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The majority of cancer patients receive radiotherapy during the course of treatment, delivered with curative intent for local
tumor control or as part of a multimodality regimen aimed at eliminating distant metastasis. A major focus of research has been
DNA damage; however, in the past two decades, emphasis has shifted to the important role the immune system plays in
radiotherapy-induced anti-tumor effects. Radiotherapy reprograms the tumor microenvironment, triggering DNA and RNA
sensing cascades that activate innate immunity and ultimately enhance adaptive immunity. In opposition, radiotherapy also
induces suppression of anti-tumor immunity, including recruitment of regulatory T cells, myeloid-derived suppressor cells,
and suppressive macrophages. The balance of pro- and anti-tumor immunity is regulated in part by radiotherapy-induced
chemokines and cytokines. Microbiota can also influence radiotherapy outcomes and is under clinical investigation. Blockade of
the PD-1/PD-L1 axis and CTLA-4 has been extensively investigated in combination with radiotherapy; we include a review of
clinical trials involving inhibition of these immune checkpoints and radiotherapy.

Introduction
Radiotherapy is a form of cancer treatment delivered to ∼50% of
all cancer patients that relies on the spatial delivery of ionizing
radiation (IR) to kill tumor cells while minimizing the effects on
normal tissues. Radiotherapy is employed with the intention of
curing or for relief of symptoms, termed palliation. The first
description of irradiation as a treatment emerged from Emil
Grubbé in Chicago in 1896, and it was administered for post-
operative breast cancer recurrence (Hodges, 1964). Early research
and clinical efforts were limited to surface x-ray irradiations;
technological developments during World War I produced sour-
ces capable of 200 kV and deeper penetration (Del Regato, 1996).
Advances during and following World War II led to post-war use
of cobalt 60 sources, which emit γ radiation, as well as betatrons
and linear accelerators (LINACs), which both use high-energy
x-rays (Del Regato, 1996; Fowler, 2006; Hellman, 1996). γ Radi-
ation produces rays of the shortest wavelength and features en-
ergetic photons; high-energy x-rays have awider wavelength and
emit electrons (Hall and Giaccia, 2018). Radiotherapy is delivered
either by external beam with x-rays, γ rays, or photons, or in-
ternally, by implantation of radioactive sources into or near the
tumor (brachytherapy) or through the delivery of untargeted (131I)
or targeted (177Lu-PSMA) radioisotopes. These latter internally

administered charged particle therapies rely on the short half-life
and rapid spatial falloff in a dose associated with mixed β and γ
emitters such as 192Ir, which is commonly used in brachytherapy,
and the radioisotopes 131I and 177Lu. There is significant interest in
the use of protons to deliver radiotherapy due to improved dose
distributions; however, except for use in pediatrics, the clinical
benefit of protons compared with standard LINAC-delivered ra-
diotherapy remains controversial.

Radiotherapy is most often delivered with the goal of im-
proving local control, which, in many instances, is curative or
part of a curative multimodality regimen. For example, in many
cases of localized breast cancer, the tumor is excised and radi-
otherapy is delivered to preserve cosmesis, along with hormonal
therapies or chemotherapy aimed at curing microscopic distant
metastasis. Other examples include the use of cisplatin with
radiotherapy in head and neck cancer to improve local cures, as
well as cisplatin in cervix cancer with external radiotherapy and
(internal) brachytherapy. Most recently, the treatment of a few
metastases (termed “oligometastasis”) has brought radiotherapy
into the arena of potentially curing subsets of patients with
metastatic disease. The combinations of radiotherapy and im-
munotherapy are an area of intense research interest and will be
discussed in detail below.
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The key cytotoxic mechanism of action of radiotherapy in-
volves induction of various forms of DNA damage, including
double-strand breaks, which can be repaired by several highly
conserved repair pathways, and repair is initiated almost im-
mediately upon sensing of DNA damage (McBride et al., 2004).
Also, microenvironmental factors such as tumor hypoxia have
been implicated in radiotherapy failure, although like most cy-
totoxic therapies, tumor volume is the most likely determinant
of cure by radiotherapy. Certain histological subtypes such as
glioblastoma and pancreatic cancer seem unusually refractory to
radiotherapy or radiochemotherapy treatment. The effects of IR
on both tumors and normal tissues are determined by the overall
dose, the daily dose (fraction size), and the overall time of de-
livery. The most common overall dose is 50–60 Gy in 1.8–2 Gy
daily fractions delivered externally by a LINAC. Alternative de-
livery strategies, such as stereotactic body radiotherapy (SBRT,
using a few large doses in a short period of time), more than one
treatment per day (hyper-fractionation), or a slightly larger dose
than standard (2–2.5 Gy/day) over a shorter period of time (ac-
celerated fractionation or hypo-fractionation) are employed to
improve treatments by killing more tumor cells and decreasing
tumor repopulation between doses (Hall and Giaccia, 2018).
Technological advances such as intensity-modulated radiother-
apy, proton therapy, and improved imaging techniques inte-
grated into therapy machines are employed to improve the
precision of dose delivery to tumors. The immune contexture of
the tumor may be a determinant of radiocurability, and recent
studies have been aimed at exploiting the immune system with
radiotherapy to improve the therapeutic index.

Preclinical studies of radiation and anti-tumor immunity
Radiation, as an acute insult, results in acute inflammation and,
as depicted in Fig. 1, a complex response in the tumor micro-
environment (TME). The local inflammation and the overpro-
duction of chemokines lead to increases in immune cells and
T-lymphocyte infiltration. By inducing immunogenic cell death,
IR generates neoantigens in tumor cells (Reits et al., 2006). IR
induces expression of MHC class I molecules on tumor cells,
which can result in either increases in existing tumor neoantigen
expression or neoantigens from DNA damage–induced mutations
(McLaughlin et al., 2020). Recently, Lhuillier et al. reported
identifying neoantigens to tumor-specific T cells from somatic
nonsynonymous mutations that were overexpressed after IR.
Vaccination using neopeptides enhances efficacy of IR in a mu-
rine model of triple-negative breast cancer (Lhuillier et al., 2021).

Professional antigen-presenting cells most likely are required
for T cell priming at higher potency. Radiation leads to enhanced
dendritic cell (DC) maturation and antigen presentation capacity
(Burnette et al., 2011; Lugade et al., 2005), followed by T cell
priming (Lee et al., 2009). CD8+ T cells are required for the optimal
anti-tumor effects of IR. Data indicate that a state of equilibrium
between cytotoxic CD8+ T cell function and tumor cell proliferation
can be disrupted through administration of interferon (IFN) γ to
tumors, leading to tumor rejection (Liang et al., 2013a, 2013b).
IFNβ induction and signaling by IR is critical for tumor response
(Ranoa et al., 2016). DCs deficient in IFNβ signaling can contribute
to abrogation of IR anti-tumor effects (Chen et al., 2019).

