
maintenance of chromatin accessibility, in combination with
histone methylation and histone variants, as a hallmark of
transcriptional priming in memory T cells. But are these epi-
genomic features causally involved in promoting rapid gene
induction? For chromatin accessibility, this seems likely, since
TF binding is strongly linked to local nucleosomal depletion
(Klemm et al., 2019; Thurman et al., 2012). Disrupting chromatin
remodelers in yeast was shown to deplete TFs from promoters
and reduce gene expression (Brouwer et al., 2023; Nguyen et al.,
2021). During T cell activation, loss of c-BAF-dependent chro-
matin remodeling activity impairs chromatin opening and in-
duces a loss of TF binding that leads to dysregulated gene
expression (McDonald et al., 2023). However, short-term tran-
scriptional memory in cytokine-treated HeLa cells can occur in
the absence of retained chromatin accessibility (Siwek et al.,
2020). A causal role of H3K4 methylation in rapid recall seems
unlikely at first glance, since it was shown to only play a minor
role in transcriptional regulation—in contrast to H3K27me3
(Morgan and Shilatifard, 2020). Nevertheless, H3K4me?2 is re-
quired for promoter priming in yeast (Light et al., 2013) and
murine memory Th2 cells deficient in the H3K4 histone meth-
yltransferase KMT2A exhibit impaired recall responses in vivo
(Yamashita et al.,, 2006). Loss of the H3K27 histone methyl-
transferase EZH2 results in impaired memory CD8* T cell recall
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responses (Gray et al., 2017; He et al., 2017). Finally, histone
variants are strong contenders, as H2A.Z was shown to poise
genes for induction in yeast by destabilizing histone-DNA in-
teractions (Brickner et al., 2007; Zhang et al., 2005) and H2A.Z—
but not H3.3—promotes DNA accessibility (Li et al., 2023).

3D genome topology

Alongside the classical 1D DNA and chromatin modifications
described above, alternative mechanisms for transcriptional
priming have been proposed (Fig. 3). These include maintaining
paused RNA polymerase II at primed gene promoters to facilitate
rapid induction of transcription (Core and Adelman, 2019;
D’Urso et al., 2016; Light et al., 2013), a phenomenon that may
also occur in memory T cells (Getzler et al., 2023, Preprint;
Onrust-van Schoonhoven et al., 2023). In addition, the 3D lo-
calization of genes and their regulatory elements in the cell
nucleus has more recently been linked to transcriptional prim-
ing and memory (Cuartero et al., 2023; Ghavi-Helm et al., 2014;
Stik et al., 2020; van Schoonhoven et al., 2020). For example,
positioning genes away from the repressive chromatin envi-
ronment of the nuclear periphery may facilitate rapid activation,
as was observed for early responder genes during Jurkat T cell
activation (Robson et al., 2017). Our recent analysis of human
memory Th2 cells revealed a striking spatial compartmentali-
zation of primed recall genes and their associated enhancers in
3D chromatin hubs and “memory TADs”(Onrust-van Schoon-
hoven et al,, 2023). These structures localized to the more
transcriptionally permissive nuclear interior, connecting
primed genes with their regulatory elements during memory
T cell homeostasis (Onrust-van Schoonhoven et al., 2023).
Concentrating the primary actors and biochemical components
(e.g., TFs, transcriptional cofactors) required for efficient tran-
scriptional recall in 3D nuclear space offers an additional layer of
priming that can act synergistically with local DNA and chro-
matin modifications. Similar to chromatin accessibility dy-
namics, we observed that these memory-specific 3D chromatin
interactions closely resembled the architectural organization
observed in recently activated cells, indicating that spatially
organized nuclear neighborhoods are maintained in memory
T cells after being established during their initial activation
(Onrust-van Schoonhoven et al., 2023). Indeed, elegant studies
of murine antiviral CD8* T cell responses support the concept
that memory T cells retain effector-like 3D chromatin topology
at genes primed for rapid transcriptional recall (Santosa et al.,
2023, Preprint; Zhu et al., 2023), and CTCF is critical for efficient
secondary responses in vivo (Zhu et al., 2023). Localization of
selected genes near nuclear pore complexes has also emerged as
a means for transcriptional priming (Light et al., 2010; Light
et al.,, 2013; Pascual-Garcia et al., 2017), although the precise
underlying mechanisms and the relevance for T cell memory
remain to be determined.

