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A primary goal in the development of an AIDS vaccine is the elicitation of broadly neutralizing antibodies (bNAbs) that protect
against diverse HIV-1 strains. To this aim, germline-targeting immunogens have been developed to activate bNAb precursors
and initiate the induction of bNAbs. While most preclinical germline-targeting HIV-1 vaccine candidates only include a single
bNADb precursor epitope, an effective HIV-1 vaccine will likely require bNAbs that target multiple epitopes on Env. Here, we
report a newly designed germline-targeting Env SOSIP trimer, named 3nv.2, that presents three bNAb epitopes on Env: the

CD4bs, V3, and V2 epitopes. 3nv.2 forms a stable trimeric Env and binds to bNAb precursors from each of the desired epitopes.
Immunization experiments in rhesus macaques and mice demonstrate 3nv.2 elicits the combined effects of its parent
immunogens. Our results provide proof of concept for using a germline-targeting immunogen presenting three or more bNAb
epitopes and a framework to develop improved next-generation HIV-1 vaccine candidates.

Introduction

There are nearly 40 million people currently infected with HIV-1
and 1-2 million new infections each year, but only ~77% of
people living with HIV-1 (PLWH) have access to antiretroviral
drugs (https://www.who.int). An effective vaccine remains the
best option to prevent new infections worldwide but has proven
difficult due to factors including (1) the extensive genetic diversity
of circulating strains, (2) the fact that HIV-1 is a retrovirus and,
once integrated, can only be cleared in rare circumstances (Allers
et al,, 2011), and (3) unusual properties of HIV broadly neutral-
izing antibodies (bNAbs), including long CDRH3s (Walker et al.,
2009; Bonsignori et al., 2011; Doria-Rose et al., 2014; Sok et al.,
2014) and rare germline gene usage (McGuire et al., 2013; Jardine
etal., 2013). Although most PLWH generate only strain-specific or
non-neutralizing antibodies (Abs), an estimated 5-20% of PLWH
produce bNAbs that neutralize a wide array of strains at low
concentrations (<50 pg/ml) after being infected for several years
(McCoy and Burton, 2017). These bNAbs can protect rhesus
macaques (RMs) from challenges from simian HIV-1 (SHIV) in-
fection (Gautam et al., 2016; Shingai et al., 2014), suggesting a
vaccination regimen that elicits bNAbs at neutralizing concen-
trations would be protective (Walsh and Seaman, 2021).

The HIV-1 envelope protein (Env), a heterotrimeric mem-
brane glycoprotein comprising gp120 and gp41 subunits found
on the surface of the virion, is responsible for viral entry into
host cells and is the sole antigenic target of neutralizing Abs
(Wyatt and Sodroski, 1998). Structural and biochemical studies
have elucidated how bNAbs recognize Env and described cor-
relates of neutralization breadth and potency (Ward and Wilson,
2017). A native-like soluble form of the Env trimer ectodomain
(SOSIP) can be produced from most Env strains (Sanders et al.,
2013; Derking and Sanders, 2021). The ectodomains of SOSIP and
native virus-associated Env’s have similar 3D structures (Li et al.,
2020), CD4-recognition properties (Li et al., 2023), and present
analogous bNAD epitopes (Derking et al., 2015), making SOSIPs
ideal candidates for vaccine design to elicit bNAbs (Derking and
Sanders, 2021). An impediment to generating an effective HIV-1
vaccine is that many inferred germline (iGL) precursors of
characterized bNAbs do not bind with detectable affinity to native
Env’s on circulating HIV-1 strains or their counterpart SOSIPs
(Xiao et al., 2009). Therefore, Env must be modified to bind and
select for bNAb precursors in vivo during immunization. This
approach, known as germline-targeting, assumes that a given Env
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must have appreciable affinity to a B cell expressing a bNAb pre-
cursor receptor to bind and activate that B cell lineage to initiate
bNAb induction (Stamatatos et al., 2017). As an example, germline
targeting has been used to select and activate bNAb precursors of
the VRCOL1 class of bNAbs that target the CD4-binding site (CD4bs)
on gpl20 (McGuire et al., 2016; Jardine et al., 2016; Jardine et al.,
2015; Jardine et al., 2013; Medina-Ramirez et al., 2017).

The majority of current HIV-1 vaccine candidates target
a single bNAb precursor lineage or epitope (Saunders et al.,
2019; Willis et al., 2022; Steichen et al., 2019; Steichen et al.,
2016; Gristick et al., 2023; Escolano et al., 2019; Jardine
et al., 2016; Jardine et al., 2013; McGuire et al., 2013). However,
recent findings suggested that administering bNAbs targeting the
CD4bs, V3, and V2 epitopes on HIV-1 Env represents an optimal
combination to neutralize 100% of circulating viruses in sub-
Saharan Africa (Mkhize et al., 2023), the site of the majority of
HIV-1 infections worldwide (https://www.unaids.org). Thus, in-
duction of multiple bNAb lineages and/or bNAbs targeting mul-
tiple epitopes on HIV-1 Env is likely required to generate a
protective HIV-1 vaccine that is effective worldwide. Toward this
aim, we engineered immunogens based on Env SOSIP trimers that
present two different epitopes designed to elicit bNAb lineages:
RCl, a V3-glycan patch immunogen that elicited Abs targeting the
conserved V3 epitope in animal models with a polyclonal Ab
repertoire (Escolano et al., 2019), and IGT2, which targets CD4bs
Abs and elicited heterologous serum neutralization in transgenic
and WT mice (Gristick et al., 2023). A separate study modified
BG505 to bind V2 bNAb precursors (Medina-Ramirez et al., 2017).
Eliciting three (or more) classes of HIV-1bNAbs could be favorable
for generating an effective HIV-1 vaccine.