CD8+ T cells are required for IR-induced anti-tumor efficacy
T cells, especially CD8+ T cells, activated (primed) by antigen-
presenting cells (such as DCs) are well documented to be re-
quired for IR-induced anti-tumor immunity. IR not only increases
the infiltration of T cells but also enhances the cytotoxicity of
T cells by augmenting the production of tumor necrosis factor
(TNF) α, IFNγ, and granzyme B (Hay and Slansky, 2022; Kohno
et al., 2020; Park et al., 2014). In almost all murine tumor models,
CD8+ T cells are essential since depleting CD8+ T cells markedly
reduces the anti-tumor effects of IR (Burnette et al., 2011; Deng
et al., 2014a; Lee et al., 2009; Liang et al., 2013b; Weichselbaum
et al., 2017). Existing data do not indicate an important role for
CD4+ T cells in response to IR inmost murine tumormodels, with
the exception of a few studies testing combinations: IR + all-trans
retinoic acid, where CD4+ T cells were required for the mani-
festation of full anti-tumor effects (Rao et al., 2021); IR + vacci-
nation of CD4+ antigen, where CD4+ T cells are posited to be
important for sustained CD8+ T cell activation (Lhuillier et al.,
2021); and combination IR + monophosphoryl lipid A treatment,
which generates a systemic anti-tumor immune response in a
Th1-CD4+ T cell–dependent manner in murine melanoma and
prostate cancer models (Jagodinsky et al., 2022). Although IR
alone activates T cells, they are often quickly exhausted or limited
by TME-expressing immune checkpoints induced by IR, such as
PD-L1 and CTLA-4 (Gough and Crittenden, 2022).

IR-induced suppression and negative regulators of anti-tumor
immunity
Although IR has been shown to induce cancer cell death and
tumor-specific adaptive immune responses, it has been hypoth-
esized that IR-induced suppression (both tumor cell–intrinsic
resistance and host cell–extrinsic effects) may account for some
treatment failures. Ewing (1917) first observed early lymphocyte
loss following radium treatment for cervical cancer (Schaue,
2017), as well as the accumulation of lymphocytes, leukocytes,
plasma cells, and polyblasts at later time points, and argued that
this immune activity was key to tumor cell killing and normal
tissue healing. While lymphopenia continues to present a con-
siderable challenge in radiotherapy (Kleinberg et al., 2019), the
response of lymphoid andmyeloid subpopulations to IRmay hold
the key to improving radiotherapy (Pham et al., 2023).

IR-induced regulatory T cells (Tregs)
Tregs are a unique subpopulation of CD4+ T cells that are
characterized by expression of the forkhead box P3 transcrip-
tion factor and high levels of CD25. Tregs exert “unproductive”
immunosuppression leading to unwanted immunosuppressive
effects or even promoting tumor progression or metastasis
(Wolf et al., 2015). Current findings on the effect of IR on Tregs
in the TME indicate a complex picture. It has been reported that
IR can increase the recruitment of Tregs into the TME in mul-
tiple cancers, which may contribute to radioresistance. IR sig-
nificantly increases tumor-infiltrating Tregs in multiple murine
tumor models including melanoma, B cell lymphoma, and
prostate cancer (Dutt et al., 2018; Kachikwu et al., 2011; Wolf
et al., 2015). In several clinical trials, radiotherapy (including
chemo-radiotherapy or SBRT) increases levels of circulating
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Tregs in the peripheral blood mononuclear cells of patients
undergoing treatment for head and neck cancer (Schuler et al.,
2013), cervical cancer (Battaglia et al., 2010; Qinfeng et al., 2013),
and glioma (Fadul et al., 2011) compared with patients not re-
ceiving radiotherapy. Although there is a general consensus that
Tregs are immunosuppressive and may contribute to treatment
failure, the ratio of Tregs and CD8+ effector T cells as well as the
timing of changes require further elucidation to comprehen-
sively clarify the relevance of Tregs to the anti-tumor response.

IR-induced myeloid-derived suppressor cells (MDSCs)
In the context of IR, the expansion of MDSCs and Tregs has been
reported to suppress CD8+ T cell response in the TME, acting as
extrinsic radioresistance (Pointer et al., 2022). Two recent re-
views have summarized the role of MDSCs following IR in
preclinical models (Jiménez-Cortegana et al., 2022; Wang et al.,
2023a). MDSCs develop from common myeloid progenitor cells
in the bone marrow, expand in the peripheral blood, and then
are attracted to the tumor sites via a variety of cytokines and
chemokines (Veglia et al., 2021). MDSCs are a heterogeneous,
immature population of myeloid cells. Known for their “plasticity”
(Schouppe et al., 2012),MDSCs are associatedwith tumor-associated
macrophages (TAMs) and tumor-associated neutrophils (TANs) in
the context of cancer: polymorphonuclear-MDSCs seem to develop
into N2 TANs while monocytic (M)-MDSCs are proposed to develop
into TAMs (Li et al., 2021a).

Local IR can significantly increase circulating MDSCs in hu-
mans (Ghosh et al., 2023) and in tumor-infiltrating MDSCs in
various murine models including breast cancer, colon cancer,

glioma, hepatocellular carcinoma (HCC), lung cancer melanoma,
prostate cancer, and pancreatic cancer. The induction of MDSCs
by IR in syngeneic mouse models of cancer depends on different
signaling pathways/mechanisms. Xu and colleagues highlighted
the importance of CSF1/CSF1R signaling in the recruitment of
CD11b+Ly6G+ MDSCs in irradiated tumors (Xu et al., 2013). The
Warburg effect–induced lactate secretion has been shown to
trigger IR-mediated MDSC expansion in an HIF-1α/STAT3-de-
pendent manner in murine pancreatic cancer (Yang et al.,
2020). Previous investigations demonstrated that activation of
the cyclic GMP-AMP synthase/stimulator of IFN genes (cGAS/
STING) pathway in MDSCs was essential for the attraction of
monocyte MDSCs in a CCR2-dependent manner in a colon can-
cer model (Liang et al., 2017). YTHDF2–NF-κB signaling was
recently implicated as a mechanism of IR-induced MDSC tumor
infiltration (Wang et al., 2023a). In cancer patients, the induc-
tion of MDSCs by radiotherapy has been observed in the spleen,
lung, lymph nodes, and peripheral blood (Xu et al., 2013), and
thereby contributes to suboptimal anti-tumor effects.

