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Higher COVID-19 pneumonia risk associated with
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We found that 19 (10.4%) of 183 unvaccinated children hospitalized for COVID-19 pneumonia had autoantibodies (auto-Abs)
neutralizing type I IFNs (IFN-α2 in 10 patients: IFN-α2 only in three, IFN-α2 plus IFN-ω in five, and IFN-α2, IFN-ω plus IFN-β in
two; IFN-ω only in nine patients). Seven children (3.8%) had Abs neutralizing at least 10 ng/ml of one IFN, whereas the other
12 (6.6%) had Abs neutralizing only 100 pg/ml. The auto-Abs neutralized both unglycosylated and glycosylated IFNs. We also
detected auto-Abs neutralizing 100 pg/ml IFN-α2 in 4 of 2,267 uninfected children (0.2%) and auto-Abs neutralizing IFN-ω in 45
children (2%). The odds ratios (ORs) for life-threatening COVID-19 pneumonia were, therefore, higher for auto-Abs
neutralizing IFN-α2 only (OR [95% CI] = 67.6 [5.7–9,196.6]) than for auto-Abs neutralizing IFN-ω only (OR [95% CI] = 2.6
[1.2–5.3]). ORs were also higher for auto-Abs neutralizing high concentrations (OR [95% CI] = 12.9 [4.6–35.9]) than for those
neutralizing low concentrations (OR [95% CI] = 5.5 [3.1–9.6]) of IFN-ω and/or IFN-α2.

Introduction
Since the start of the pandemic of coronavirus disease 19
(COVID-19) (Zhou et al., 2020), caused by severe respiratory
syndrome coronavirus 2 (SARS-CoV-2), close to 7 million people
have died from COVID-19 pneumonia (Worldometers, 2023).
Age is the major epidemiological risk factor for death from
pneumonia in unvaccinated individuals, with the risk doubling
every 5 years of age from childhood onward (Bogunovic and
Merad, 2021; Levin et al., 2020; O’Driscoll et al., 2021). Unvac-
cinated adults with inborn errors of immunity (IEI) affecting the

production of, or response to, type I IFNs, or both, are prone to
critical COVID-19 pneumonia (Asano et al., 2021; Khanmohammadi
et al., 2021; Zhang et al., 2020b). These findings established the
crucial role of type I IFNs in fending off SARS-CoV-2 and explained
about 1–5% of cases (Zhang et al., 2022a). Autoantibodies (auto-Abs)
neutralizing high concentrations (10 ng/ml in plasma diluted 1/10)
of IFN-α2 and/or IFN-ω were found in at least another 10% of
unvaccinated adults with critical COVID-19 pneumonia (Bastard
et al., 2020). This observation was later replicated in various
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regions of the world (Abers et al., 2021; Acosta-Ampudia et al.,
2021; Akbil et al., 2022; Arrestier et al., 2022; Bastard et al.,
2021c; Busnadiego et al., 2022; Carapito et al., 2022; Chang
et al., 2021; Chauvineau-Grenier et al., 2022a; Chauvineau-
Grenier et al., 2022b; Credle et al., 2022; Eto et al., 2022;
Frasca et al., 2022; Goncalves et al., 2021; Grimm et al., 2023;
Hansen et al., 2023; Koning et al., 2021; Lamacchia et al.,
2022; Lemarquis et al., 2021; Mathian et al., 2022; Meisel et al.,
2021; Petrikov et al., 2022; Philippot et al., 2023; Pons et al., 2023;
Raadsen et al., 2022; Savvateeva et al., 2021; Schidlowski et al.,
2022; Simula et al., 2022; Solanich et al., 2021; Soltani-Zangbar
et al., 2022; Su et al., 2022; Troya et al., 2021; van der Wijst
et al., 2021; Vanker et al., 2023; Vazquez et al., 2021; Wang et al.,
2021; Ziegler et al., 2021). Moreover, at least 13% of unvacci-
nated adults with critical COVID-19 pneumonia were found to have
auto-Abs neutralizing lower, more physiological concentrations
(100 pg/ml in plasma diluted 1/10) of IFN-α2 and/or IFN-ω,
whereas auto-Abs neutralizing IFN-β (10 ng/ml in plasma diluted
1/10) were found in another 1% of patients (Bastard et al., 2021a).

These auto-Abs collectively account for about 20% of COVID-
19 deaths across age groups in adults (Bastard et al., 2021a;
Manry et al., 2022). They are present before infection and are
causal for critical disease, being second only to age in impor-
tance as a risk factor (Manry et al., 2022). Remarkably, the
prevalence of these auto-Abs in the adult general population
remains stable until the age of 70 years (about 0.3% for auto-Abs
neutralizing high concentrations of IFN and 1% for auto-Abs
neutralizing low concentrations of IFNs), after which it in-
creases sharply (reaching up to 4% and 7%, respectively, in in-
dividuals aged 80–85 years), consistent with the higher risk of
life-threatening COVID-19 in the elderly population (Bastard
et al., 2021a; Manry et al., 2022). Finally, the presence of these
auto-Abs has been reported in about 20% of adults suffering
from “breakthrough” hypoxemic COVID-19 pneumonia despite
an appropriate Ab response to two injections of RNA vaccine
(Bastard et al., 2022; Sokal et al., 2023). They also underlie 5%
and 20% of cases of critical influenza and Middle East respira-
tory syndrome (MERS) pneumonia (Alotaibi et al., 2023; Zhang
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Institute, Paris, France; 3St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; 4Pediatric
Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France; 5Dept. of Pediatrics,
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Health Centre, Montréal, Canada; 41Infectious Disease Susceptibility Program, Research Institute–McGill University Health Centre, Montréal, Canada; 42Dept. of Clinical
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et al., 2022c), respectively, a third of the rare life-threatening
adverse reactions to yellow fever vaccination (Bastard et al.,
2021b), and about 40% of cases of West Nile virus encephalitis
(Gervais et al., 2023), while contributing to herpetic viral in-
fections in various contexts (Pozzetto et al., 1984; Nagafuchi et al.,
2007; Hetemäki et al., 2021b; Mathian et al., 2022). Overall, auto-
Abs against type I IFNs can underlie a significant number of cases
of severe viral diseases in adults (Bucciol et al., 2023; Casanova
and Anderson, 2023; Cobat et al., 2023; Hale, 2023; Quiros-Roldan
et al., 2023; Samuel, 2023; Su et al., 2023; Tangye et al., 2023).