Although targeting of >1 bNAb epitope could be accomplished
by immunizing with multiple immunogens, each including a
single epitope, the simultaneous immunization of multiple de-
signed immunogens would not prevent the immune system from
making distracting Abs against the parts of each of the immu-
nogens that were not modified for inducing Ab recognition. In
contrast, a single immunogen with multiple engineered epitopes
would reduce manufacturing complexity as well as display fewer
off-target epitopes for distracting Abs to bind and thus provide a
higher likelihood of engaging bNAb precursors (Fig. 1). Here, we
describe the design and characterization of individual immu-
nogens that elicit Abs targeting more than one epitope. The top
vaccine candidate, 3nv.2, forms a stable trimeric Env that binds
to three different classes of precursors of bNAbs recognizing the
CD4bs, V3, and V2 epitopes (Fig. 2 A). Importantly, immuniza-
tion regimens using 3nv.2 elicited the combined effects of the
counterpart single epitope immunogens. These experiments
represent proof-of-concept results suggesting that presenting
multiple bNAb epitopes on HIV-1 Env would be favorable over
the standard approach of presenting a single bNAbD epitope.

Results

3nv.2 was designed to bind to bNAb precursors targeting three
Env epitopes

The design and analysis of BG505-GT1.1, an immunogen dem-
onstrated to bind to bNADb precursors targeting the CD4bs and V2

Gristick et al.

HIV-1 vaccine candidates presenting three epitopes

22 JEM
QD D
03'-

epitopes, was previously described (Medina-Ramirez et al.,
2017). Our goal was to build on these studies and engineer a
priming immunogen with enhanced affinity compared with
unmodified SOSIP Env’s for iGL precursors of bNAbs targeting
three distinct sites on Env: the CD4bs, V3, and V2 epitopes (Fig. 2
A). Starting with IGT2, a clade C 426c-based SOSIP Env trimer
that elicits Abs to the CD4bs (Gristick et al., 2023) (Fig. 2 B), we
first incorporated substitutions that enhanced targeting to the
V3 epitope. This involved two distinct modifications: (1) trans-
planting the V2 cassette (residues 130gp120'160gp120) from RCI, a
V3-targeting SOSIP immunogen (Escolano et al., 2019), into
IGT2, and (2) incorporating V3-targeting residues (T320Fgp10,
T321(1)gp120, Q328Mgpi20, and Y330Hgp20) from RCl into IGT2
(Fig. 2 B). These combined substitutions created a CD4bs/V3-
targeting double immunogen, known as IGT2-RC1 (Fig. 2 B). We
further modified IGT2-RC1 to include known V2 iGL-targeting
residues (T169R, R170Q, E172V, Y173H, R178K, S188N, N189T,
and T190S), which was shown to increase binding affinity to the
iGLs of V2 bNAbs, including PG9 and PG16 bNAbs (Medina-
Ramirez et al., 2017) (Fig. 2 B). We then deleted four residues
within V2 (ANSNK; residues 187(7) gp120-189gp120) and introduced
two additional substitutions (S187E and S187(1)Q) to further
enhance binding to V2 iGLs (Medina-Ramirez et al., 2017),
thereby creating 3nv.2 (Fig. 2, A and B). Finally, we retained five
mutations (F519S, A561P, L568D, V570H, and R585H) in gp4l
that were demonstrated to enhance stability and increase ex-
pression levels of Env (Steichen et al., 2016) and two cysteine
substitutions at residues A201gp150 and A4334,50 that form di-
sulfide bonds to stabilize the closed conformation of Env (Joyce
et al., 2017).

To create a potential boosting immunogen to be used in
conjunction with a 3nv.2 prime, we started with 3nv.2 and re-
placed the CD4bs, V3, and V2 targeting mutations with sub-
stitutions that were more native-like and/or predicted to have
lower affinity to the iGLs of interest. First, we introduced the
CD4bs substitutions from IGT1, an immunogen shown to boost
CD4bs responses in animal models primed with IGT2 (Gristick
et al., 2023). Next, we reintroduced the N1564p120 potential
N-linked glycosylation site (PNGS) that is present in the V3-
targeting immunogen 1IMUTB (Steichen et al., 2016), previ-
ously shown to boost responses directed toward the V3-glycan
patch when starting with the RCI priming immunogen that lacks
the N156g520 PNGS (Escolano et al., 2019). Finally, we re-
introduced the 4-residue deletion in the V2 loop (NSNK; residues
185egp120—190gpmo) to shepherd bNAD precursors to acquire the
proper somatic hypermutations by introducing a more native-
like environment in this region. Together, these substitutions
created 3nv.1 (Fig. S1).