In all of the abovementioned epigenomic strategies for tran-
scriptional priming, TFs are likely to play critical roles as they
interact with chromatin-modifying enzymes (Gourisankar et al.,
2024), target them to genomic sites, and can organize 3D chro-
matin loops (Aboreden et al., 2025; Stadhouders et al., 2012).
Although multiple TFs have been implicated in memory T cell

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20241433

G20z Jequiedeq L0 uo 3senb Aq ypd-eey L y20Z Wel/szLeveL/ceh L bz0ze/6/zze/pd-oie/wal/Bio ssaidnyj/:dny wouy papeojumoq

80f 20



formation (see above), their role in memory T cell homeostasis—
including their contribution to the maintenance of transcrip-
tional memory—is poorly understood.

Establishing and maintaining transcriptional memory

The epigenetic features associated with rapid transcriptional
recall described above are intimately linked to T cell activation,
and appear to be specifically retained at a small fraction of
genomic sites as cells adopt a memory phenotype. But what
mechanisms are responsible for establishing and maintaining
the epigenomic memory signature after initial activation and
during memory T cell homeostasis?

The role of TFs
As discussed earlier, TFs hold critical instructive power in
shaping epigenomes. However, the role of TFs in establishing
and maintaining the epigenomic signature of memory T cells
remains surprisingly understudied, in particular since TFs can
actively recruit chromatin-modifying complexes such as c-BAF
and MLL to their target sites. In blood stem cells, long-lasting
endotoxin-induced transcriptional memory—but not the tran-
sient primary response—requires the binding of the TF C/EBPP
to primed enhancers (de Laval et al., 2020). Elegant work in
mouse epidermal stem cells by Fuchs and colleagues revealed a
central role of STAT and AP-1 TFs in priming for enhanced
secondary repair responses after an inflammatory stimulus
(Larsen et al., 2021). The authors propose a two-step mecha-
nism. First, a cell type-specific and stimulus-specific TF such
as STAT3 cooperates with a universal stress response factor
(e.g., AP-1family member FOS) to establish primed chromatin
at specific genes activated during the initial inflammatory
response. Indeed, chromatin accessibility at such loci is ab-
rogated by depletion of either STAT3 or FOS (Larsen et al.,
2021). As the levels of these TFs are reduced in the resolution
phase, TFs associated with the homeostatic phase (e.g., ATF3)
start occupying the primed regions—likely maintaining local
chromatin accessibility. Upon recall, recruitment of FOS for
transcriptional reactivation no longer requires STAT3 (Larsen
et al., 2021). Similarly, STAT1 was shown to be required spe-
cifically for induction of transcriptional priming but not for
its maintenance in cytokine-treated HeLa cells (Tehrani et al.,
2023). Hence, these studies demonstrate that the mainte-
nance of transcriptional memory may rely on other factors
than those responsible for its establishment. Important to
take into consideration here is the role of so-called “pioneer”
factors, a special class of TFs with the ability to initiate
opening of closed chromatin (Balsalobre and Drouin, 2022;
Zaret, 2020). Underlying this unique capacity is the ability of
pioneer TFs to engage in transient interactions with nucleo-
somal DNA, allowing them to scan closed chromatin for their
target motifs (Zaret, 2020). As such, pioneer TFs may prepare
a locus for priming, enabling nonpioneer TFs and/or chro-
matin remodeling complexes to enter and aid in the estab-
lishment or maintenance of transcriptional memory.