These genetic and immunological deficits account for about
20% of cases of critical COVID-19 pneumonia in adults. They
provide a general mechanism for pathogenesis of the disease in
adults, with insufficient type I IFN immunity during the first
days of infection being the key driver of the disease (Campbell
et al., 2022; Casanova and Abel, 2021, 2022; Casanova and
Anderson, 2023; Cobat et al., 2023; Garcia-Garcia et al., 2023;
Samuel, 2023; Su et al., 2023; Zhang et al., 2020a; Zhang et al.,
2022a). However, much less is known about life-threatening
COVID-19 pneumonia in children. Children are very rarely
hospitalized for COVID-19 pneumonia, with the risk of hospi-
talization being only about 0.1% (O’Driscoll et al., 2021). Reces-
sive inborn errors underlying complete deficiencies of a small
set of genes governing type I IFN immunity have been found in
∼10% of an international cohort of children hospitalized for
COVID-19 pneumonia (COVID Human Genetic Effort [CHGE];
https://www.covidhge.com), suggesting that the same mecha-
nisms of disease are at work in adults and children (Zhang et al.,
2022b). Most children with X-linked recessive TLR7 deficiency,
or autosomal recessive IFNAR1, TBK1, STAT2, or TYK2 defi-
ciency infected with SARS-CoV-2 suffered life-threatening
COVID-19 pneumonia (Asano et al., 2021; Schmidt et al., 2021;
Zhang et al., 2022b). However, the human genetic and immu-
nological determinants of COVID-19 pneumonia in the other
90% of children in this cohort remain unknown. With the CHGE,
we recruited children hospitalized for COVID-19 pneumo-
nia, including children with recessive inborn errors af-
fecting type I IFNs (Zhang et al., 2022b). The rare children
with autoimmune polyendocrine syndrome type I (APS-1),
who harbor high titers of auto-Abs neutralizing type I IFNs
from infancy onwards, are also known to be at high risk of
life-threatening COVID-19 (Bastard et al., 2020, 2021c;
Meisel et al., 2021; Valenzise et al., 2023). Furthermore, two
Brazilian children hospitalized for severe COVID-19 were
subsequently diagnosed with APS-1, following the identi-
fication of such auto-Abs (Schidlowski et al., 2022). We,
therefore, tested the hypothesis that some of the unvacci-
nated children without APS-1 who suffered from COVID-19
pneumonia may also have harbored auto-Abs against type I IFNs
before infection with SARS-CoV-2. We also assessed the preva-
lence of auto-Abs against type I IFNs in an uninfected pediatric
population. We thus tested whether the main conclusions drawn
with samples from adults, including both uninfected individuals
and patients with various SARS-CoV-2 infections of various
degrees of severity, also apply to children.

Results
Auto-Abs against type I IFNs in 19 of 183 children with
COVID-19 pneumonia
We studied 183 previously healthy unvaccinated children hos-
pitalized for COVID-19 pneumonia, including eight patients with
one of the 15 known recessive IEI affecting type I IFNs (Zhang
et al., 2022b) (see study flowchart). The patients were recruited
via the CHGE and originated from nine countries (Brazil, France,
Italy, Morocco, Saudi Arabia, Spain, Peru, Turkey, and Ukraine).
The patients had a median age of 11 years and a mean age of
9 years (range: 0–17 years), and 50% were girls. As previously
reported (Bastard et al., 2021a; Gervais et al., 2023), we used
plasma or serum samples (diluted 1:10) from the patients for the
assessment of anti-IFN-α2 IgG levels by Gyros (Fig. S1 A), and for
assessments of neutralization activity against non-glycosylated
IFN-α2 and IFN-ω at concentrations of 10 ng/ml and 100 pg/ml,
and against glycosylated IFN-β at a concentration of 10 ng/ml
(Fig. 1, A and B; and Table 1). The samples were obtained while
the patients were hospitalized for COVID-19. The cohort studied
here includes 53 of the 112 children previously reported in a
study focusing on recessive IEI affecting type I IFNs (Zhang
et al., 2022b). Only one of the eight children from our previ-
ously published cohort of 12 children with IEI affecting type I
IFN immunity (Zhang et al., 2022b) tested had auto-Abs against
type I IFNs. This patient had TLR7 deficiency and carried auto-
Abs neutralizing 100 pg/ml IFN-ω. No plasma samples were
available for the remaining four children from this cohort who
were therefore not included in the cohort of 183 children studied
here. Conversely, 130 of the children studied here were not in-
cluded in the cohort investigated in the previous study (Zhang
et al., 2022b). Our global cohort of 183 children consisted of 136
cases of critical disease requiring intensive care unit (ICU)
hospitalization with high-flow oxygen (>6 L/min) supplemen-
tation or mechanical ventilation, 35 cases of severe COVID-19
pneumonia requiring <6 L/min of oxygen supplementation, and
12 with moderate infections that did not require oxygen sup-
plementation. In this context, we identified 10 (5.5%) children
with auto-Abs neutralizing IFN-α2: three (1.6%) with auto-Abs
against IFN-α2 only, five (2.7%) with auto-Abs against IFN-
α2 and IFN-ω, and two (1.1%) with auto-Abs against IFN-α2, IFN-
ω, and IFN-β. In addition, nine children (4.9%) had auto-Abs
neutralizing IFN-ω only. In total, 19 children (10.4%) had neu-
tralizing auto-Abs against type I IFNs: 14 with critical, 4 with se-
vere, and 1 with moderate COVID-19 pneumonia (Fig. 1, A and B;
and Table 2). Moreover, plasma from 7 (3.8%) children contained
auto-Abs that neutralized at least one IFN at a concentration of
10 ng/ml, whereas 12 (6.6%) children had auto-Abs neutralizing
IFN only at a concentration of 100 pg/ml (Fig. 1, A and B). All
patients with Gyros values over 200 had neutralizing auto-Abs
(Fig. S1 B). Auto-Abs neutralizing IFN-α2, IFN-β, and/or IFN-ω
were, thus, detected at the onset of COVID-19 pneumonia in 19 of
the 183 unvaccinated children studied (10.4%): 10 (5.5%) with
auto-Abs neutralizing IFN-α2 (three [1.6%] IFN-α2 only, five
[2.7%] IFN-α2 and IFN-ω, and two [1.1%] IFN-α2, IFN-ω, and IFN-
β), and nine (4.9%) with auto-Abs neutralizing IFN-ω only.
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Figure 1. Neutralizing auto-Abs against IFN-α2 and/or IFN-ω in children with life-threatening COVID-19. (A) Results for the neutralization of 10 ng/ml
IFN-α2, IFN-ω, or IFN-β in the presence of plasma (1/10 dilution) from pediatric patients with critical (n = 136), severe (n = 35), or moderate (n = 12) COVID-19
pneumonia. Relative luciferase activity is shown (IFN-stimulated response element [ISRE] dual luciferase activity, with normalization against Renilla luciferase
activity) after stimulation with 10 ng/ml IFN-α2, IFN-ω, or IFN-β in the presence of plasma (1/10 dilution). RLA: relative luciferase activity. All samples were
tested twice independently. (B) Neutralization of 100 pg/ml IFN-α2 or IFN-ω in the presence of plasma (1/10 dilution) from pediatric patients with critical (n =
136), severe (n = 35), or moderate (n = 12) COVID-19 pneumonia. All samples were tested twice independently. (C–F) The proportion by age of pediatric and
adult patients with life-threatening COVID-19 pneumonia positive for neutralizing auto-Abs (in plasma 1/10) against (C) IFN-α2 and/or IFN-ω at 10 ng/ml for
both sexes, (D) IFN-α2 and/or IFN-ω at 10 ng/ml for men or women, (E) IFN-α2 and/or IFN-ω at 100 pg/ml for both sexes, and (F) IFN-α2 and/or IFN-ω at 100
pg/ml for men or women.