Both 3nv.2 and 3nv.1 triple immunogens were well-behaved
in solution, monodisperse by size-exclusion chromatography
(SEC), and existed as a single species in SDS-PAGE, similar to
both the starting 426¢ SOSIP Env and the 426c degly3 variant
(Borst et al., 2018) lacking PNGSs at N2764p150, N460gp120, and
N46345150 (Fig. 2, B-D and Fig. S1). To assess the impact of the
substitutions within 3nv.2 on the trimer structure, we solved
a 6.6-A single-particle cryo-electron microscopy (cryo-EM)
structure of an untagged 3nv.2 Env expressed in Expi293 cells.
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Figure 1. Schematic illustrating how a combined triple immunogen could elicit a lower proportion of off-target Abs than a combination of three

single immunogens, each presenting only one epitope.

Consistent with SEC and SDS-PAGE, 3nv.2 was monodisperse
and predominantly trimeric as evidenced within both the 2D
class averages (Fig. 2 E, top) and the 3D electron density map
(Fig. 2 E, bottom). To enhance antigenicity and immunoge-
nicity through avidity effects from multimerization (Lépez-
Sagaseta et al., 2016; Slifka and Amanna, 2019), we used the
SpyCatcher-SpyTag system (Keeble et al., 2019; Bruun et al.,
2018; Brune et al., 2016) to covalently link SpyTagged SOSIP
immunogens to the 60-mer nanoparticle SpyCatcher003-mi3
(Keeble et al., 2019), as we previously described for other SOSIP
Env trimers (Gristick et al., 2023; Escolano et al., 2021; Escolano
et al., 2019) (Fig. 2 F). Efficient covalent coupling of the immu-
nogens to SpyCatcher003-mi3 was demonstrated by SDS-PAGE
(Fig. 2 G), and negative-stain EM showed that nanoparticles were
uniform in size and shape and densely conjugated with SOSIP
Env’s (Fig. 2 H).

Gristick et al.
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3nv.2 SOSIP trimers bind multiple bNAb precursors

To determine whether the engineered immunogens bind the
desired iGL precursors, we multimerized our immunogens on
mi3 nanoparticles (Keeble et al., 2019) and evaluated binding
to iGL versions of IOMA (Gristick et al., 2016; Gristick et al.,
2023) (CD4bs), PGT121/10-1074 (Escolano et al., 2016) (V3), PG9
(Medina-Ramirez et al., 2017; Sliepen et al., 2015) (V2), and PG16
(Medina-Ramirez et al., 2017; Sliepen et al., 2015) (V2) using a
surface plasmon resonance (SPR)-based assay. As expected, the
parent immunogen, IGT2, bound to IOMA iGL (CD4bs) but not to
PGT121/10-1074 iGL (V3), PG9 iGL (V2), or PG16 iGL (V2) (Fig. 3
A). The dual immunogen IGT2-RC1 bound to both IOMA iGL
(CD4bs) and PGT121/10-1074 iGL (V3), but not PG9 or PG16 iGLs
(vV2) (Fig. 3 A). However, the triple immunogen 3nv.2 bound to
iGLs from all three classes—IOMA iGL (CD4bs), PGT121/10-1074
iGL (V3), and PG9 or PG16 iGLs (V2) (Fig. 3 A). Importantly, 3nv.2
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Figure 2. Design and biochemical characterization of 3nv.2 SOSIP. (A) Design of 426c-based triple immunogen to present CD4bs (blue), V3 (green), and V2
(purple) epitopes. (B) Schematics of single (IGT2), double (IGT2-RC1), and triple (3nv.2) immunogen constructs used in this study. (C and D) 3nv.2 and 3nv.1
triple immunogen characterization by (C) SEC and (D) SDS-PAGE. (E) Top: 2D class averages demonstrating 3nv.2 is predominantly trimeric. Bottom: 6.6-A
single-particle 3nv.2 cryo-EM density map. (F) Schematic for the generation of SOSIP-mi3 nanoparticles using the SpyCatcher-SpyTag system. (G) Char-
acterization of purified SOSIP-mi3 nanoparticles by SDS-PAGE. R, reduced; NR, non-reduced; SC, SpyCatcher. (H) Negative-stain EM of SOSIP-mi3 nano-
particles. Scale bar = 100 nm.

did not exhibit reduced binding for IOMA iGL compared with introduced into our immunogens and not only due to in-
IGT2, demonstrating that modifying the V3 and V2 epitopes had  creased avidity effects, as we observed no binding of the WT
no effect on the antigenicity of the CD4bs. As expected due to  426c-mi3 nanoparticles to any of the iGL IgGs (Fig. 3 A).
avidity effects, the binding interaction of the multimerized im- While 3nv.2 was designed to bind to IOMA iGL, 3nv.2 also
munogens exhibited a slow off-rate that produced a strong as- bound to additional CD4bs precursors of different classes, includ-
sociation between 3nv.2 and the iGL IgGs (Fig. 3 A). Importantly, ing BG24iGL and VRCOL iGL (Fig. 3 B). Similarly, 3nv.2 not only
the observed binding was due to the germline-targeting mutations  bound to PGT121/10-1074 iGL but also to additional V3 bNAb