This two-step model for transcriptional memory has clear
parallels with the sequential waves of TF activity that guide
the activation and effector differentiation of naive T cells (see
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Fig. 2). Although attractive, whether it also applies to memory
T cell recall responses remains to be determined. A key issue
is that the identity of the TFs that establish and maintain
the primed chromatin landscape at recall-associated genes
in memory T cells is only partially understood. We and
others have consistently detected AP-1 family TF factor mo-
tifs strongly enriched within regions that (partially) retain
chromatin accessibility in memory CD4* and CD8* T cells after
their initial opening during primary activation of naive T cells
(Bevington et al., 2016; Larsen et al., 2021; Lau et al., 2018;
Onrust-van Schoonhoven et al., 2023; Sen et al., 2016). In the
Fuchs et al. model, AP-1 TFs in T cells—acting immediately
downstream of the TCR—perfectly fit the role of the broadly
acting stress response factor. But which factors may be coop-
erating with AP-1 for memory establishment in T cells, and
which TFs maintain the primed chromatin landscape during
homeostasis? The same motif enrichment analyses also revealed
potential cobinding of RUNX, ETS, and STAT TFs. Studies of
in vitro generated memory-like mouse T cells indeed revealed
binding of STAT5, RUNXI, and ETSI to primed accessible
regions in memory-like cells (Bevington et al., 2016; Bevington
et al., 2020), although these did not include factor depletion
experiments to validate their requirement for chromatin
priming. However, removal of STAT5-inducing cytokines
(i.e., IL-2/IL-7) or the IL-7 receptor resulted in reduced
chromatin accessibility and diminished transcriptional re-
activation (Bevington et al., 2020) —in line with a potential
role of STAT5-inducing homeostatic signals (e.g., IL-7, IL-
15) in maintaining epigenetic priming in memory T cells
(Abdelsamed et al., 2017). In mouse CD8* Tcy cells, the TCF1
TF has recently been implicated in maintaining accessibility
at a subset of primed regions, which were strongly enriched
for AP-1 motifs (Shan et al., 2022a). Thus, a scenario in which
an initial STAT/AP-1-driven establishment of memory is fol-
lowed by the recruitment of additional homeostatic TFs for
maintenance of memory may also occur in T cells, although this
concept still awaits experimental validation. Interesting to
consider in such studies is how TFs exploit or instruct 3D
chromatin architecture. In murine CD8* T cells, it was shown
that CTCF binding sites and 3D chromatin interactions acquired
during the effector phase are partially conserved in Ty cells
(Zhu et al., 2023). These 3D hubs harbor genes that are strongly
induced during memory recall, suggesting a critical role of
CTCF and the stable rewiring of 3D chromatin organization in
establishing transcriptional memory in T cells (Zhu et al,,
2023).

The repeated observation that chromatin priming is estab-
lished during an initial wave of transcriptional activation raises
the possibility that TFs may promote memory formation via the
induction of transcription. In HelLa cells, artificially activating
genes with CRISPRa instead of IFN-y exposure does not induce
transcriptional priming (Tehrani et al.,, 2023). A history of
transcription is therefore at least not always sufficient to induce
memory. Experiments in yeast support a nonessential role of
transcription itself, as repression of INOI transcription during
the memory establishment phase did not prevent priming-
associated nuclear relocalization of INOI (Brickner et al., 2007).
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Epigenetic marks during the cell cycle

One key aspect of stably maintaining an epigenomic imprintina
dividing population of cells—e.g., memory T cells undergoing
homeostatic proliferation—is to faithfully reestablish DNA or
chromatin modifications in daughter cells after completing the
cell cycle (Dogra et al., 2016; Espinosa-Martinez et al., 2024;
Flury and Groth, 2024). Particularly challenging for gene regu-
latory processes are (1) genome replication or S phase, which
entails synthesizing two daughter strands using newly gener-
ated nucleotide and histone building blocks, and (2) mitosis or M
phase, which involves drastic condensation and topological re-
arrangement of chromatin. In order to propagate a primed
chromatin state across memory T cell generations, reliable
mechanisms for copying or rapid reestablishment of epigenetic
markings need to exist. For DNA methylation, the DNMT1
methyltransferase can recognize “hemi-methylated” DNA con-
sisting of a methylated parental strand and the unmethylated
newly synthesized strand. Upon recognition, DNMTI restores
CpG DNA methylation on the unmethylated strand, and global
DNA methylation patterns are preserved in mitotic chromo-
somes (Espinosa-Martinez et al., 2024). How specific histone
modifications are correctly and accurately transmitted during
the cell cycle is a topic of active investigation (Espinosa-
Martinez et al., 2024; Flury and Groth, 2024; Gonzalez et al.,
2021). Recent studies support a model in which histone chape-
rone proteins, such as MCM2, ensure that parental histones—
including their modifications—are symmetrically distributed
on replicated chromosomes (Escobar et al, 2021; Espinosa-
Martinez et al., 2024; Flury and Groth, 2024). Such recycling
of modified parental histones occurs with high accuracy for
many active and repressive marks, as well as histone variants,
within ~250 bp of the original position (Flury and Groth, 2024).
Modification- and locus-specific restoration mechanisms are
thought to subsequently impose parental chromatin states onto
naive histones through the action of protein complexes that can
read and write histone modifications, in particular for repres-
sive histone methylation marks such as H3K27me3 (Escobar
et al., 2021; Espinosa-Martinez et al., 2024; Flury and Groth,
2024; Serra-Cardona et al., 2022).