IR-induced TAMs
TAMs are among the most represented cells of the immune
system in the TME and can be derived from tissue-resident
progenitors or circulating monocytes/M-MDSCs (Cassetta et al.,
2019; Cassetta and Pollard, 2023; Nalio Ramos et al., 2022). TAMs
contribute tomultiple crucial steps of tumorigenesis (Kloosterman
and Akkari, 2023) including, but not limited to, angiogenesis
(Jetten et al., 2014; Lin et al., 2006), suppression of adaptive im-
mune responses (Doedens et al., 2010; Fan et al., 2021), and

Figure 1. IR reprograms the TME, initiating both
pro-tumor and anti-tumor effects. Host immune
status and other factors, such as microbiome pop-
ulations, can affect tumor immunity. Left: Anti-
tumor effects of IR. DCs are activated by RNA and
DNA sensing pathways, which results in production
of type I IFN, IFN-stimulated genes (ISGs), cytokines,
and chemokines. DCs and inflammatory macrophage
activate T cells to produce more IFN-γ, TNF-α, and
granzyme B (GZMB), and kill tumor cells. Right: Pro-
tumor effects of IR. IR induces PD-L1 and CTLA-4
expression in tumors. IR also induces infiltration of
MDSCs, TAMs, and Tregs, which collectively inhibit
T cell cytotoxic function and promote tumor growth.
IR also induces overexpression of purinergic signal-
ing to introduce radioresistance. Bottom: Outside of
the tumor, products of certain bacteria strains acti-
vate or inhibit DC functions via TLRs. Fungus over-
growth or certain metabolites result in T cell exhaustion
or radioresistance, respectively. MMP, matrix metal-
loproteinase; SCFA, short chain fatty acid. Figure
created with BioRender.
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establishment of the premetastatic niche (Casanova-Acebes
et al., 2021; Gil-Bernabé et al., 2012). Historically, macrophages
were dichotomized into M1 (anti-tumorigenic) and M2 (pro-
tumorigenic) macrophages, and it was suggested that IR can
induce an M1-like phenotype with increased inducible nitric
oxide synthase expression (Klug et al., 2013; Rao et al., 2021;
Teresa Pinto et al., 2016), and that M2-like macrophages ex-
hibit higher radioresistance (Leblond et al., 2017). However,
since the advent of small-cell RNA sequencing studies, the
concept of M1/M2 polarization is being increasingly aban-
doned (Ginhoux et al., 2016; Nahrendorf and Swirski, 2016),
and a diverse spectrum of multiple TAM phenotypes is now
being recognized (for recent consensus review, see Ma et al.,
2022). It has furthermore been shown that IR can accelerate
the differentiation of infiltrating monocytes toward TAMs
expressing immunosuppressive gene signatures (Wang et al.,
2023a). More research is needed to understand the differen-
tial effects of IR on specific TAM subsets and how this could be
leveraged therapeutically.

The crucial signaling pathways activated by IR or IR+immune
checkpoint blockade (ICB)
DNA damage sensing
IR, like other DNA-damaging agents, results in genomic insta-
bility and release of double-stranded DNA (dsDNA) or RNA into
the cytosol of dying or stressed cells. These nucleic acids are
taken up by tumor-associated DCs and trigger a series of events
(discussed in detail in a later section) to activate antigen cross-
presentation of DCs. The activation of DCs by increased levels of
IFNβ and an abundance of neoantigens leads to enhanced local
and systemic adaptive responses (Weichselbaum et al., 2017). It
has been reported that TREX1, a DNA exonuclease, is activated
by doses higher than 12–18 Gy, which degrades DNA and impairs
the IFN response (Vanpouille-Box et al., 2017).

Pattern recognition receptors (PRRs) are important compo-
nents of the innate immune system (Hoffmann and Akira, 2013).
Nucleic acid sensor PRRs can be divided into different catego-
ries: (i) sensors that detect nucleic acids in endosomes, such as
Toll-like receptor (TLR) family members; (ii) sensors of nucleic
acids in cytosol, such as retinoic acid–inducible gene-I (RIG-I)–
like receptors (RLRs) and cGAS; and (iii) extracellular RNA and
DNA sensing. IR can induce cellular immune responses in cancer
cell lines by triggering their RNA virus sensor pathway
(Khodarev, 2019). IR stimulates the binding of RIG-I to small
nuclear RNAs U1 and U2 and results in IFNβ production. Deletion
of RIG-I in cancer cells renders them resistant to IR and che-
motherapy (Ranoa et al., 2016). IR is reported to induce long
terminal repeats (LTRs), which are key ligands for the RNA virus
sensor RIG-I (Du et al., 2023). The activated mTOR–LTR–RIG-I
axis induces cellular immune response by dramatically in-
creasing inflammatory cytokine and chemokine production,
potentially enhancing DC and macrophage infiltration after ir-
radiation. Preclinical findings indicate that host RNA sensing
activation is required for the anti-tumor action of IR; RLR LGP2-
deficient mice lose the ability to respond to IR (Zheng et al.,
2020). However, expression of the RLR LGP2 contributes to
radioresistance (Widau et al., 2014).

cGAS/STING/IFN-I
Radiation induces DNA damage, which leads to dsDNA breaks,
and these can be sensed by cell-intrinsic or -extrinsic mecha-
nisms. DNA sensors AIM2, in the nucleus (Hu et al., 2016), and
cGAS, in the cytosol (Cai et al., 2014), recognize the IR-induced
dsDNA, and this triggers a cascade of downstream events to
mount an inflammatory reaction and innate immunity (Fig. 1).
Cytosolic DNA activates cGAS to synthesize 2939-cGAMP from
ATP and GTP. As a high-affinity ligand for STING, 2939-cGAMP
binds and activates STING and the STING/TBK1/IRF3 axis, which
induces the production of type I IFNs and other cytokines. IR can
induce STING activation, presumably by inducing DNA damage
and double-stranded breaks. Meiotic recombination 11 homolog A
serves as a cytosolic sensor for dsDNA and is required for STING/
IRF3 activation (Kondo et al., 2013), via liberating cGAS from
nucleosome sequestration (Cho et al., 2024). DNA-dependent
protein kinase (DNA-PK) phosphorylates and suppresses cGAS
to diminish antiviral innate response (Sun et al., 2020). By con-
trast, DNA-PK may lead to cGAS/STING-independent IFN pro-
duction to boost innate immune response (Burleigh et al., 2020),
depending on biological context (Berger et al., 2022).

STING, especially STING in DCs, is required for innate im-
munity activation and IR-induced anti-tumor effects (Deng
et al., 2014b; Wu and Murphy, 2022). Potent bacterial-derived
STING agonist Bis-(39-59)-c-di-AMP delivered by zinc nano-
particle, used alone or in combination with IR, exhibited superior
anti-tumor activity (Yang et al., 2022). The anti-tumor action
requires STING activation in endothelial cells, which eventually
destroys tumor vasculature. STING activation in TME also re-
programmed macrophages to present tumor antigens. Recently,
natural killer (NK) cells were shown to be critical for tumor in-
hibition induced by a STING agonist. However, STING activation
in different stages of tumorigenesis, in different cell types, at
different times, and different IR doses may play distinct and
sometimes contrasting roles. For example, cancer cell–intrinsic
STING activation may cause chronic inflammation and lead to
tumor progression (Kumar et al., 2023). STING activation in
phagocyticMDSCs results in production of both proinflammatory
cytokines and anti-inflammatory IL-10 (Ahn et al., 2017). High
doses (12–18 Gy) of IR changes the expression of DNA exonuclease
TREX1, which in turn inhibits STING activity (Vanpouille-Box
et al., 2017). cGAS/STING pathway activation leads to produc-
tion of inflammatory cytokines and chemokines, including CCL-
2, -3, -5, -7, and -12, which increases infiltration of M-MDSCs into
the TME. The rupture of micronuclei generated by chromosomal
instability triggers activation of the cGAS/STING pathway and
promotes metastasis (Bakhoum et al., 2018). The complexity of
the cGAS/STING cascade likely underlies the negative results in
clinical trials using STING agonists alone or in combination with
other therapies to date, although investigations continue
(Motedayen Aval et al., 2020).