Bastard et al. Journal of Experimental Medicine 4 of 21

Auto-Abs neutralizing IFN-α and IFN-ω in children with COVID-19 https://doi.org/10.1084/jem.20231353

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/221/2/e20231353/1923483/jem
_20231353.pdf by guest on 10 February 2026

https://doi.org/10.1084/jem.20231353


Demographic and clinical features of the 19 patients with
auto-Abs against type I IFNs
The 19 children with COVID-19 pneumonia and auto-Abs neu-
tralizing type I IFNs comprised 10 girls and 9 boys, aged 3 mo to
18 years (mean: 11 years) (Fig. 1, C–F, Fig. S1, C–J, Fig. S2, A–J; and
Table 3). They originated from four different countries (France,

Pakistan but living in Italy, Spain, and Turkey), with a partic-
ularly large proportion of patients from Turkey (79%). Turkish
children did not account for a disproportionate number of the
individuals with auto-Abs against type I IFNs (79% of Turkish
children with antibodies (Abs) versus 66% without; P = 0.31;
Fisher’s exact test). None of these individuals had previously
suffered from other severe viral infections known to be associ-
ated with these auto-Abs, such as live attenuated yellow fever
viral vaccine disease (Bastard et al., 2021b), West Nile virus
encephalitis (Gervais et al., 2023), critical influenza pneumonia
(Zhang et al., 2022c), critical MERS pneumonia (Alotaibi et al.,
2023), or severe zoster infection (Busnadiego et al., 2022;
Mathian et al., 2022; Mogensen et al., 1981; Pozzetto et al., 1984;
Walter et al., 2015). The two children under the age of 6 mo may
have received the auto-Abs via materno-fetal transmission.
APS-1 was excluded clinically (no other clinical features of au-
toimmunity) in all 19 patients and genetically in all 12 for whom
DNA samples were available. Only 1 of the 12 children for whom
DNA was available carried any of the known IEI-affecting type I
IFNs. This patient produced auto-Abs neutralizing the lower con-
centration of IFN-ω and had X-linked TLR7 deficiency (Asano et al.,
2021). All the children were hospitalized for pneumonia fol-
lowing SARS-CoV-2 infection. Among the 19 children with auto-
Abs neutralizing type I IFNs, 1 (5%) with auto-Abs neutralizing
IFN-ω only (at a concentration of 100 pg/ml) had moderate
COVID-19 pneumonia, 4 children (21%) were hospitalized for
severe COVID-19 pneumonia, and 14 children (74%) had critical

Table 1. Auto-Abs neutralized by the serum from the 19 patients

Patient Anti-IFN-α2 auto-Abs
(10 ng/ml)

Anti-IFN-β auto-Abs
(10 ng/ml)

Anti-IFN-ω auto-Abs
(10 ng/ml)

Anti-IFN-α2 auto-Abs (100
pg/ml)

Anti-IFN-ω auto-Abs
(100 pg/ml)

P1 1 0 0 1 0

P2 1 1 1 1 1

P3 0 0 0 1 0

P4 0 0 0 0 1

P5 0 0 0 0 1

P6 0 0 0 0 1

P7 0 0 0 1 1

P8 1 0 1 1 1

P9 1 0 1 1 1

P10 0 0 0 1 0

P11 0 0 0 1 1

P12 1 0 0 1 1

P13 0 0 0 0 1

P14 1 1 1 1 1

P15 0 0 0 0 1

P16 0 0 1 0 1

P17 0 0 0 0 1

P18 0 0 0 0 1

P19 0 0 0 0 1

1: neutralizing. 0: non-neutralizing.
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disease (Fig 1, A and B; and Table 3). One of the children with
critical disease had cardiological, neurological, cutaneous, and
gastrointestinal manifestations of the multisystem inflamma-
tory syndrome in children (MIS-C) (Lee et al., 2023; Sancho-
Shimizu et al., 2021). All the patients survived, and all except
the patients with additional manifestations had positive SARS-
CoV-2 RT-PCR results on samples from the respiratory tract.
The patient with additional manifestations had critical pneu-
monia and a subsequent positive serological test demonstrated
infection. Overall, these findings suggest that auto-Abs against
type I IFNs can underlie life-threatening COVID-19 pneumonia
in a significant proportion of previously healthy unvaccinated
children.