Gristick et al. Journal of Experimental Medicine
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Figure 3. 3nv.2 binds to iGLs targeting three bNAb epitopes. (A) SPR sensorgrams of SOSIP-mi3 nanoparticles injected over bNAb iGLs at a concentration
of ~0.5 mg/ml. First row: The CD4bs-specific single immunogen IGT2 only binds to CD4bs bNAb precursors (IOMA iGL, left), and not V3 (10-1074/PGT121iGL,
middle) or V2 (PG9 or PG16 iGL, right) bNAb precursors. Second row: Incorporating V3-targeting mutations into IGT2 creates an immunogen that binds CD4bs
and V3 bNADb precursors, but not V2 bNAb precursors. Third row: Incorporating V3- and V2-targeting residues into the CD4bs-targeting IGT2 SOSIP creates an
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immunogen (3nv.2) that binds to the CD4bs (IOMA iGL, left), V3 (10-1074/PGT121iGL, middle), and V2 (PG9 or PG16 iGL, right) bNAb precursors. Fourth row:
The parental 426¢ Env does not bind to any of the bNAb precursors. (B) 3nv.2 SOSIP injected in a dilution series over bNAb iGLs starting at top concentrations of
10 uM or 5 uM as indicated. 3nv.2 SOSIP binds to multiple CD4bs precursors, including IOMA iGL (left), BG24 iGL (middle), and VRCO1 iGL (right). (C) 3nv.2
SOSIP injected in a dilution series over bNAb UCAs and an iGL starting at a top concentration of 10 pM. 3nv.2 SOSIP binds to multiple V3 precursors, including
BG18 iGL (left), DH270 UCA (middle), and BF520 UCA (right). Representative sensorgrams are from at least two independent experiments. UCA, unmutated

common ancestor; RU, resonance unit.

precursors within the V3 epitope supersite, such as BG18 iGL
(Freund et al., 2017; Barnes et al., 2018; Steichen et al., 2019), and
the unmutated common ancestors of DH270 (Bonsignori et al.,
2017a) and BF520 (Simonich et al., 2016) (Fig. 3 C). In summary,
3nv.2 targets a diverse set of bNAb precursors in individual
epitopes and is the first reported HIV-1 immunogen successfully
engineered to bind bNAb precursors presenting three different
Env epitopes.

Animal immunizations with 3nv.2

To evaluate a 3nv.2-based immunization regimen in animals
with a polyclonal Ab repertoire, we primed 15 RMs with either
3nv.2-mi3 (n = 5), IGT2-mi3 (Gristick et al., 2023) (n = 5), or RCI-
mi3 (Escolano et al., 2021; Escolano et al., 2019) (n = 5), followed
in each case by sequential immunization with a related boosting
antigen (3nv.l-mi3, IGT1-mi3, or 1IMUTB-mi3, respectively)
(Fig. 4 A). Serum from animals primed with IGT2-mi3 and
boosted with IGT1-mi3 only neutralized IGT2- and IGT1-based
pseudoviruses (Fig. 4, B and C). However, animals primed with
3nv.2-mi3 and boosted with 3nv.1-mi3 exhibited the combined
effects of both the IGT2/IGT1 and RC1/11IMUTB immunization
regimens and displayed potent neutralization of pseudoviruses
generated from the IGT2, IGT1, RC1, and 11MUTB immunogens
(Fig. 4, B-E). Importantly, the 426c-based (clade C) 3nv.2/3nv.1-
mi3 immunization regimen elicited heterologous neutralization
against RC1 and 11IMUTB pseudoviruses, which were derived
from BG505-based (clade A) Env’s (Escolano et al., 2021). Con-
sistent with our previous results for an IGT2-based regimen
(Gristick et al., 2023), priming with IGT2-mi3 followed by
boosting with IGT1-mi3 elicited strong serum-binding re-
sponses that were CD4bs specific, as demonstrated by ELISA
with IGTI and IGT1 CD4bs KO proteins (Gristick et al., 2023)
(Fig. 4 F). Notably, however, serum-binding responses were
significantly more CD4bs specific in animals that received
the 3nv triple immunogens (0.001 < P < 0.01) (Fig. 4 F).

We also immunized WT C57BL/6] mice with 3nv.2-mi3 and
3nv.1-mi3 (Fig. 4 G). As in RMs, serum from immunized mice
also neutralized the IGT2, IGT1, RC1, and 11MUTB pseudoviruses,
demonstrating the 3nv.2-mi3/3nv.1-mi3 regimen elicits cross-
clade neutralizing activity in two animal models (Fig. 4 G).

Discussion

Current germline-targeting HIV-1 vaccine candidates generally
target a single bNAb precursor lineage or epitope. However, the
induction of multiple bNAD lineages targeting multiple epitope
supersites on HIV-1 Env is likely required to generate a pro-
tective HIV-1 vaccine. Although this could be accomplished
by immunizing with multiple immunogens, each presenting a
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different epitope, we hypothesize that simultaneous immuni-
zation with designed immunogens would not prevent the im-
mune system from making distracting Abs against the parts of
each of the immunogens that are not targeted for recognition.
In other words, in a single immunogen with germline-targeting
mutations in three individual epitopes, each Env presents a
higher proportion of desired Ab epitopes than are presented
in three individual one-target immunogens (Fig. 1). Here, we
describe results that provide a framework to develop improved
next-generation HIV-1immunogens that present three or more
epitopes.