After their restoration during the S phase, histone
modifications—most prominently histone methylation marks—
are retained on mitotic chromatin and transmitted to both
daughter cells (Espinosa-Martinez et al., 2024; Wang and
Higgins, 2013). In contrast, chromatin accessibility patterns
are largely erased upon DNA replication but are then very
rapidly reestablished as transcription restarts (Ostrowski et al.,
2025; Ramachandran and Henikoff, 2016; Stewart-Morgan et al.,
2019). During the S phase, TFs such as CTCF and the basal
transcription machinery—first displaced by passage of the
replication fork—are thought to compete with nucleosomes for
binding the newly synthesized DNA strands (Ostrowski et al.,
2025; Ramachandran and Henikoff, 2016). In the M phase, RNA
polymerase II is displaced from the chromatin and most tran-
scription ceases (Espinosa-Martinez et al., 2024; Zhang et al.,
2019). However, chromatin accessibility is widely preserved
during mitosis (Festuccia et al., 2019; Hsiung et al., 2015; Teves
et al., 2016), and a set of TFs remains dynamically associated
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with mitotic chromatin—a process referred to as “mitotic
bookmarking” (Gonzalez et al., 2021; Palozola et al., 2019; Teves
et al., 2016). Interestingly, whereas 3D genome architecture is
preserved during the S phase, all major topological features
(i.e., chromosomal A/B compartments, TADs, and chro-
matin loops [Bonev and Cavalli, 2016; Oudelaar and Higgs,
2021; Stadhouders et al., 2019]) are erased during mitosis
and rebuild immediately after mitotic exit when cohesin-
mediated loop extrusion restarts (Nagano et al., 2017; Naumova
etal., 2013; Zhang et al., 2019). In a complex and often cell type-
specific (Espinosa-Martinez et al., 2024) interplay, these pro-
cesses ensure that cells can transfer their epigenomic
landscape—and their identity as a direct consequence—across
cell divisions.

Maintenance of epigenetic priming in memory T cells

Few studies have directly addressed how transcriptional prim-
ing at the epigenome level is maintained in memory T cells under
homeostatic conditions. Studies using transgenic mice often
include Cre recombinase drivers that inactivate genes during
thymic T cell development, making it difficult to separate effects
on initial memory T cell differentiation from those that (also) act
during homeostasis after memory T cells have been generated.
Moreover, gene inactivation at later stages of development may
still have unintended consequences for peripheral immune re-
sponses. Early work revealed that deletion of Dnmtl during
mouse thymocyte differentiation resulted in reduced peripheral
memory T cell numbers, which appeared to be caused by an
impaired proliferative capacity of Dnmtl-deficient naive T cells
(Lee et al.,, 2001). Carefully controlled de novo DNA methyl-
transferase activity by DNMT1 is likely also critical for main-
taining a transcriptionally primed state in established memory
T cells, but this remains to be experimentally shown. Loss of
function of the c-BAF chromatin remodeling complex in mature
mouse CD8* T cells revealed only minor changes in the gener-
ation of circulating memory T cell subsets following a primary
antiviral response (McDonald et al., 2023). However, these
memory T cells showed severely impaired recall responses. Al-
though the authors did not investigate this directly, it seems
plausible to us that chromatin accessibility initiated and/or
maintained by c-BAF at transcriptionally primed genes is critical
for memory T cell recall. Compelling evidence for histone
methylation being key for maintaining transcriptional
priming comes from analyses of memory Th2 cells hetero-
zygous for the H3K4 methyltransferase KMT2A (also called
MLLI1) (Yamashita et al., 2006). T cells from MLL*/~ mice
developed normally, showed equal responsiveness to TCR
stimulation as wild-type cells, and were able to efficiently
adopt Thl or Th2 phenotypes in vitro. Strikingly however,
resting memory MLL*/~ Th2 cells lost their rapid recall abil-
ity, failed to maintain H3K4me2 levels at genomic loci of ef-
fector cytokine genes but also showed reduced levels of the
key GATA3 TF (Yamashita et al., 2006). Interestingly, a re-
cent preprint reported that during the initial TCR stimulation
of naive T cells, MLLI already deposits H3K4me3 at genes
destined to be transcriptionally primed in memory T cells
(Getzler et al., 2023, Preprint).
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Epigenetic basis of T cell dysfunction