Auto-Abs neutralize all 12 IFN-α subtypes
We assessed the neutralization of the 12 individual IFN-α sub-
types at the intermediate concentration of 1 ng/ml. There are
13 IFNA loci, but only 12 IFN-α proteins, as the products of IFNA1
and IFNA13 are identical (Moreau et al., 2023). Interestingly, for
all patients with auto-Abs neutralizing 10 ng/ml IFN-α2, all
12 IFN-α subtypes were neutralized (Fig. 2 A). None of the
patients with auto-Abs against IFN-ω but without detectable
auto-Abs against IFN-α2 displayed neutralization of any of the
12 IFN-α subtypes. However, the patient tested for whom IFN-
α2 neutralization was observed at 100 pg/ml, but not 10 ng/ml,
also displayed neutralization at a concentration of 1 ng/ml,
and neutralization of most of the other IFN-α subtypes (no

neutralization of IFN-α4/5/10). We did not assess the neutrali-
zation of these IFNs at 100 pg/ml. These findings are consistent
with the high degree of similarity between the 12 IFN-α subtypes
(Manry et al., 2011) and the presence of a B cell epitope recog-
nized by the auto-Abs in a conserved region of these IFNs
(Meyer et al., 2016). It also suggests that patients with auto-Abs
neutralizing all IFN-α subtypes might be at higher risk of severe
viral disease.

Auto-Abs neutralize glycosylated IFNs
In our previous studies, we tested only unglycosylated IFN-α2a,
IFN-α14, and IFN-ω produced in cells of the bacterium Esche-
richia coli and glycosylated IFN-β produced by mammalian CHO
cells (Adolf et al., 1991; Nyman et al., 1998; Runkel et al., 1998).
Here, we considered four human type I IFNs (IFN-α2a/b, IFN-
α14, IFN-ω, and IFN-β) normally produced and secreted as gly-
cosylated proteins. IFN-α2b is produced as an O-glycosylated
form, whereas IFN-α2a is present in two forms, one fully and
the other partially O-glycosylated. By contrast, IFN-α14, IFN-ω,
and IFN-β are produced as N-glycosylated forms. We, therefore,
investigated the effects of glycosylation on the recognition of
these proteins by auto-Abs by determining whether auto-Abs
recognized glycosylated but not unglycosylated IFNs or vice
versa. We, therefore, tested the neutralization of glycosylated
forms of IFN-α2b and IFN-ω produced in mammalian cells. We
first determined the optimal experimental set-up. We found
that the optimal concentration for testing was 1 ng/ml for

Table 2. Clinical and demographic information for the 19 pediatric patients with COVID-19 disease and auto-Abs neutralizing type I IFNs

Patient Age Sex Country of origin Country of residence Classification

P1 10 M Turkey Turkey Critical

P2 14 F France France Severe

P3 12 F Turkey Turkey Critical

P4 17 F Turkey Turkey Critical

P5 17 M Turkey Turkey Moderate

P6 3 M Turkey Turkey MIS-C + critical

P7 15 M Turkey Turkey Critical

P8 18 M France France Critical

P9 18 M Turkey Turkey Critical

P10 0.25 F Turkey Turkey Critical

P11 0.5 F France France Critical

P12 14 M Turkey Turkey Severe

P13 7.3 M Turkey Turkey Severe

P14 11 F Pakistan Italy Severe

P15 4 F Turkey Turkey Critical

P16 13 M Turkey Turkey Critical

P17 15 F Turkey Turkey Critical

P18 16 F Turkey Turkey Critical

P19 2 F Spain Spain Critical

F: female; M: male.
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glycosylated type I IFN (Fig. S3 A). We tested 183 children, in-
cluding 19 with auto-Abs against type I IFNs. Most of the 19
patients with auto-Abs neutralizing unglycosylated IFN-α2 or
IFN-ω also displayed neutralization of the glycosylated forms.
However, three patients had auto-Abs that neutralized the un-
glycosylated but not the glycosylated form of IFN-ω, and three
had auto-Abs neutralizing the unglycosylated but not the gly-
cosylated form of IFN-α2, at a concentration of 1 ng/ml (Fig. 2,
B–E). Interestingly, we also found two patients with auto-Abs
neutralizing the glycosylated forms of both IFN-ω and IFN-α2b
but not the unglycosylated form of either cytokine, and one
patient with auto-Abs neutralizing the glycosylated form of IFN-
α2b but not the unglycosylated form. Another two patients had
auto-Abs neutralizing the glycosylated form of IFN-ω but not the
unglycosylated form. We did not test the unglycosylated form of
IFN-β. Serum from the six patients with auto-Abs neutralizing
10 ng/ml unglycosylated IFN-α2 also neutralized all 12 IFN-α
subtypes and glycosylated IFN-α2 at a concentration of 1 ng/ml.
Interestingly, 2 of the 183 patients tested had auto-Abs neu-
tralizing the glycosylated but not the unglycosylated form of
IFN-α2b or IFN-ω, whereas 3 had auto-Abs neutralizing the
unglycosylated forms of both cytokines but not the glycosylated
forms. These findings suggest that it may be useful to assess the
neutralization of glycosylated forms of IFN-α2a and IFN-ω as a
means of identifying previously unrecognized patients.

Auto-Abs neutralizing type I IFNs are rare in children from the
general population
We previously tested large adult cohorts, comprising a total of
39,198 individuals, to assess the prevalence of auto-Abs against
type I IFNs in the uninfected general population (Bastard et al.,
2020, 2021a; van der Wijst et al., 2021). The prevalence of auto-
Abs neutralizing 10 ng/ml (or 100 pg/ml) IFN-α2 or IFN-ω was

found to increase significantly with age, with the detection of
such Abs in 0.17% (1.1%) of individuals under and >1.4% (4.4%) of
those over the age of 70 years, making a major contribution to
the higher risk of life-threatening COVID-19 in the elderly
population (Manry et al., 2022). The prevalence of auto-Abs
against IFN-β was lower and remained stable across age
groups (0.26%) (Bastard et al., 2020). Interestingly, auto-Abs
neutralizing IFN-α2 (at the lower concentration of 100 pg/ml),
regardless of the presence or absence of auto-Abs neutralizing
IFN-ω, were found in 0.3% of individuals under the age of
70 years, whereas those neutralizing 100 pg/ml IFN-ω were
found in 0.9% of this population (Table 4). Strikingly, the
prevalence of auto-Abs neutralizing IFN-α2 increased eightfold
after the age of 65 years, whereas the prevalence of auto-Abs
neutralizing IFN-ω increases only 2.5-fold (Fig. 3 C, Fig. 4, A–H;
Fig. S3, B–H; Fig. S4, A–H; and Table 4). In men, the increase in
the prevalence of auto-Abs against IFN-α2 was even greater,
>10-fold after the age of 65 years. We therefore assessed the
prevalence of these auto-Abs in 2,267 children from the general
population with samples collected before the pandemic and,
therefore, before any possibility of infection with SARS-CoV-2.
Samples were collected in Belgium (n = 126), Canada (n = 161),
Estonia (n = 288), Spain (n = 1,685), and Pakistan (n = 7). The
children studied were aged 0–18 years (median and mean ages:
10 and 9 years, respectively), with an equal distribution between
the sexes (56% were girls). Interestingly, in children, auto-Abs
neutralizing IFN-α2 were exceedingly rare. Indeed, only one
child (0.04%) had auto-Abs neutralizing IFN-α2 at 10 ng/ml and
only three children (0.1%) had auto-Abs neutralizing this cyto-
kine at a concentration of 100 pg/ml. The auto-Abs of these three
children also neutralized IFN-ω. By contrast, auto-Abs neutral-
izing IFN-ω alone were found in a much higher proportion of
uninfected children. Indeed, eight children (0.35%) had auto-Abs