The role of the purinergic signaling pathway in radioresistance in
the context of anti-tumor immunity
The purinergic signaling pathway is formed by nucleotides/
nucleosides (main cellular messengers including ATP, ADP, ad-
enosine [ADO], uridine triphosphate, and uridine diphosphate)

Wang et al. Journal of Experimental Medicine 4 of 17

Radiotherapy and immunology https://doi.org/10.1084/jem.20232101

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/221/7/e20232101/1928486/jem
_20232101.pdf by guest on 10 February 2026

https://doi.org/10.1084/jem.20232101


with their corresponding membrane receptors (Huang et al.,
2021). Following release into extracellular space, ATP can be
dephosphorylated/hydrolyzed by ectonucleotidases including
ectonucleoside triphosphate diphosphohydrolases (like CD39/
NTPDase 1), ecto-59-nucleotidase (CD73/NT5E), ectonucleotide
pyrophosphatase/phosphodiesterase, and alkaline phosphatase
(Yegutkin, 2014). These various nucleotides activate their cor-
responding receptors, such as ATP to (ligand-activated ion
channels) P2YR receptors (belonging to superfamily of G-protein
coupled receptor), and downstream kinase signaling (Stagg and
Smyth, 2010). Purinergic signaling coordinates cancer-cell pro-
liferation, differentiation, migration, and different types of
apoptosis, as well as immune responses and inflammation
responses (Eltzschig et al., 2012; Huang et al., 2021), performing
fundamental dual roles in the TME. Here, we will mainly discuss
suppressive effects in the context of IR and ICB.

Accumulating evidence supports the idea that the purinergic
signaling pathway, involving ATP, ADP, CD39, and CD73, plays
an important role in the resistance of cancer cells to IR. Radia-
tion induces the release of ATP into the TME. The induction of
ATP by IR is independent of the dose, since a low dose of 0.25 Gy
up to 8 Gy can accelerate ATP release in human and murine
cancers (Kojima et al., 2004; Zanoni et al., 2022). In addition, the
stimulation of ATPmay be rapid or relatively long-lasting (5min
after IR to 21 days after IR) (Kojima et al., 1997; Zanoni et al.,
2022). We speculate that low-dose, not high-dose, irradiation
induces release of ATP.

ATP is reported to mediate radioresistance by promoting
proliferation, migration, and epithelial-to-mesenchymal transi-
tion (EMT) of cancer cells in a variety of cancers. IR-induced
ATP can bind to receptors (mainly P2X7R and P2Y2R) in cancer
cells to form an autocrine–paracrine signaling loop. ATP plays a
role in radioresistance by promoting IR-induced DNA damage
repair. IR-induced ATP activates P2Y6 and/or P2Y12, resulting
in formation of foci consisting of γH2AX, 53BP1, and ataxia
telangiectasia mutated (ATM), which mediates repair of DNA
damage in an ERK1/2-dependent manner (Ide et al., 2014;
Nishimaki et al., 2012).

IR-induced ATP release contributes to the differentiation of
naive CD4+ T cells into Tregs by stimulating the adenosine A2B
receptor (Kojima et al., 2017; Nakatsukasa et al., 2011). ADO
contributes to the differentiation from monocyte into TAM, and
ADO abolishes the phagocytic activity of macrophages, which
amplifies the immunosuppressive function (Belikoff et al., 2011).
Release of ATP or ADO in the context of IR could be one mech-
anism of radioresistance and a feasible target for drug develop-
ment for cancer treatment.

The immune checkpoint pathways
The immune checkpoint pathways are a major mechanism
of immune resistance during cancers. Among these, the co-
inhibitory molecule programmed cell death protein 1 (PD-1) and
its ligand programmed cell death ligand 1 (PD-L1) play a central
role in inhibiting anticancer T cell immunity (Li et al., 2018). The
significance of the PD-L1/PD-1 axis to cancer treatment is that
high expression of PD-L1 has been observed in multiple types of
human cancers including non-small cell lung cancer (NSCLC),

melanoma, renal cell carcinoma, prostate cancer, and gastric
cancer (Cha et al., 2019). In addition to tumor cells, it has been
reported that tumor-infiltrating immune cells also express PD-
L1 and contribute to pro-tumor activities (Lin et al., 2018). Re-
cent studies focused on exosomal PD-L1 in the extracellular
vesicles and soluble PD-L1 in the blood indicate similar immu-
nosuppressive function (Chen et al., 2018; Finkelmeier et al.,
2016; Poggio et al., 2019; Rossille et al., 2014).

Increasing evidence has demonstrated that radiation induces
an increase in expression of PD-L1 on tumor cells in multiple
cancers including colon, head and neck, squamous cell carci-
noma, breast cancer, nasopharyngeal carcinoma, prostate can-
cer, and glioma (Chen et al., 2023b; Ding et al., 2020; Dovedi
et al., 2014; Oweida et al., 2017; Wu et al., 2016). Radiation in-
duces PD-L1 expression in tumor cells via various pathways like
DNA damage/ATM/STAT3/IRF3 axis, IFN-γ/JAK/STAT/PD-L1
pathway, cGAS-STING signaling, epidermal growth factor re-
ceptor (EGFR)/PI3K-AKT cascade, and the HIF-1α signaling
(Ding et al., 2021; Wang et al., 2022). Of note, other signaling
pathways may be involved in the regulation of PD-L1 expression
in tumors.

Much investigation has focused on PD-L1 expression in
MDSCs: single high-dose IR (15 or 20 Gy) can significantly elevate
the PD-L1 expression (Deng et al., 2014a). Ablative hypofractio-
nated IR (40 Gy in four fractions) also increased PD-L1 expression
in a murine lung cancer model (Chen et al., 2021). However, it
remains unclear which signaling pathways are involved in PD-L1
expression in MDSCs or other tumor-infiltrating immune cells.
Radiotherapy-induced PD-L1 expression and the consequent im-
munosuppression provides the rationale for combinations in-
volving anti-PD-L1 immunotherapy for cancer treatment.

Cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) is
another inhibitory receptor, and the interaction between CTLA-
4 and its ligands potentially inhibits T cell activation (Fife and
Bluestone, 2008). CTLA-4 engagement blocks the activation of
transcription factors such as NF-κB, nuclear factor of activated
T cell, and AP-1 in activated T cells, limits IL-2 production, and
thereby dampens immune responses (Seidel et al., 2018). It has
been reported that radiotherapy enhances systemic responses
to anti-CTLA-4 antibodies in preclinical and clinical studies
(Demaria et al., 2016; Formenti et al., 2018). T cell immuno-
globulin mucin-3 (TIM-3) is a negative regulator of lymphocyte
function and acts as a marker for T cell exhaustion (Zhu et al.,
2011). Targeting TIM-3 in combination with radiotherapy re-
sulted in improvedmurine cancer inhibition and animal survival
(Kim et al., 2017). A recent study reported that blocking the T cell
immunoreceptors with the immunoglobulin and immuno-
receptor tyrosine-based inhibitory motif domain can improve
the response to radiotherapy in murine cancer models (Zhao
et al., 2023). Targeting other immune checkpoints (like LAG-3,
BTLA) combined with radiotherapy in cancer treatment is an
area of interest with potential implications for immunotherapy
and needs more (pre-)clinical investigation in the future.

NF-κB signaling in both tumor cells and host cells
IR can activate NF-κB signaling in host immune cells, playing a
fundamental role in influencing immune response. A recent
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study reported that IR or irradiated tumor cells activated NF-κB
signaling in MDSCs, improved the differentiation, migration,
and suppressive function of tumor-infiltrating MDSCs, and
thereby impaired the CD8+ T cell response (Wang et al., 2023a).
Therefore, understanding the dynamic regulation of NF-κB
signaling in both tumor cells and immune cells in response to IR
is essential for developing therapeutic strategies to enhance the
effectiveness of radiotherapy.

IR-induced TGF-β signaling
Although context-dependent under many circumstances, TGF-β
is one of the most potent suppressors of immune activity against
cancer cells. TGF-β signaling has been implicated in promoting
radioresistance, and IR induces TGF-β within the TME. Tumor
cells, monocytes, macrophages, and platelets have all been re-
ported to be sources of TGF-β following IR (Farhood et al., 2020;
Xia et al., 2014; Yarnold and Brotons, 2010). The elevated TGF-β
levels decrease the sensitivity of cancer cells to IR, likely via the
phosphorylation of H2AX, ATM, and p53 during DNA damage
responses of cancer cells and via HIF-1α/vascular endothelial
growth factor (VEGF) activation for angiogenesis (Farhood et al.,
2020). TGF-β signaling can induce EMT in both suppressor of
mothers against decapentaplegic (SMAD)–dependent and non-
SMAD-dependent manners following IR (Wang et al., 2021;
Yadav and Shankar, 2019).

TGF-β also plays a crucial role in regulating the immune
system during radiotherapy (Vanpouille-Box et al., 2015). Fol-
lowing IR, TGF-β can upregulate the expression of PD-1 and
CTLA-4, which promotes apoptosis in cytotoxic CD8+ T lym-
phocytes (CTLs) and DCs (Bai et al., 2019; Rekik et al., 2015).
TGF-β can increase the proliferation of Tregs within the TME
(Santarpia et al., 2015). TGF-β signaling is required for MDSC
migration and suppressive function after IR (Wang et al., 2022).
TGF-β signaling triggers the polarization of M2-type macro-
phages and the differentiation of suppressive monocytes, thereby
promoting tumor progression (Novitskiy et al., 2012; Pang et al.,
2013). These changes lead to suppression of CTLs and NK cells
and consequent reduction in cancer-cell killing (Farhood et al.,
2020). Overall, TGF-β acts as a radiation protection agent, leading
to heightened interest in TGF-β as a therapeutic target.

The role of N6-methyladenosine (m6A) methylation in
radioresistance
Among RNA modifications in eukaryotes, m6A is the most
common. The m6A “writers,” “erasers,” and “readers” work
jointly to form a dynamic m6A modification process and affect
the fate of modified RNA, including its stability, transport, and
processing (Frye et al., 2018; He and He, 2021; Shi et al., 2019).
Increasing evidence suggests m6A modification is implicated in
tumor progression, development, and tumor immunity (Liu
et al., 2019), and is closely associated with the efficacy of che-
motherapy, radiotherapy, and immunotherapy (Deng et al.,
2023). m6A methylation can be induced by radiotherapy. Shao
and colleagues reported that IR (4 Gy) significantly increased the
m6A levels in several colorectal cancer cells, probably due to the
reduced m6A eraser ALKBH5 after IR (Shao et al., 2023). A re-
cent report noted that IR increases m6A reader YTHDF2 in

MDSCs both in vitro (4 Gy) and in vivo (one dose of 20 Gy)
(Wang et al., 2022, 2023a). These data suggest that IR-mediated
alterations in expression of m6A proteins may impact anti-
tumor efficacy.

Several studies have reported that RNA m6A modification
was involved in DNA damage repair induced by IR (Xiang et al.,
2017; Yang et al., 2021; Zhang et al., 2020). m6A modifications
contribute to radioresistance across various cancer types
through different mechanisms (Wang et al., 2023b). Most re-
cently, findings in glioblastoma indicate that the m6A demeth-
ylase ALKBH5 is overexpressed in stem cells, promotes the
expression of homologous repair–associated genes, including
Rad51, XRCC2, BRCA2, and EXO1, and thereby induces radio-
resistance (Kowalski-Chauvel et al., 2020). In hypopharyngeal
squamous cell carcinoma, methyltransferase METTL3 confers
radioresistance by reducing tumor cell death via upregulating
circCUX1 in an m6A manner and the downstream caspase (Wu
et al., 2021). In nasopharyngeal carcinoma, m6A reader YTHDC2
increased the translation of IGF1R, consequently activating
IGF1R-AKT signaling, inhibiting tumor cell apoptosis, stimulat-
ing protein synthesis, and promoting radioresistance (He et al.,
2020). YTHDC1 was also found to promote the transcription of
SREBF1 and the downstream ferroptosis genes, and thereby in-
duce radioresistance.

We assert that modulation of the m6Awriter/reader axis may
be important in the context of IR, and it may be a feasible bio-
marker for assessment of IR dose using available patient se-
quencing data and real clinical patient samples for validation.

Interaction of the microbiome, radiotherapy, and the
immune system
The commensal microbiota can alter the effectiveness of various
cancer therapies; recent data suggest that the interplay between
the microbiome and IR shapes anti-tumor immune responses
and may influence treatment outcomes and side effects (Daillère
et al., 2016; Geller et al., 2017; Gopalakrishnan and Jenq, 2018;
Iida et al., 2013; Matson et al., 2018; Routy et al., 2018a, 2018b;
Shiao et al., 2021; Sivan et al., 2015; Viaud et al., 2013).

Clinical studies have identified microbials such as Bifidobac-
terium and Akkermansia muciniphila that correlate with height-
ened immune activation, leading to improved outcomes in
patients being treated with immunotherapies (Derosa et al.,
2022; Li et al., 2022; Matson et al., 2018; Shi et al., 2020).
Analysis by Li et al. (2022) of the fecal samples from 24 patients
receiving radiotherapy for HCC revealed that non-responding
patients demonstrated a different composition and abundance
of bacterial communities compared with responders and healthy
controls (Li et al., 2022). This disruption of the gut microbiota
was found to deleteriously affect anti-tumor immune responses.
Analysis using liquid chromatography high-resolution mass
spectrometry revealed that levels of the bacterium-derived cy-
clic (c)-di-AMP, which promotes the secretion of type I IFNs
which facilitates radiotherapy, were significantly higher in res-
ponders compared with non-responding patients. Subsequent
mouse knock-out studies uncovered that the gut microbiome–
liver axis actively regulates host cytotoxic T cell responses
through bacterial-derived c-di-AMP/GMP, which is posited to be
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acting as an agonist of the host cGAS/STING pathway. Antibiotic
treatment significantly counteractes the anti-tumor effects by
suppressing antigen presentation and inhibiting effector T cell
responses. Elucidation of the mechanisms governing microbiota-
mediated immune suppression will lead to strategies that could
enhance the anti-tumor immune response.