T cell exhaustion

While epigenetic mechanisms durably endow memory T cells
with the ability to rapidly recall inflammatory gene transcrip-
tion, inappropriate chromatin priming may drive T cells
into a state of relative dysfunction. Such undesired epige-
netic remodeling is often observed in settings of chronic
TCR signaling, such as in patients with diseases in which the
source of antigen persists (Collier et al., 2021; Lan et al,,
2023; McLane et al., 2019; Seo et al., 2021). In the context
of chronic viral infections (e.g., HIV) and cancer, the re-
sulting dysfunctional state that the chronically activated
T cell enters is often referred to as “exhaustion.” Exhausted
T cells (Tgx) are characterized by sustained high-level
expression of inhibitory receptors (“checkpoints,” such as
PD-1, TIM-3, CTLA4, and LAG3), metabolic alterations, and a
hierarchical loss of their effector functionality and capacity
for proliferation (Lan et al., 2023; McLane et al., 2019). T cell
exhaustion has evolved as an a priori mechanism to manage
potential chronic activation (Chu et al., 2025; McManus et al.,
2025), but limits T cell-mediated immunity in chronic infection
and cancer (Baessler and Vignali, 2024; Cornberg et al., 2013;
Speiser et al., 2014). Revitalizing Tex through immunotherapies
that target exhaustion-associated inhibitory receptors has be-
come a leading approach in the treatment of cancer and chronic
infections, as recognized by the 2018 Nobel Prize in Medicine and
Physiology (Krachenbuehl et al., 2022; Wolchok, 2018).

Epigenetic anchoring of exhaustion

For CD8* T cells, compelling scientific evidence has been ob-
tained that their exhaustion is enforced by a discrete epigenetic
signature that distinguishes Tgx from both effector and memory
T cells (Belk et al., 2022; Ghoneim et al., 2017; Muroyama and
Wherry, 2021; Sen et al., 2016). The epigenetic program of ex-
haustion becomes gradually imprinted during Tex generation
through stable rewiring of chromatin accessibility, histone
modifications, and DNA methylation landscapes (Ford et al.,
2022; Gennert et al.,, 2021; Ghoneim et al., 2017; Ma et al.,
2025; Pauken et al., 2016; Philip et al., 2017). Herein, c-BAF-
mediated chromatin remodeling appears to play a critical role
by controlling the accessibility of TF binding sites (Battistello
et al., 2023). These epigenetic changes contribute to the si-
lencing of genes important for memory/effector T cell differ-
entiation and functionality, such as TCF7 (encoding TCF-1) and
IFNG, while promoting the expression of Tgx-associated genes,
including PDCDI and HAVCR2, encoding the PD-1 and TIM-3
checkpoints, respectively. For example, in Tgx, the PDCDI gene
loses suppressive DNA methylation at the promoter region,
acquires a bona fide accessible enhancer element that promotes
its expression, and gains activating H3K4mel/2 and H3K27Ac
histone modifications at several of its regulatory regions (Bally
et al., 2020; Pauken et al.,, 2016; Philip et al., 2017; Sacristan
et al., 2024). The precise role of 3D genome organization in
Tex development remains largely unknown. However, most of
the exhaustion-associated changes in chromatin accessibility
occur at distal enhancers, thus suggesting a potentially impor-
tant role of chromatin architecture. Supporting this hypothesis,
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a study comparing exhausted and functional chimeric antigen
receptor (CAR) T cells demonstrated changes in 3D chromatin
architecture at exhaustion-associated genes, including PDCDI,
HAVCR?2, and CTLA4 (Gennert et al., 2021).