Our top candidate triple immunogen, 3nv.2, forms a stable
trimeric Env and elicits the combined effects of its parent im-
munogens, IGT2 (Gristick et al., 2023) and RC1 (Escolano et al.,
2021; Escolano et al., 2019), thereby providing a platform that
can be modified to present additional epitopes outside of the
CD4bs, V3, and V2 regions to improve the priming immunization
to select a large and diverse set of bNADb precursors. One such
additional target is the fusion peptide (FP) epitope, found near
the base of the trimer (Lee et al., 2016; Kong et al., 2016). En-
hancing FP bNAb-directed responses is possible with limited
Env modifications, which can be accomplished by deleting gly-
cans surrounding the FP (e.g., N61lz,4; PNGS) (Wang et al., 2024;
Kong et al., 2019).

In addition to modifying epitopes outside of the CD4bs/V3/V2
regions, 3nv.2 could also be modified to target an even more
diverse panel of bNAD precursors for each of the three epitopes
it currently presents. For example, the CD4bs could be modified
to also bind 8ANC131 class (VH1-46 derived) (Zhou et al., 2015)
and CDRH3-dominated classes of CD4bs Abs in addition to the
VRCOI-class (VHI-2 derived) and IOMA-class bNAbs that 3nv.2
already binds (Gristick et al., 2023). Similarly, the V3 loop could
be modified to bind additional V3-glycan patch precursors with
different binding modes compared with its RC1 precursor, which
targets PGT121/10-1074 precursors (Escolano et al., 2019), such
as the iGL of EPCT112 (Molinos-Albert et al., 2023), and the V2
loop could be designed to additionally select for targets such as
PGDM1400 iGL (Willis et al., 2022). As with 3nv.2, this could be
done using rational design or in the type of high-throughput
display library screen that was used to select IGT1 and IGT2
(Gristick et al., 2023).

Another method to improve upon our results and elicit a
more diverse bNAb response is to generate a panel of 3nv Env’s
from diverse HIV-1 strains, each containing three or more en-
gineered epitopes per trimer. Analogous to experiments using
mosaic nanoparticles decorated with receptor-binding domains
from different sarbecoviruses (Cohen et al., 2021; Cohen et al.,
2022; Cohen et al., 2024, Preprint), germline-targeting muta-
tions from 3nv.2 could be introduced into Env’s from different
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Figure 4. 3nv.2 triple immunogen elicits combined responses of IGT2 and RC1 immunogens in RMs. (A) Schematic and timeline of immunization
regimens for RMs (n = 5 per group). (B-E) Serum neutralization ID50s against (B) IGT2, (C) IGT1, (D) RC1, and (E) 11IMUTB pseudoviruses. The dotted line at y =
10? indicates the lowest dilution evaluated. Significance was demonstrated using an unpaired t test (P < 0.05). (F) Serum ELISA binding to IGT1 and IGT1 CD4bs
KO SOSIPs for RMs immunized with IGT2-mi3 or 3nV.2-mi3. All samples are from week 8 after prime immunizations. Significance was demonstrated using a
paired t test (P < 0.05). (G) Mouse serum neutralization ID50s against IGT2, IGT1, RC1, and 1IMUTB pseudoviruses (n = 8). The dotted line aty = 10? indicates the
lowest dilution evaluated. * denotes 0.01 < P < 0.05, ** denotes 0.001 < P < 0.01, and *** denotes 0.0001 < P < 0.001.

HIV-1 clades to attempt to immunofocus responses to the de-
sired engineered bNAD epitopes.

Although it was previously shown that engineered priming
immunogens can successfully select and expand the desired
bNAD precursors (Gristick et al., 2023; Saunders et al., 2019;
Jardine et al., 2015; Escolano et al., 2019; Caniels et al., 2023), an
effective boosting regimen has not yet been developed to effi-
ciently shepherd those initial responses into bNAbs. In the im-
munization studies reported here, 3nv.2 and 3nv.1 appear to be
priming epitope-specific responses; however, more experiments
will be required to identify an appropriate boosting regimen
to elicit NAbs with the breadth and potency required for an
effective HIV-1 vaccine. Although high-throughput display
methods have been applied to select priming immunogens with
high affinity to the germline forms of bNAbs (Gristick et al.,
2023; Steichen et al., 2019; Jardine et al., 2013), boosting
immunogens have been selected in a low-throughput and
mostly empirical manner (Escolano et al., 2021; Chen et al., 2021;
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Gristick et al., 2023; Caniels et al., 2023; Zhang et al., 2021). A
potential way to identify appropriate boosting immunogens is to
examine Ab-virus coevolution (Bonsignori et al., 2017b) using a
SHIV infection model (Li et al., 2016). Recent studies demon-
strated that SHIV-infected RMs develop HIV-1 bNAbs by means
of Env-Ab coevolutionary pathways that recapitulate those that
occur in HIV-1-infected humans (Roark et al., 2021). Impor-
tantly, Abs targeting the CD4bs, V3, V2, and FP epitopes similar
to those isolated from individuals living with HIV-1 have been
elicited in SHIV-infected RMs (Roark et al., 2021; Wang et al.,
2024). Thus, Env sequences selected during bNAb development
in SHIV-infected RMs could be exploited and used as boosting
immunogens to elicit bNAbs in an immunization regimen. For
example, top candidate combined immunogens such as 3nv.2
could be used in a SHIV infection model to identify better
boosting immunogens specific for multiple bNAb epitopes that
have a higher likelihood of shepherding initial primed responses
to develop into bNADs.
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Materials and methods
Ab, gp120, and Env trimer expression and purification