Preclinical and clinical data from Shiao et al. (2021) revealed
that the depletion of commensal bacteria is associated with
overgrowth of commensal fungal populations and impaired IR-
induced anti-tumor action primarily through CD8+ T cell ex-
haustion. Depletion of fungi leads to reduced tumor volume and
improved survival of mice receiving IR compared with controls
or mice receiving antifungals or IR alone. Sequencing studies of
clinical samples from patients with triple-negative breast cancer
revealed that intratumoral expression of Dectin-1, a fungal
pathogen sensor, is inversely correlated with survival.

The critical role of metabolites secreted by the gut micro-
biome has been elucidated by recent studies; short-chain fatty
acids have been found to mediate immune cell function and
modulate responses to radiotherapy (Uribe-Herranz et al., 2020;
Yang et al., 2021). Preclinical data indicate that depletion of
vancomycin-sensitive bacteria enhances the anti-tumor activity
of radiotherapy via eliminating immunosuppressive metabolites
(butyrate and propionate). Vancomycin augments radiotherapy-
induced abscopal effects by increasing DC antigen presentation
and promoting tumor-associated antigen-specific CD8+ T cell
priming (Uribe-Herranz et al., 2020). In another study, oral
supplementation of vancomycin-sensitive bacteria (Lachno-
spiraceae) increased butyric acid levels in circulation and tumors,
suppressed IR-induced type I IFN responses, and diminished the
anti-tumor effects of IR (Yang et al., 2021).

Tumor microbiota effects on chemotherapy or immunother-
apy outcomes have been reported. Gammaproteobacteria, which
is abundant in human pancreatic ductal adenocarcinoma, ex-
presses cytidine deaminase that metabolizes gemcitabine. Since
gemcitabine is used as a radiosensitizer in some gastrointestinal
malignancies, gammaproteobacteria is a source of treatment
resistance (Geller and Straussman, 2017; Xuan et al., 2014). On
the other hand, intratumoral translocation of Bifidobacterium has
been found to promote the anti-tumor efficacy of anti-CD47
treatment (Shi et al., 2020).

The commensal microbiome also plays a significant role in
shaping the side effects of radiotherapy. Investigating the spe-
cific mechanisms throughwhich themicrobiota influences these
side effects is essential for optimal radiotherapy outcomes.
Several studies (Atarashi et al., 2013; Nam et al., 2013; Wang
et al., 2015) have demonstrated that patients who developed
acute diarrhea after radiotherapy exhibit significant alterations
in their gut microbiota composition compared with healthy
volunteers or those without diarrhea. Gut microbial–derived
propionate and tryptophan pathway metabolites (1H-indole-3-
carboxaldehyde, kynurenic acid) provide long-term radioprotec-
tion in vivo, alleviating gastrointestinal syndromes and prolonging
survival (Guo et al., 2020). The use of diets, fecal microbiota
transplants, and the administration of specific microbial strains or
microbial metabolites have been investigated for radiation-
induced enteritis.

The multifaceted role of the microbiota in the context of
radiotherapy or the combination of radiotherapy and ICB un-
derlies a dynamic interplay between anti-tumor immunity,
immune suppression, and treatment-associated side effects, and
has potential importance for personalized medicine.

New directions: Preclinical
Radiation-induced production of growth factors
An interesting, understudied aspect of IR is its potential pro-
tumorigenic/pro-metastatic effect. IR can enhance motility and
invasiveness of cancer cells (Kawamoto et al., 2012; Wild-Bode
et al., 2001; Zhang et al., 2011) and cause increased stemness and
radioresistance of surviving clones, and has therefore been im-
plicated in the facilitation of multiple steps of the metastatic
cascade (Lee et al., 2017). Another important process of IR-
facilitated metastasis is the induction of EMT (Gomez-Casal
et al., 2013; Kawamoto et al., 2012; Mempel et al., 2024; Zhang
et al., 2011). These events are enhanced by IR-induced produc-
tion of growth factors, chemokines, and cytokines, which influence
tumor development and metastasis (Hallahan et al., 1989;
Veeraraghavan et al., 2011). IR has been described to induce the
production of TGF-α (Kim et al., 1997), TGF-β (Park et al., 2001),
TNFα (Dittmann et al., 2005; Rodemann et al., 2007), platelet-
derived growth factor (Formenti et al., 2018) and VEGF (Hotta
et al., 2021), and growth factor receptors such as EGFR (Kelly
et al., 2008; Ready et al., 2010). Little is known about the effects
of thesemolecules on anti-tumor immune response in the context of
IR, especially in the setting of metastatic/systemic disease. Systemic
TGF-β blockade is currently being examined in combination with
focal irradiation in metastatic breast cancer (Wrona et al., 2021).

New technologies: Nanoparticles
Nanoparticles, characterized by their unique physicochemical,
magnetic, optical, or catalytic properties, serve as a sophisticated
platform to minimize off-target effects and enhance the overall
therapeutic efficacy of radiotherapy (Zhen et al., 2023). Among
others, nanoscale metal-organic frameworks (MOF) can pro-
mote radioimmunotherapy efficacy (Lu et al., 2018), as well as
the effects of radiotherapy in combination with chemotherapy
and photodynamic therapy (He et al., 2016; Li et al., 2021b). A
phase 1 dose-escalation study of RiMO-301, a hafnium-based
MOF, has recently shown promising anti-tumor efficacy in
combination with palliative radiotherapy (Koshy et al., 2023).

Self-assembling nanoscale coordination polymers (NCPs)
(Liu et al., 2014), which take advantage of the enhanced perme-
ability and retention effect and the versatility of nanoparticles,
have successfully delivered chemotherapies (Duan et al., 2019;
Liu et al., 2014, 2023) and also bacterial-derived STING agonists
(Dosta et al., 2023; Wang-Bishop et al., 2023). Zinc c-di-AMP
NCPs have shown effective tumor suppression by activation of
endothelial STING and TAM reinvigoration, and they can bolster
radio- and immunotherapy efficacy in immunologically cold and
radioresistant tumor types (Yang et al., 2022).