The developmental path leading to exhaustion remains in-
completely understood, and a full description is beyond the
scope of this review. Most studies support a progressive model in
which PD-1i"TIM-3-TCF-1*CXCR5*SLAMF6* progenitor Tgx
transit through several intermediate Tgx stages and eventually
give rise to terminally Tgy that are PD-1MTIM-3*TCF-1-SLAMF6~
(Beltra et al., 2020; Im et al, 2016; Miller et al., 2019;
Utzschneider et al., 2016). Importantly, while progenitor Tgx are
amenable to “rejuvenation” by immunotherapies, terminal Tgx
are fate-locked in a hyporesponsive state (Im et al., 2016; Miller
et al., 2019; Pauken et al., 2016; Sade-Feldman et al., 2019;
Siddiqui et al, 2019). The exhaustion-specific epigenomic
landscape cannot be reverted by immunotherapies and may
persist even after cessation of antigenic stimulation, as dem-
onstrated in patients with chronic viral infections (Hensel et al.,
2021; Pauken et al., 2016; Yates et al., 2021). This suggests that
Tex eventually acquire “inappropriate memory” for a state of
dysfunction, restricting the full potential of T cell-based im-
munotherapies, particularly immune checkpoint blockade and
CAR T cell therapy (Pauken et al., 2016; Zebley et al., 2021b).
Future endeavors aiming to unravel the initiating chromatin
remodeling events and those that eventually lock terminal Tgx
in a state of dysfunction are essential to accommodate the unmet
need for improved efficacy of these therapeutic modalities. Ex-
citingly, recent efforts exploring opportunities to target epige-
netic regulators of T cell exhaustion are now beginning to pave
the way for development of improved (combination) im-
munotherapies (Battistello et al., 2023; DeGolier et al., 2025;
Isshiki et al., 2025; Kang et al., 2024; Prinzing et al., 2021;
Urbanek-Quaing et al., 2024; Weiss et al., 2024). However, the
exhaustion-associated epigenetic landscape is unlikely to be
easily dismantled. For example, inhibiting c-BAF-mediated
chromatin remodeling can prevent exhaustion, although it
was not sufficient to revert exhaustion once it has been estab-
lished (Battistello et al., 2023). Interestingly, terminal Tgx retain
regions of active chromatin, including primed enhancers en-
riched for AP-1/bZIP family TF binding sites, which correlated
poorly with gene expression (Ford et al., 2022). This decoupling
between chromatin state and transcriptional output could be re-
versed through modulation of hypoxia and costimulatory signaling,
indicating that therapeutic strategies for reinvigorating terminal
Tex can be identified (Ford et al., 2022).

TFs driving exhaustion

The dysregulation and altered usage of TFs that are normally
crucial for effector functions are emerging as a driver of the
exhaustion program at the chromatin level (Fig. 4). Upon acute
antigenic stimulation, NFAT—induced by TCR-mediated Ca*
signaling and calcineurin—physically interacts with the FOS-
JUN heterodimer and binds to NFAT:AP-1 composite sites within
gene regulatory elements (Chen et al., 1998). This NFAT:AP-
1 partnership is essential for the activation of genes important
to T cell activation and effector functions. Chronic activation
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Figure 4. Molecular events driving CD8* T cell exhaustion. Persistent
antigen exposure leads to chronic TCR stimulation of effector (memory) CD8*
T cells, which causes dominant NFAT TF activation at the expense of AP-1TF
activity. The NFAT:AP-1imbalance triggers the expression of TOX, NR4A, and
IRF4, which together repress T-bet and TCF-1 and (indirectly) promote ele-
vated EOMES levels. As a result, NFAT, TOX, NR4A, EOMES, and IRF4 control
the chromatin landscape of chronically activated CD8* T cells, promoting a
transcriptional program that results in exhaustion while suppressing the ef-
fector/memory program.