Table 3. Numbers of cases, proportion, and OR for COVID-19 pneumonia in pediatric patients

Auto-Abs (dose) Number of
patients positive

Proportion of patients
testing positive (%)

OR [95% CI] for
COVID-19 pneumonia

P value

Anti-IFN-α2 (10 ng/ml) 6 3.4 57 [12–560] 3 × 10−07

Anti-IFN-β (10 ng/ml) 2 1.1 23 [3–255] 4 × 10−03

Anti-IFN-ω (10 ng/ml) 5 2.8 9 [3–29] 5 × 10−04

Anti-IFN-α2 (100 pg/ml) 10 5.5 30 [10–103] 1 × 10−9

Anti-IFN-ω (100 pg/ml) 16 8.8 5 [2–8] 7 × 10−06

Anti-IFN-α2 and/or anti-IFN-ω (10 ng/ml) 7 3.9 11 [4–32] 2 × 10−05

Anti-IFN-α2 and/or anti-IFN-β, and/or anti-IFN-ω
(10 ng/ml)

7 3.8 11 [4–29] 3 × 10−05

Anti-IFN-α2 and anti-IFN-ω (10 ng/ml) 4 2.4 112 [12–14,991] 9 × 10−04

Anti-IFN-α2, anti-IFN-ω, and anti-IFN-β (10 ng/ml) 2 1.1 75 [6–10,328] 9 × 10−04

Anti-IFN-α2 only (10 ng/ml) 2 1.1 23 [3–263] 4 × 10−03

Anti-IFN-ω only (10 ng/ml) 1 0.6 3 [0.3–12] 3 × 10−01

Anti-IFN-β only (10 ng/ml) 0 0.00 4 [0.03–57] 5 × 10−01

Anti-IFN-α2 and/or anti-IFN-ω (100 pg/ml) 19 10.4 5 [3–9] 1 × 10−07

Anti-IFN-α2 and anti-IFN-ω (100 pg/ml) 7 3.9 26 [7–106] 7 × 10−07
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Figure 2. Auto-Abs neutralize all 12 IFN-α subtypes and the glycosylated IFNs. (A) Results for the neutralization of 12 individual IFN-α subtypes, IFN-ω or
IFN-β, from children with auto-Abs (n = 8), healthy controls (n = 2), or auto-Ab positive patients (n = 2). Relative luciferase activity is shown (ISRE dual luciferase
activity, with normalization against Renilla luciferase activity, and to the non-stimulated [NS] condition) after stimulation with the various type I IFNs at a
concentration of 1 ng/ml in the presence of plasma (1/10 dilution). All samples were tested once. RLA: relative luciferase activity. (B–E) Plots representing the
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neutralizing IFN-ω at 10 ng/ml, whereas an additional 38 (1.7%)
had auto-Abs neutralizing IFN-ω at 100 pg/ml (Fig. 3, A and B).
We also identified one girl, aged 1.5 years, with auto-Abs neu-
tralizing only glycosylated IFN-β at a concentration of 10 ng/ml
(0.04%) (Fig. 3 A). Finally, we tested two additional independent
cohorts of healthy children. None of the individuals of a cohort of
249 healthy children aged 0–18 years (median: 9 years) from
Japan tested positive (Fig. S5 A). These pediatric controls in-
cluded 34 individuals who had had mild COVID infection and did
not harbor auto-Abs against type I IFNs. A cohort of 200 healthy
children from Estonia (all aged 8–9 years) included only three
individuals with auto-Abs neutralizing IFN-ω at a concentration
of 100 pg/ml (1.5%) (Fig. S5 B). Overall, 0.17% of uninfected
children from our cohort had auto-Abs neutralizing IFN-α2 (4 of
2,267, including 3 at low and 1 at high concentration), whereas
0.04% had auto-Abs neutralizing glycosylated IFN-β (1 of 2,267,
at 10 ng/ml) and 2% had auto-Abs neutralizing IFN-ω only (46 of
2,267, including 38 at low and 8 at high concentration). The
neutralization of two IFNs simultaneously was exceedingly rare
and restricted to IFN-α2 and IFN-ω at the lower concentration in
three patients (0.1%).

Characteristics of children from the general population with
auto-Abs against type I IFNs
We found that 2,267 children from the general population tested
included 4 with auto-Abs neutralizing IFN-α2 (0.2%) and 45
with auto-Abs neutralizing IFN-ω (2%). Three (6%) of these
children had auto-Abs neutralizing both IFN-α2 and IFN-ω.

These three children were aged 8, 11, and 13 years, and all three
were boys. The individual with auto-Abs neutralizing IFN-
α2 only was a 9-year-old girl. Finally, the median age of the 42
children with auto-Abs neutralizing IFN-ω only was 8 years, and
31 (67%) of these children were boys. We also tested a cohort of
145 samples from children hospitalized for bacterial infections.
Only one of these patients (0.7%) harbored auto-Abs against type
I IFNs (against IFN-ω only) with neutralizing activity against a
concentration of 100 pg/ml. None of these children had auto-Abs
neutralizing IFN-α2 or IFN-β. None of the children with auto-
Abs tested had any remarkable medical antecedents, despite
having been infected with many viruses, as shown by Virscan
analyses on nine of the positive children (Fig. 3 D). However, it
should be noted that infections with influenza viruses or com-
mon coronaviruses were not investigated with Virscan. These
findings probably attest to the higher tonic type I IFN activity in
children than in adults (Loske et al., 2021; Pierangeli et al., 2022;
Pierce et al., 2021). Overall, we found that auto-Abs neutralizing
IFN-α2 were very rare in children from the general population.
By contrast, auto-Abs neutralizing IFN-ω only, at the lower
concentration, were less rare (2%) and mostly found in boys, at a
rate slightly higher than that for young adults under the age of
40 years (45/2,267 [2%] in children versus 17/1,251 [1.4%] in
adults between 18 and 40 years old, P = 0.28).