New technologies: Bispecific antibodies and fusion proteins
Bispecific antibodies—recombinant molecules containing two
different antigen-identifying domains—offer a versatile approach
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to modulate immune responses in combination with radio-
immunotherapy (Wei et al., 2022). Promising immune-activating
effects have been achieved upon simultaneous targeting of T cell
coreceptor CD3ε and PD-L1, which has been shown to rejuvenate
anti-tumor T cell response by alleviating DC-mediated PD-L1
suppression while increasing B7-1&2 costimulation (Liu et al.,
2018, 2021). DC-mediated anti-tumor activity has also been the
basis of trials investigating bispecific antibodies that target CD40
activation in combination with CD11c, DEC-205, or CLEC9A
(Salomon et al., 2022). Fusion proteins, which, similar to bispe-
cific antibodies, contain functional domains from distinct mole-
cules, offer another tailored strategy for immune modulation
alongside radiotherapy (Xue et al., 2021). Recently, promising
results have been achieved by combining an IL-2 mutein/Fc fu-
sion protein with IL2 receptor β (Hsu et al., 2021) as well as a
cetuximab-based IL-10 fusion protein for EGFR-targeted delivery
of IL-10 to tumors (Qiao et al., 2019). Further promising new
directions currently lie within the growing field of theragnostics,
exemplified by promising fusion proteins such as Lu-177-DOTA
octreotate for somatostatin receptor-expressing neuroendocrine
tumors (Howe et al., 2020), or the recently FDA-approved Lu-177-
Vipivotide-Tetraxetan for patients with metastatic castration-
resistant prostate cancer (Fallah et al., 2023).

Clinical studies
Clinical evidence for radiotherapy and
immunotherapy combinations
The preclinical data discussed above inspired efforts to combine
radiotherapy and immunotherapy in the clinic. In particular, im-
mune checkpoint inhibitors are the most commonly used immu-
notherapeutic agents in radiotherapy and immunotherapy
combinations for solid tumors. As such, these combinations are the
focus of this section of our review. Clinical trials have investigated
radiotherapy and ICB combinations in a variety of contexts from
early-stage malignancy to advanced, widely metastatic disease.

Early-stage malignancy
A randomized phase 2 trial investigated SBRT with or without
concurrent and adjuvant nivolumab in patients with stage IA-IIB
NSCLC. The investigators identified a significant benefit to
event-free survival of 77% versus 53% at 4 years in favor of
combined SBRT and ICB (Chang et al., 2023). Three phase 3 trials
are currently investigating combined SBRT with other anti-PD-
(L)1 therapies (NCT03833154, NCT04214262, and NCT03924869).
Results from a randomized phase 2 trial including stage I-IIIA
NSCLC patients receiving neoadjuvant durvalumab with or
without SBRT published by Formenti and colleagues demon-
strated an improved rate of major pathologic response in 53% of
patients receiving the combined treatment versus 7% of patients
receiving durvalumab alone, though disease-free survival was
not significantly improved (Altorki et al., 2021, 2023). These trials
suggest a benefit to concurrent ICB in the early-stage setting, at
least in NSCLC.

Locally advanced malignancy
Standard-of-care treatment for locally advanced cancers with
radiotherapy most commonly requires the use of conventional

fractionation (1.8–2 Gy per fraction) and treatment of a larger
field, often including tumor-draining lymph nodes, which are at
risk for microscopic spread of disease. Large-scale randomized
trials of radiotherapy and ICB in this setting have investigated
both concurrent and adjuvant ICB, with adjuvant trials being
more successful. Trials of chemoradiotherapy with or without
ICB in rectal adenocarcinoma, head and neck cancer, and NSCLC
were negative for their primary endpoints (Kemp, 2023; Lee
et al., 2021; Machiels et al., 2022; Mell et al., 2022; Rahma
et al., 2021; Tao et al., 2023). Trials in glioblastoma
multiforme—which is not “locally advanced” but which is
treated with conventional fractionation and concurrent
chemotherapy—examined the addition of nivolumab to stan-
dard-of-care chemoradiotherapy and were negative for an
overall survival (OS) benefit (Lim et al., 2022; Omuro et al.,
2023). Meanwhile, there is conflicting evidence for concurrent
ICB in cervical cancer. The CALLA trial of chemoradiotherapy
with or without concurrent and adjuvant durvalumab was neg-
ative for a 2-year progression-free survival (PFS) benefit, while
the KEYNOTE-A18 study, which examined the addition of con-
current and adjuvant pembrolizumab, was positive for the same
endpoint (Lorusso et al., 2024; Monk et al., 2023).

Except in cervical cancer, the only phase 3 trials showing a
survival benefit with combined conventionally fractionated ra-
diotherapy and ICB in the locally advanced setting use adjuvant
rather than concurrent ICB. The PACIFIC trial examined che-
moradiotherapy with or without adjuvant durvalumab in pa-
tients with locally advanced unresectable NSCLC. There was a
significant, durable benefit to PFS and OS with the addition
of durvalumab, setting the current standard-of-care for un-
resectable locally advanced NSCLC (Antonia et al., 2017, 2018;
Spigel et al., 2022). Similarly, CheckMate-577 investigated ad-
juvant nivolumab following chemoradiotherapy and surgery in
patients who underwent a margin-negative resection but had
residual pathologic disease. Adjuvant nivolumab significantly
improved disease-free survival in this population (Kelly et al.,
2021).

One cause for the failure of trials of concurrent ICB in the
locally advanced setting could be the use of elective nodal irra-
diation in this population. Preclinical models have shown that
targeting the tumor-draining lymphatics attenuates the re-
sponse to ICB by reducing CD8+ T cell chemoattractant chemo-
kine signaling and type I IFN signaling, and also reducing the
expansion of antigen-experienced T cells and type I DCs in the
draining nodes (Darragh et al., 2022a; Marciscano et al., 2018;
Saddawi-Konefka et al., 2022). Translational data from a phase
I/Ib clinical trial in patients with locally advanced laryngeal or
oral cavity cancer treated with preoperative SBRT and durva-
lumab followed by surgical resection identified an increase in
activated T cells with SBRT and ICB compared with those pa-
tients who did not receive the trial treatments (Darragh et al.,
2022a, 2022b). Taken together, these findings strongly suggest
that elective nodal irradiation results in both local and systemic
immunosuppression.

The use of elective nodal irradiation may counteract the
T cell–stimulating effects of ICB in the tumor-draining lymph
nodes, drawing in T cells that are then ablated by consecutive
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daily treatments. While the omission of elective nodal irradia-
tion is an ongoing area of research in head and neck cancer, with
one phase 2 trial showing the feasibility of targeting gross dis-
ease alone (Sher et al., 2023), it requires further investigation
given that preclinical and clinical studies have shown higher
rates of regional recurrence with omission of elective nodal ir-
radiation (Darragh et al., 2022a; Ma et al., 2022). Ultimately, the
current data in head and neck, NSCLC, and esophageal cancer
support the use of adjuvant ICB following conventionally frac-
tionated radiotherapy or chemoradiotherapy.