Env immunogens were expressed as soluble SOSIP.664 native-
like Env trimers (Sanders et al., 2013) by transient transfection
in human embryonic kidney 293-6E cells (National Research
Council of Canada) or Expi293 cells (Thermo Fisher Scientific) as
described (Gristick et al., 2023). For SpyTagged SOSIPs, a 16-
residue SpyTag003 sequence (Keeble et al., 2019) was added to
the C terminus. Proteins were expressed. Proteins were purified
from transfected cell supernatants by 2G12 affinity chromatog-
raphy followed by SEC purification using a 10/300 or 16/600
Superdex 200 (GE Healthcare) column equilibrated in 20 mM
Tris (pH 8.0), 150 mM NacCl (TBS) for untagged versions, or
20 mM sodium phosphate (pH 7.5) and 150 mM NacCl (PBS) for
SpyTagged versions as described (Gristick et al., 2023). Soluble
Env’s were stored at 4°C in TBS for untagged versions or PBS for
SpyTagged versions.

The iGL sequences of IOMA, BG24, VRCO1, 10-1074/PGT121,
BGI18, PG9, and PG16 IgGs were derived as previously described
(Jardine et al., 2013; Steichen et al., 2019; Gristick et al., 2023;
Escolano et al., 2016; Sliepen et al., 2015; Freund et al., 2017;
Barnes et al., 2018; Dam et al., 2022a). The unmutated common
ancestor IgG sequences of DH270 and BF520 were derived as
previously described (Bonsignori et al., 2017a; Simonich et al.,
2016). All IgGs were expressed by transient transfection in
Expi293 cells and purified from cell supernatants using Mab-
Select SURE (Cytiva) columns followed by SEC purification us-
ing a 10/300 or 16/600 Superdex 200 (GE Healthcare) column
equilibrated in PBS (Gristick et al., 2023).

Preparation of SOSIP-mi3 nanoparticles

SpyCatcher003-mi3 nanoparticles were prepared from BL21
(DE3)-RIPL Escherichia coli (Agilent) transformed with a pET28a
SpyCatcher003-mi3 gene (Rahikainen et al., 2021), including an
N-terminal 6x-His tag as described (Cohen et al., 2022; Cohen
et al., 2021). Briefly, cell pellets from transformed bacteria were
lysed with a cell disruptor in the presence of 2.0 mM phenyl-
methylsulfonyl fluoride (Sigma-Aldrich). Lysates were spun at
21,000 x g for 30 min and filtered with a 0.2-um filter, and mi3
nanoparticles were isolated by ammonium sulfate precipitation
followed by SEC using a HiLoad 16/600 Superdex 200 (GE
Healthcare) column equilibrated with TBS. SpyCatcher003-mi3
nanoparticles were stored at 4°C and used for conjugations for
up to 2 wk after filtering with a 0.2-um filter and spinning for at
14,000 x g for 30 min at 4°C.

SOSIP-mi3 nanoparticles were made by incubating purified
SpyCatcher003-mi3 with a twofold molar excess (SOSIP pro-
tomer to mi3 subunit) of purified SpyTagged SOSIP overnight at
room temperature in PBS as described (Gristick et al., 2023).
Conjugated SOSIP-mi3 nanoparticles were separated from
free SOSIPs by SEC on a Superose 6 10/300 column (GE
Healthcare) equilibrated with PBS. Fractions correspond-
ing to conjugated mi3 nanoparticles were collected and
analyzed by SDS-PAGE. Concentrations of conjugated mi3
nanoparticles were determined using the absorbance at 280
nm as measured on a NanoDrop spectrophotometer (Thermo
Fisher Scientific).
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Characterization of SOSIP-mi3 nanoparticles

SOSIP-mi3 nanoparticles were characterized using negative-
stain EM to confirm stability and SOSIP conjugations to
SpyCatcher-mi3. Briefly, SOSIP-mi3 nanoparticles were diluted
to 20 pug/ml in 20 mM Tris, pH 8.0 and 150 mM NaCl, and 4 pl of
sample were applied onto freshly glow-discharged 300-mesh
copper grids. Samples were incubated on a grid for 60 s, and
excess sample was blotted with filter paper (Whatman). Uranyl
formate (4 pl) was added for 60 s, and excess stain was then
removed with filter paper. Staining with uranyl formate was
repeated one more time, and grids were left to air-dry. Prepared
grids were imaged on a 120 keV Tecnai T12 (FEI) transmission
electron microscope using an Ultrascan 2k x 2k CCD (Gatan)
camera at 21,000x magniﬁcation.