Risk of life-threatening COVID-19 in children with auto-Abs
against type I IFNs
We then assessed the risk of COVID-19 pneumonia (hospitali-
zation for hypoxemic pneumonia, including severe or critical
pneumonia) in children carrying auto-Abs capable of neutral-
izing different concentrations and combinations of type I IFNs,
relative to uninfected children from the general population,
as previously reported for COVID-19 and influenza in adults
(Bastard et al., 2021a; Manry et al., 2022). All types of auto-Ab
combinations were highly significant risk factors when patients
with severe or critical COVID-19 pneumonia were compared
with the general population (Fig. 5 and Table 2). The strongest
association with severe or critical pneumonia was that for
children with auto-Abs neutralizing both IFN-α2 and IFN-ω at a
concentration of 10 ng/ml (OR [95% CI] = 122.8 [12.8–16,364.8],
P = 6 × 10−6; OR, odds ratio; CI, confidence interval). Auto-Abs
neutralizing IFN-α2 and IFN-ω at a lower concentration of 100
pg/ml were also highly significant risk factors (OR [95% CI] =
27.9 [8.2–116.5], P = 4 × 10−7), whereas auto-Abs neutralizing
IFN-α2 or IFN-ω were weaker risk factors (OR [95% CI] = 5.5
[3.1–9.6] at 100 pg/ml and OR [95% CI] = 12.9 [4.6–35.9] at 10 ng/
ml), with the OR for auto-Abs neutralizing high concentrations
of IFN-α2 or IFN-ω significantly higher than that for auto-Abs
neutralizing low concentrations of IFN-α2 or IFN-ω (P = 0.006).

neutralization results for glycosylated (at 1 ng/ml) or unglycosylated (at 10 ng/ml or 100 pg/ml) forms of IFN-α2 and IFN-ω. The dots in the lower right part of
the plot indicate neutralization of the glycosylated form of the IFN but not of the unglycosylated form, whereas the dots in the upper right part of the plot
indicate neutralization of the unglycosylated form of the IFN but not of the glycosylated form. The dots in the lower left part of the plot indicate the neu-
tralization of either form of the IFNs, whereas those in the upper right part of the plot indicate an absence of neutralization for both forms; (B) unglycosylated
form of IFN-α2 at 10 ng/ml; (C) unglycosylated form of IFN-α2 at 100 pg/ml; (D) unglycosylated form of IFN-ω at 10 ng/ml; and (E) unglycosylated form of IFN-
ω at 100 pg/ml.

Table 4. Prevalence of auto-Abs against type I IFNs in the general
population

Type I IFN auto-Ab
(in plasma 1/10)

Age Proportion of individuals from
the general population with
neutralizing auto-Abs (%)

Anti-IFN-α2
(100 pg/ml)

Children
<18 years

0.2%

Adults
<65 years

0.3%

Adults
≥65 years

2.6%

Anti-IFN-ω
(100 pg/ml)

Children
<18 years

2%

Adults
<65 years

0.9%

Adults
≥65 years

2.2%
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Figure 3. Neutralizing auto-Abs against IFN-α2 and/or IFN-ω in children from the general population and their serological evaluation. (A) Results for
the neutralization of 10 ng/ml IFN-α2, IFN-ω, or IFN-β in the presence of plasma (1/10 dilution) from children from the general population (n = 2,267). Relative
luciferase activity is shown (ISRE dual luciferase activity, with normalization against Renilla luciferase activity). All samples were tested once. RLA: relative
luciferase activity. (B) Neutralization of 100 pg/ml IFN-α2 or IFN-ω in the presence of plasma (1/10 dilution) from children from the general population (n =
2,267). (C) Prevalence of auto-Abs neutralizing type I IFNs, distributed by age, in individuals from the general population. (D) Serological evaluation of auto-Ab-
positive children: Virscan results for children (n = 9) with auto-Abs against type I IFNs.
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Figure 4. Neutralizing auto-Abs against IFN-α2 and/or IFN-ω in the pediatric and adult general population. (A–H) Proportion by age of pediatric and
adult individuals from the general population positive for neutralizing auto-Abs (in plasma 1/10) against (A) IFN-α2 and/or IFN-ω, at 10 ng/ml, for both sexes;
(B) IFN-α2 and/or IFN-ω, at 10 ng/ml, for men or women; (C) IFN-α2 and/or IFN-ω, at 100 pg/ml, for both sexes; (D) IFN-α2 and/or IFN-ω, at 100 pg/ml, for
men or women; (E) IFN-α2, at 100 pg/ml, for both sexes; (F) IFN-α2, at 100 pg/ml, for men or women; (G) IFN-ω, at 100 pg/ml, for both sexes; and (H) IFN-ω, at
100 pg/ml, for men or women.
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The risk of life-threatening COVID-19 pneumonia did not differ
significantly between children with auto-Abs neutralizing only
IFN-α2 at 100 pg/ml (OR [95% CI] = 67.6 [5.7–9,196.6]) and those
with auto-Abs neutralizing IFN-α2 and IFN- ω (OR [95% CI] =
27.9 [8.2–116.5], P = 0.5), but the risk for children with auto-Abs
neutralizing only IFN-ω at a concentration of 100 pg/ml was
significantly lower (OR [95% CI] = 2.6 [1.2–5.3], P = 0.006).
Overall, auto-Abs neutralizing IFN-α2 were significantly stron-
ger risk factors than auto-Abs neutralizing only IFN-ω, both at
10 ng/ml (OR [95% CI] = 62.9 [12.9–610.3] for auto-Abs neu-
tralizing IFN-α2 versus 2.8 [0.3–13.2] for IFN-ω only, P =
0.0003) and 100 pg/ml (OR [95% CI] = 32.5 [11.2–111.2] for auto-