imbalances NFAT:AP-1 complexes, resulting in “partner-
less” NFAT and the acquisition of an exhausted phenotype
(Martinez et al., 2015). Partner-less NFAT can directly bind to
the regulatory elements of Pdcdl and Havcr2 (encoding check-
points PD-1 and TIM-3) to activate their expression (Martinez
etal., 2015). In addition, NFAT induces the expression of TOX: a
master TF of Tgx development (Alfei et al., 2019; Khan et al.,
2019; Scott et al., 2019; Yao et al., 2019). TOX is a crucial initi-
ator of the epigenetic remodeling that underpins exhaustion and
is expressed by all Tgx subsets, with the highest levels being
detected in terminal Tex (Beltra et al., 2020). TOX expression is
required for Tgx development, yet TOX activation alone is not
sufficient to induce exhaustion (Sekine et al., 2020). TOX re-
duces chromatin accessibility at gene loci important for memory
(e.g., Tcf7) and effector (e.g., Klrgl, Zeb2, and Gzmb) CD8* T cell
differentiation and the opening of Tgx-associated genes (e.g.,
Pdcdl, Entpdl, and Havcr2), likely by recruiting epigenetic reg-
ulators such as KAT7, DNMTI, and SIN3A (Khan et al., 2019).
Besides its role in the initiation of exhaustion, recent findings
show that continuous TOX expression reinforces Tex-specific
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chromatin accessibility landscapes in committed Tgx (Huang
et al., 2025). This observation supports a model in which TOX
actively contributes to limiting the potential of committed Tgx to
enter a functional state, thus restricting immunotherapy effi-
cacy. It was recently shown that IL-2/STATS5 signaling can an-
tagonize TOX-driven epigenetic imprinting (Hashimoto et al.,
2022). Interestingly, constitutive STATS activity induced partial
rewiring of the Tgx-associated epigenetic program toward a
memory/effector chromatin landscape, suggesting an opportu-
nity to exploit STAT5 activity to reprogram Tgx toward more
functional states (Beltra et al., 2023).

TOX appears to act in concert with NR4A family TFs for es-
tablishing the exhaustion program downstream of NFAT (Seo
et al., 2019) (Fig. 4). TOX and NR4Al show similar expression
patterns during Tgx development, positively influence each
other’s expression, and both contribute to the downregulation of
TCF-1 (Khan et al., 2019; Seo et al., 2019; Srirat et al., 2024).
Mechanistically, NR4Al inhibits recruitment of AP-1 factors to
their target gene regulatory regions, thereby preventing AP-1-
driven expression of effector molecules (Liu et al., 2019). In
addition to TOX and NR4A, NFAT induces and cooperates with
IRF4, which has been linked to multiple hallmarks of exhaustion,
including metabolic changes, impaired cytokine production, and
suppression of memory T cell formation (Hirsch et al., 2024;
Man et al., 2017).

The severity of exhaustion is strongly linked to imbalanced
expression of EOMES and T-Bet (Paley et al., 2012). These T-box
family TFs are crucial for normal CD8* T cell differentiation and
effector functionality but become dysregulated in chronically
activated T cells (Beltra et al., 2020; Buggert et al., 2014;
Intlekofer et al., 2005; Paley et al., 2012). While high levels of
T-Bet are associated with progenitor Ty, the sustained high-
level expression of EOMES favors terminal exhaustion. It has
been suggested that TCF-1 and TOX drive the altered T-Bet-to-
EOMES ratio in favor of EOMES, thereby antagonizing effector
T cell differentiation and endorsing terminal exhaustion (Alfei
etal., 2019; Chen et al., 2019; Paley et al., 2012). EOMES promotes
exhaustion, at least in part, through upregulation of inhibitory
receptors (including PD-1 and LAG-3) and downregulation of
memory-associated factors (such as TCF-1), while T-Bet re-
presses PD-1 expression (Kao et al., 2011; Li et al., 2018; Yu et al.,
2022). This imbalanced expression of T-box family TFs may even
become irreversible: in HIV patients, high EOMES and inhibi-
tory receptor levels were maintained even after 10 years of un-
detectable viral load and an absence of antigenic stimulation
(Buggert et al., 2014).

Important to mention is that T cell exhaustion has been most
extensively studied for CD8* T cells. Further research is required
to better define CD4* T cell exhaustion, its molecular under-
pinnings, and potential for therapeutic applications (Miggelbrink
et al., 2021). Nevertheless, aberrant chromatin priming most
likely also plays an important role in CD4* T cell-driven diseases.
Indeed, memory CD4* T cells are key drivers of chronic inflam-
mation in various immune-mediated diseases, including allergies
and asthma (Olsthoorn et al., 2025). We have recently shown that
memory CD4* Th2 cells from asthma patients exhibit “hyper-
priming” of their inflammatory transcriptional program during
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homeostasis (Onrust-van Schoonhoven et al., 2023). Recall-
associated enhancers and gene promoters in these pathological
memory T cells showed elevated H3K4me2 levels and tran-
scriptional activity, despite an otherwise quiescent phenotype
(Onrust-van Schoonhoven et al., 2023). These observations are
indicative of a dysfunctional state in which memory T cells fail to
maintain properly calibrated levels of transcriptional priming,
which may render them vulnerable to premature activation and
contribute to chronic tissue inflammation. However, future
studies are needed to validate this concept.