SPR-binding studies

SPR measurements were performed on a Biacore T200 (GE
Healthcare) at 25°C in HBS-EP+ (10 mM Hepes, 150 mM NaCl,
3 mM EDTA, and 0.005% Tween-20) (GE Healthcare) running
buffer. IgGs were directly immobilized onto a CM5 chip (GE
Healthcare) to ~10,000-20,000 resonance units using primary
amine chemistry (Biacore Manual). SOSIP-mi3 samples were
injected at a concentration of ~0.5 mg/ml to verify binding to
IOMA iGL IgG, 10-1074 iGL IgG, and PG9 or PG16 iGL IgG, as
demonstrated in Fig. 3 A. Experiments were performed at least
twice, and representative sensorgrams are shown in Fig. 3 A. To
assess binding of 3nv.2 to IgG forms of bNAD precursors to the
CD4bs (Fig. 3 B) and V3 epitopes (Fig. 3 C), a concentration series
of unconjugated 3nv.2 SOSIP was injected over the flow cells at
increasing concentrations (top concentration 10 or 5 pM) at a
flow rate of 60 pl/min for 60 s and allowed to dissociate for 300 s.
Regeneration of flow cells was achieved by injecting one pulse of
10 mM glycine, pH 3.0, at a flow rate of 90 pl/min. SPR ex-
periments were used to qualitatively monitor binding rather
than to derive binding affinities or kinetic constants, which
cannot be accurately determined due to avidity effects in this
experimental setup (Rich and Myszka, 2010; Rich and Myszka,
2011).

Cryo-EM sample preparation

An unliganded 3nv.2 SOSIP Env trimer structure was obtained
from an epitope mapping (Turner et al., 2023) experiment in
which purified 3nv.2 SOSIP was incubated overnight with poly-
clonal Fabs. Fab-3nv.2 SOSIP Env complexes were purified by
SEC on a Superose 6 Increase 10/300 GL analytical column (GE
Healthcare Life Sciences) in TBS buffer. Fractions corresponding
to Fab-SOSIP complexes were concentrated to a final concen-
tration of 2 mg/ml using a 50-kDa spin concentrator (Millipore).
Immediately before deposition on grids, a 0.5% (wt/vol) octyl-
maltoside fluorinated solution (Anatrace) was added to the
protein sample to achieve a final concentration of 0.02% (wt/vol)
as described (DeLaitsch et al., 2024). 3 ul of a protein sample was
applied to freshly glow-discharged Quantifoil R1.2/1.3 grids (300
Cu mesh; Electron Microscopy Sciences), which had been treated
for 1 min at 20 mA using a PELCO easiGlow device (Ted
Pella). The grid was plunge frozen using a Mark IV Vitrobot
(Thermo Fisher Scientific) at 22°C and 100% humidity. Blotting
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was performed with Whatman No. 1 filter paper for 3 s with a
blot force of 0. Finally, the sample was vitrified by rapid
plunging into liquid ethane cooled by liquid nitrogen.

Data collection and processing

Single-particle cryo-EM data acquisition was carried out on a
200 kV Talos Arctica (Thermo Fisher Scientific) microscope.
Automated data collection was done using SerialEM software
(Mastronarde, 2005), employing beam-image shift across a 3 x 3
grid of 1.2-um holes, with one exposure per hole. 40-frame
movies were captured in a super-resolution mode using a K3
camera (Gatan) with a pixel size of 0.435 A (45,000x magnifi-
cation) (Table S1). A summary of the data collection parameters
is in Table S1, and the data processing workflow is in Fig. S2. Data
processing was carried out using cryoSPARC v.2.15 (Punjani
et al., 2017) (Fig. S2).

Briefly, 1,200 cryo-EM movies were patch motion corrected
within cryoSPARC (Punjani et al., 2017) to account for beam-
induced motion, including dose weighting, following binning
of super-resolution frames. For contrast transfer function (CTF)
parameter estimation, non-dose-weighted micrographs were
processed using the Patch CTF job in cryoSPARC (Punjani et al.,
2017). Micrographs displaying poor CTF fits or evidence of
crystalline ice in their power spectra were excluded from further
analysis. Particle picking was performed in cryoSPARC (Punjani
et al., 2017) using Blob picker for reference-free selection, and
particles were extracted using the Particle Extraction Job with a
box size of 360 A. Extracted particles were subjected to several
rounds of 2D classifications, and the best class averages repre-
senting different views of unliganded 3nv.2 Env were used to
generate two ab initio models. The best ab initio model was
further refined to generate a final 3D volume using homogenous
refinement by applying either Cl or C3 symmetry. ChimeraX
(v1.8) (Pettersen et al., 2021) was used to visualize cryo-EM
density maps and prepare structure figures.