Metastatic disease
Trials of radiotherapy and ICB combinations in the metastatic
setting vary by dosing regimen, number of sites treated, and
timing of radiotherapy relative to ICB. We categorize radiotherapy
dosing regimens on these trials into “ablative” and “sub-ablative”
regimens, with ablative treatments achieving a biologically
equivalent dose of >100 Gy (assuming an α/β ratio of 10). Many
sub-ablative radiotherapy trials were initiated based on pre-
clinical data showing that doses below 12 Gy stimulate an im-
mune response without activation of Trex1 and that doses of
7.5 Gy per fraction maximized tumor control and immunity
without stimulating immunosuppressive Tregs (Schaue et al.,
2012; Vanpouille-Box et al., 2017). These trials delivered SBRT
to 24–30 Gy in 3–5 fractions to one or several metastases per
patient (Formenti et al., 2018; Kim et al., 2023; Mahmood et al.,
2021; McBride et al., 2021; Monjazeb et al., 2021; Pakkala et al.,
2020; Papadopoulos et al., 2020; Schoenfeld et al., 2022; Spaas
et al., 2023; Theelen et al., 2019). An early trial in NSCLC sug-
gested that combination therapy with radiotherapy and anti-
CTLA-4 treatment induced a robust immune response (Formenti
et al., 2018), although randomized trials investigating the addi-
tion of sub-ablative radiotherapy to ICB were negative for their
respective endpoints, showing no clear benefit to the addition of
radiotherapy (Kim et al., 2023; Mahmood et al., 2021; Monjazeb
et al., 2021; Pakkala et al., 2020; Schoenfeld et al., 2022; Spaas
et al., 2023; Theelen et al., 2019). Several trials also investigated
the addition of low-dose radiotherapy of 0.5–1 Gy with every
cycle of immunotherapy or every 2 weeks, without demon-
strating a survival benefit (Herrera et al., 2022; Monjazeb et al.,
2021; Schoenfeld et al., 2022). While there is evidence that
combined sub-ablative SBRT and ICB increase markers for im-
mune activation, there is no evidence currently that this trans-
lates into improved outcomes in the metastatic setting.

Many of these same trials treated a single site of metastasis,
leaving other metastases untreated by radiation, again with the
purpose of stimulating a robust systemic immune response com-
paredwith ICB alone (Chen et al., 2023a; Formenti et al., 2018; Kim
et al., 2017; Kwon et al., 2014; Maity et al., 2021; Pakkala et al.,
2020; Papadopoulos et al., 2020; Theelen et al., 2019; Welsh et al.,
2019). Several of these trials randomized patients to ICB with or
without radiotherapy and failed to show a benefit to the addition
of radiotherapy (McBride et al., 2021; Pakkala et al., 2020; Theelen
et al., 2019). As with sub-ablative dosing, there is currently no
evidence to support the use of single-site radiotherapy—whether
ablative or sub-ablative—to induce an immune response at distant
sites in patients with polymetastatic disease.

Studies of ablative SBRT to multiple—though not necessarily
all—metastases have demonstrated that this approach is safe
and well-tolerated (Bestvina et al., 2022; Foster et al., 2021; Luke
et al., 2018; Welsh et al., 2020). A randomized trial of pem-
brolizumab with or without radiotherapy (50 Gy in 4 fractions
or 45 Gy in 15 fractions for SBRT-ineligible lesions) in metastatic
NSCLC patients did not identify a benefit to the addition of SBRT
in all patients, though those with low PD-L1 expression did see
improvement in outcomes (Welsh et al., 2020). A pooled analysis
of this trial and a trial of pembrolizumab with or without sub-
ablative single-site radiotherapy for metastatic NSCLC patients
identified a PFS and OS benefit with combined modality treat-
ment (Theelen et al., 2019, 2021; Welsh et al., 2020). Given the
lack of benefit seen with sub-ablative and single-site radiother-
apy in the polymetastatic setting, ablative SBRT is preferred
given that a higher dose confers a higher probability of control of
the treated lesion.

The current clinical data for combinations of radiotherapy
and ICB offer evidence of what works, what doesn’t, and what
requires further investigation. In early-stage NSCLC, concurrent
SBRT and ICB have shown promise, with multiple confirmatory
phase 3 trials underway. When treating larger fields with IR,
however, concurrent ICB appears to add no benefit in head and
neck and lung cancer and may even be detrimental to the sys-
temic immune response. Adjuvant ICB following (chemo)radi-
otherapy is preferred in the locally advanced setting for these
disease sites. There may be other disease sites that, like cervical
cancer, do benefit from concurrent ICB under certain conditions.
For metastatic disease, the addition of sub-ablative SBRT and
single-site treatment to ICB has not shown benefit over ICB
alone in a randomized setting. While certain populations may
benefit from combined SBRT and ICB, further work is needed to
determine who benefits and how best to augment the effects of
combined treatment. Biomarkers for response to radiotherapy
and ICB may aid in identifying candidates for treatment, with
tumor aneuploidy being one promising candidate (Alessi et al.,
2023; Spurr et al., 2022). Finally, the goal of metastasis-directed
therapymust be to achieve tumor kill with ablative radiotherapy
to as many sites as is safe and feasible. This approach is under
investigation in the SABR-COMET 10 and ARREST trials (Bauman
et al., 2021; Palma et al., 2019).

Over a century of research findings, both basic and clinical,
provide the foundations for the data described herein. If not for
space limitations, a more comprehensive and inclusive review of
the literature and important contributions to the field would
have been included.
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2011. Immune modulation effects of concomitant temozolomide and
radiation therapy on peripheral blood mononuclear cells in patients
with glioblastomamultiforme.Neuro-oncol. 13:393–400. https://doi.org/
10.1093/neuonc/noq204

Fallah, J., S. Agrawal, H. Gittleman, M.H. Fiero, S. Subramaniam, C. John, W.
Chen, T.K. Ricks, G. Niu, A. Fotenos, et al. 2023. FDA approval sum-
mary: Lutetium Lu 177 vipivotide tetraxetan for patients with meta-
static castration-resistant prostate cancer. Clin. Cancer Res. 29:1651–1657.
https://doi.org/10.1158/1078-0432.CCR-22-2875

Fan, Z.P., M.L. Peng, Y.Y. Chen, Y.Z. Xia, C.Y. Liu, K. Zhao, and H.P. Zhang.
2021. S100A9 activates the immunosuppressive switch through the
PI3K/Akt pathway to maintain the immune suppression function of
testicular macrophages. Front. Immunol. 12:743354. https://doi.org/10
.3389/fimmu.2021.743354

Farhood, B., E. Khodamoradi, M. Hoseini-Ghahfarokhi, E. Motevaseli,
H. Mirtavoos-Mahyari, A. Eleojo Musa, and M. Najafi. 2020. TGF-β
in radiotherapy: Mechanisms of tumor resistance and normal
tissues injury. Pharmacol. Res. 155:104745. https://doi.org/10.1016/
j.phrs.2020.104745

Fife, B.T., and J.A. Bluestone. 2008. Control of peripheral T-cell tolerance and
autoimmunity via the CTLA-4 and PD-1 pathways. Immunol. Rev. 224:
166–182. https://doi.org/10.1111/j.1600-065X.2008.00662.x
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