Concluding remarks and future directions

Tremendous progress has recently been made in our under-
standing of how epigenetic priming underpins the remarkable
capacity of memory T cells to mount superior secondary im-
mune responses. Highly specific modifications of DNA and his-
tones, positioning of nucleosomes, and 3D genome organization
act in conjunction to establish a primed chromatin landscape
that is stably maintained within the pool of long-lived quiescent
memory T cells. Implemented and maintained by combinatorial
TF action, this epigenetic imprint poises inflammatory genes for
rapid transcriptional reactivation upon antigen rechallenge. The
importance of epigenetic priming for T cell-mediated immunity
is underscored by the growing body of scientific evidence
demonstrating that its dysregulation underlies T cell dysfunc-
tion in patients with chronic disease. It is important to reiterate
that most of the current knowledge in the field is based on murine
T cells, and therefore, translating findings to a human context
continues to be important. It is also worth noting that ob-
servations from studies aiming to assign functional roles to TFs,
chromatin remodelers, and architectural proteins—proteins with
a broad regulatory scope—through genetic deletion should be
interpreted with some caution, as the resulting phenotypic out-
comes often reflect both direct and indirect effects. Moreover,
despite extensive efforts to profile the epigenome of (dys)func-
tional T cell states, it often remains challenging to extract causal
relationships—especially regarding 3D genome topology, which is
difficult to experimentally manipulate. Excitingly, the rapidly
expanding toolbox for CRISPR/Cas-based (epi)genome editing is
now offering scientists opportunities to tackle this issue, and
discriminate between cause and consequence.

Despite compelling evidence that transcriptional memory
in T cells has an epigenetic basis, much remains unknown
about the molecular mechanisms responsible for maintaining
and propagating this chromatin-based information in mature
memory T cells as they undergo homeostatic proliferation. We
propose that TFs are prime candidates here, due to their se-
quence specificity, potential to recruit chromatin-modifying
enzymes, and ability to retain close associations with chroma-
tin during the cell cycle. Importantly, although many TFs have
been associated with memory T cell generation, their roles in
mature memory T cell function are often poorly understood.
Most TFs linked to T cell memory have been identified based
solely on differential gene expression analysis. However, alter-
ations in the accessibility of their cognate binding sites or dif-
ferential interactions with other regulatory (co)factors can have
functional consequences (e.g., redistribution of TF occupancy)
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even if the TF-encoding gene is not differentially expressed (Liu
et al., 2023; Zhao et al., 2024), suggesting that putative key
regulatory (transcription) factors may be overlooked. Addi-
tional outstanding questions concern the heterogeneity of
chromatin priming mechanisms in individual T cells, the
molecular mechanisms underlying memory T cell heteroge-
neity, the timing of fate commitment toward specific (dys)-
functional T cell states, and how the stability of epigenetic
programs is influenced by the tissue microenvironment
during health and disease.

We anticipate that addressing the main knowledge gaps
mentioned above will be crucial for exploring possibilities to
rationally target and reprogram epigenetic programs in T cells
for the benefit of human health, paving the way for development
of improved vaccination strategies and T cell-based im-
munotherapies. Finally, recent studies have challenged the tra-
ditional view that immunological memory is a distinguishing
feature of adaptive immune cells. Indeed, innate immune cells
and even nonimmune cells can enter a “trained” state that is
characterized by transcriptional memory and altered secondary
responses (Netea et al., 2020). Harnessing insights from T cell
memory may help to unravel the molecular basis of trained
immunity. Ultimately, we expect that dissecting the epigenetic
underpinnings of transcriptional memory in both innate and
adaptive immune cells offers tremendous potential for unlock-
ing novel therapeutic strategies to treat or prevent immune-
related diseases and cancer.
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