Animal immunizations and sampling
15 RMs (Macaca mulatta) of Indian genetic origin were housed in
a Biosafety Level 2 National Institute of Allergy and Infectious
Diseases facility and cared for in accordance with the Guide for
Care and Use of Laboratory Animals report number National
Institutes of Health 82-53 (Department of Health and Human
Services, Bethesda, MD, USA, 1985). All RM procedures and ex-
periments were performed according to protocols approved by the
Institutional Animal Care and Use Committee of National Institute
of Allergy and Infectious Diseases, National Institutes of Health.
The RMs used in this study did not express the major histocom-
patibility complex class I Mamu-A*01, Mamu-B*08, and Mamu-
B*17 alleles. RMs were immunized subcutaneously in the medial
inner forelegs and hind legs (a total of four sites per animal) with
200 pg of the indicated SOSIP-mi3 adjuvanted in SMNP, a par-
ticulate saponin/TLR agonist vaccine adjuvant (Silva et al., 2021)
(375 U per animal), as described (Escolano et al., 2021). Immuni-
zations and blood samples were obtained from naive and immu-
nized macaques at time points indicated in Fig. 4 A.

All mouse experiments were conducted with approval from
the Institutional Review Board and the Institutional Animal Care
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and Use Committee at Rockefeller University. C57BL/6] mice
(Jackson Laboratories) were housed at a temperature of 22°C and
humidity of 30-70% in a 12-h light/dark cycle with ad libitum
access to food and water. Male and female mice aged 8-13 wk at
the start of the experiment were used throughout. Sample sizes
were not calculated a priori. Given the nature of the compar-
isons, mice were not randomized into each experimental group,
and investigators were not blinded to the group allocation. In-
stead, experimental groups were age- and sex-matched. Mice
were immunized intraperitoneally with 10 ug SOSIP-mi3
nanoparticles in 100 pl PBS with 1 U SMNP adjuvant. Serum
samples were collected throughout the experiment by sub-
mandibular bleeding.

ELISAs

Serum ELISAs were performed using randomly biotinylated
SOSIP trimers (Dam et al., 2022b) using the EZ-Link NHS-
PEG4-Biotin Kit (Thermo Fisher Scientific) according to the
manufacturer’s guidelines. Biotinylated SOSIP timers were
immobilized on streptavidin-coated 96-well plates (Thermo Fisher
Scientific) at a concentration of 2-5 ug/ml in TBS-T (20 mM Tris
[pH 8.0], 150 mM NaCl, and 0.1% Tween 20) supplemented with
1% BSA for 1 h at room temperature. After washing the plates in
TBS-T, the plates were incubated with a threefold concentration
series of RM serum at a top dilution 0f 1:100 in blocking buffer for
2-3 h at room temperature. After washing plates with TBS-T,
HRP-conjugated goat anti-human multispecies IgG Ab (#2014-
05; Southern Biotech) was added at a dilution of 1:8,000 in
blocking buffer and incubated for 1 h at room temperature. After
washing the plates with TBS-T, 1-Step Ultra TMB substrate
(Thermo Fisher Scientific) was added for ~3 min. Reactions were
quenched by the addition of 1 N HCl, and absorbance at 450 nm
was measured using a plate reader (BioTek).

In vitro neutralization assays

Pseudovirus neutralization assays (Montefiori, 2005) were
conducted in-house as described (Gristick et al., 2023) and re-
peated at least twice for each reported value. Pseudoviruses
made using Env’s from immunogens were prepared as described
(Gristick et al., 2023; Escolano et al., 2021). Briefly, RC1 and
11IMUTB pseudoviruses were generated from the clade A Env
BG505 and included substitutions from the RC1 and 11IMUTB
immunogens (Escolano et al., 2016), and IGT2 and IGT1 pseu-
doviruses were generated from the clade C Env 426c and
included substitutions from the IGT2 and IGT1 immunogens
(Gristick et al., 2023). For assessing neutralization by polyclonal
Abs, serum samples were heat-inactivated at 56°C for 30 min
before being added to the neutralization assays, and then neu-
tralization was evaluated in duplicate with an eight-point,
fourfold dilution series starting at a dilution of 1:20. The serum
dilution responsible for 50% neutralization (IDs,) is reported for
all serum samples.

Statistical analysis

Comparisons between groups for ELISAs and neutralization
assays were calculated using an unpaired or paired t test
in Prism 10.4.1 (GraphPad), as indicated. Differences were
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considered significant when P values were <0.05. P values are
inrelevant figures at the top of the plot, with asterisks denoting
level of significance (* denotes 0.01 < P < 0.05, ** denotes 0.001 <
P < 0.01, and *** denotes 0.0001 < P < 0.001).

Online supplemental material

Fig. S1 shows the design schematics of constructs used in this
study. Fig. S2 shows the data processing of the 3nv.2 SOSIP cryo-
EM dataset. Table S1 shows EM data collection and processing
statistics.

Data availability

The cryo-EM map of 3nv.2 SOSIP was deposited to the Electron
Microscopy Data Bank and has the accession code EMD-48440.
This paper does not report atomic models or original code. Ad-
ditional information can be made available upon request.
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Figure S1.  Schematics of constructs used in this study.
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Figure S2. Data processing of the 3nv.2 SOSIP dataset. * denotes the dataset that is deposited in the EMDB.
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Provided online is Table S1. Table S1 shows EM data collection and processing statistics.
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