Abs neutralizing IFN-α2 versus 2.6 [1.2–5.3] for IFN-ω only, P =
0.03), consistent with the higher prevalence of auto-Abs neu-
tralizing IFN-ω in the general population (Table 2). Overall,
these findings indicate that auto-Abs against type I IFNs can be
found in previously healthy children in whom they are a major
risk factor for hypoxemic COVID-19 pneumonia, particularly if
they neutralize IFN-α2. Indeed, auto-Abs against IFN-α confer
the highest risk of life-threatening COVID-19. Interestingly, the
ORs for critical COVID-19 were also higher for adults with auto-
Abs neutralizing IFN-α than for those neutralizing IFN-ω, in
comparison to adults with critical COVID-19 and asymptomatic
infected adult controls (P = 0.008; Table 5). Moreover, the risk

Figure 5. OR for COVID-19 pneumonia. (A) Bar plot of the calculated OR for COVID-19 pneumonia in children with auto-Abs against type I IFNs. Adjusted
ORs and 95% CI were computed by penalized profile likelihood. ORs and P values were estimated by means of Firth’s bias-corrected logistic regression. (B) Bar
plot of the calculated OR for life-threatening pneumonia in children with auto-Abs against type I IFNs. Adjusted ORs and 95% CI were computed by penalized
profile likelihood. ORs and P values were estimated by means of Firth’s bias-corrected logistic regression.
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of hypoxemic pneumonia increases with the concentration of
type I IFN neutralized in children and adults (Table 2 for chil-
dren, Table 5 for adults).

Discussion
We report that auto-Abs neutralizing unglycosylated and gly-
cosylated type I IFN-α2 or IFN-β are exceedingly rare (0.17% and
0.04%) in children from the general population, whereas about
0.35% of these children harbor auto-Abs neutralizing IFN-ω at a
concentration of 10 ng/ml, and up to 2% of themharbor auto-Abs
neutralizing this cytokine at 100 pg/ml. This relatively high
proportion of individuals with auto-Abs neutralizing IFN-ω is
similar to that found in young adults under the age of 40 years
(Bastard et al., 2021a; Manry et al., 2022; van der Wijst et al.,
2021). Nevertheless, all these proportions are significantly dif-
ferent from those for adults under the age of 70 years, in whom
auto-Abs neutralizing IFN-α2 were found in only 0.3%, auto-Abs
neutralizing IFN-ω were found in about 0.9%, and auto-Abs
neutralizing IFN-β were found in about 0.3% (Bastard et al.,
2020, 2021a; Manry et al., 2022; van der Wijst et al., 2021).
Auto-Abs against glycosylated IFN-α2 and IFN-ω were not in-
vestigated in the studies on adults (Bastard et al., 2020, 2021a;
Manry et al., 2022; van der Wijst et al., 2021), but the similar

frequencies of auto-Abs against glycosylated and unglycosylated
forms suggest that this is not a major bias. The prevalence of
auto-Abs against the three type I IFNs therefore appears to re-
main stable over time, with two exceptions of different magni-
tudes. First, the levels of auto-Abs against IFN-ω decrease
slightly duringmiddle age. Second, the levels of auto-Abs against
IFN-α2, and to a lesser extent IFN-ω (but not IFN-β), suddenly
begin to increase after the age of 65 years (Bastard et al., 2020,
2021a; Manry et al., 2022; van der Wijst et al., 2021). The
prevalence of auto-Abs neutralizing IFN-α2 increased eightfold
after the age of 65 years (the increase was even as great as 10-
fold in men), a much greater increase than was observed for the
prevalence of auto-Abs neutralizing IFN-ω only (which in-
creased only 2.5-fold). Overall, auto-Abs neutralizing 1 ng/ml
glycosylated IFN-β are exceedingly rare in children (0.04%),
rare in adults below 65 years of age (0.3%), and not more
common in the elderly (0.18%). Auto-Abs neutralizing at least
100 pg/ml glycosylated IFN-α2 are very rare in children (0.17%),
rare in adults (0.3%), and much more common in the elderly
(2.6%). Finally, auto-Abs neutralizing at least 100 pg/ml IFN-ω
are less rare in children (2%) than in adults (0.9%) and display a
lesser increase in prevalence in the elderly (2%).

The levels of auto-Ab against type I IFNs do not appear to be
markedly lower in the youngest children (those under the age of
5 years). This suggests that the production of these pathogenic
auto-Abs, especially those against IFN-α2 or IFN-β, in children
and young adults may have a germline genetic etiology. In
support of this hypothesis, several inborn errors are known to
underlie the occurrence of these auto-Abs. Indeed, (i) most, if
not all patients with APS-1 and biallelic deleterious variants of
AIRE produce such auto-Abs from early childhood onward, as do
some patients with dominant-negative variants of AIRE (Ahonen
et al., 1990; Bastard et al., 2021c; Meyer et al., 2016; Oftedal et al.,
2015, 2023; Ossart et al., 2018); (ii) about a third of women
suffering from incontinentia pigmenti due to heterozygosity for
loss-of-function mutations of IKBKG harbor these auto-Abs
(Bastard et al., 2020; Rosain, 2023); (iii) most patients hetero-
zygous for NFKB2 variants that are gain-of-function for IκBδ
activity and loss-of-function for p52 activity, and patients with
recessive deficiencies of NIK or RELB have such auto-Abs (Le
Voyer, 2023); and (iv) patients with autosomal dominant IKZF2
(Helios) deficiency (Hetemäki et al., 2021a), biallelic RAG1 or
RAG2 hypomorphic variants (Chen et al., 2014; Walter et al.,
2015) or FOXP3 deficiency (Rosenberg et al., 2018) also carry
these auto-Abs. New inborn errors underlying the production of
these auto-Abs are expected to be discovered in the future. Other
germline genetic etiologies may underlie the production of auto-
Abs against IFN-α or IFN-ω, particularly in children and young
adults. It is also surprising that the prevalence of anti-IFN-ω
auto-Abs seems to decrease slightly with age, before increasing
again, together with the prevalence of anti-IFN-α auto-Abs, after
the age of 65 years. Auto-Abs arising after the age of 65 years are
less likely to be caused by germline variants; their production
may be due to somatic variants, epigenetic changes in hema-
topoietic or non-hematopoietic cell lineages, or thymic le-
sions, such as thymomas (Cheng et al., 2010; Meager et al.,
2003; Rapnouil et al., 2023, Preprint; Shiono et al., 2003). The

Table 5. Increase in the risk of critical COVID-19 in adult patients with
auto-Abs against IFN-α (neutralizing 10 ng/ml) versus IFN-ω
(neutralizing at 10 ng/ml) (from Bastard et al., 2021a)

Type I IFN auto-Abs in adults (and amount
of type I IFN neutralized in plasma diluted
1/10)

OR [95% CI] P value

Anti-IFN-α2 and anti-IFN-ω auto-Abs (10 ng/ml) 67.6
[4.1–1,108.6]

7.8 ×
10−13

Anti- IFN-α2 and anti-IFN-ω auto-Abs (100 pg/
ml)

54.0
[10.6–275.4]

<10−13

anti-IFN-α2 auto-Abs (10 ng/ml) 44.5
[8.82–225.0]

<10−13

anti-IFN-α2 auto-Abs (100 pg/ml) 23.3 [9.8–55.5] <10−13

anti-IFN-ω auto-Abs (10 ng/ml) 12.9 [4.4–38.1] 1.4 ×
10−12

anti-IFN-ω auto-Abs (100 pg/ml) 12.7 [7.1–22.9] <10−13

anti-IFN-α2 auto-Abs only (10 ng/ml) 20.5
[3.9–107.0]

1.8 ×
10−09

anti-IFN-α2 auto-Abs only (100 pg/ml) 9.5 [3.5–25.9] 2.8 ×
10−09

anti-IFN-β auto-Abs only (10 ng/ml) 4.66
[0.88–24.6]

0.04

anti-IFN-ω auto-Abs only (10 ng/ml) 2.9 [0.9–9.8] 0.06

anti-IFN-ω auto-Abs only (100 pg/ml) 6 [3.1–11.7] 3.9 ×
10−10

In comparisons of adult patients with critical COVID-19 and asymptomatic
infected adult controls, ORs are higher in individuals with auto-Abs against
IFN-α than in those with auto-Abs against IFN-ω only, particularly for Abs
neutralizing IFN-α at a concentration of 10 ng/ml. This increase in risk for
patients with auto-Abs against IFN-α is highly significant.
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differences in prevalence with age also suggest that the patho-
genesis of auto-Abs against type I IFNs may differ, in each age
group, between auto-Abs neutralizing IFN-α2, IFN-β, and IFN-ω.

We also report that at least 10% of the children hospitalized
for COVID-19 pneumonia studied had neutralizing auto-Abs
against type I IFNs, as reported by other groups in smaller
cohorts (Abolhassani et al., 2022). We also show that these auto-
Abs neutralized normally glycosylated IFN-α2a/b, IFN-α14, IFN-
ω, and IFN-β. Only glycosylated IFN-βwas tested in our previous
studies (Bastard et al., 2020, 2021a, 2021b, 2021c, 2022). The risk
of life-threatening COVID-19 pneumonia in children with auto-
Abs neutralizing type I IFNs is very high, as previously reported
for adults (Barcenas-Morales et al., 2016; Bastard et al., 2021a;
Puel et al., 2022). The very high risk of life-threatening COVID-
19 pneumonia in children harboring auto-Abs against type I IFNs
is consistent with that in children with recessive IEI affecting
the type I IFN pathway (Zhang et al., 2022b). In the light of our
screening of uninfected children, for the combinations tested,
auto-Abs against IFN-α conferred a significantly higher risk of
life-threatening COVID-19 than auto-Abs against IFN-ω, re-
gardless of the concentration of cytokine neutralized. A similar
pattern has also been observed in adults. The risk of critical
COVID-19 in adults with auto-Abs neutralizing IFN-α (regardless
of their ability to neutralize IFN-ω) is much higher than that in
adults with auto-Abs neutralizing IFN-ω only (P = 0.008 at 100
pg/ml and P = 0.0006 at 10 ng/ml; Table 5). Furthermore, in
adults with critical COVID-19 pneumonia, the prevalence of
auto-Abs neutralizing IFN-α2 at 10 ng/ml doubles after the age
of 60 years (5.6% before 60 years versus 11.2% after 60 years).

As previously observed in adults (Manry et al., 2022), the risk
of life-threatening COVID-19 is also higher for children carrying
auto-Abs neutralizing high concentrations of IFN-α2 and/or
IFN-ω than for children carrying only auto-Abs neutralizing low
concentrations, further suggesting that auto-Abs neutralizing
high concentrations of IFN-α2 and/or IFN-ω have a more
deleterious impact on COVID-19 outcomes. The risk of life-
threatening COVID-19 is even higher in patients with auto-Abs
neutralizing both IFN-αs and IFN-ω, further suggesting that the
IFN-α subtypes and IFN-ω may not be completely redundant in
the context of COVID-19. In addition, the risk of hypoxemic
pneumonia increased with the concentration of type I IFNs
neutralized. The risk of other viral diseases is unclear, although
severe influenza has been reported in several childrenwith auto-
Abs against type I IFNs (Walter et al., 2015; Zhang et al., 2022c).
Children may have higher tonic or virus-induced type I IFN
levels than adults in the tissues in which these molecules are
most needed as an initial barrier, such as the naso-epithelial
barrier for COVID-19 (Alfi et al., 2021; Beer et al., 2022; Hatton
et al., 2021; Lopez et al., 2021; Ziegler et al., 2021).

Despite our discovery of recessive IEI of type I IFN immunity
in about 10% of the children studied and of auto-Abs against type
I IFNs in another 10%, the cause of severe COVID-19 pneumonia
remains unexplained in most children. Other auto-Abs (against
type III IFNs, for example) (Vanker et al., 2023), or other IEI,
possibly, but not necessarily affecting type I IFNs, might explain
these remaining cases. However, our findings already have
broad clinical implications. Children hospitalized for COVID-19

pneumonia should be tested for auto-Abs against type I IFNs as
targeted therapies can be proposed. When effective against the
circulating strains, mAbs neutralizing the virus can be effective
if administered promptly (Gupta et al., 2021), as recently shown
for an IRF9-deficient child during the first wave of the epidemic
(Levy et al., 2021) and other patients with IEI (Johnson et al.,
2023). Antiviral compounds, such as remdesivir (Beigel et al., 2020;
Gottlieb et al., 2021), molnupiravir (Jayk Bernal et al., 2021), or
nirmatrelvir plus ritonavir (Hammond et al., 2022), may also be
of benefit in these patients, provided that they are administered
sufficiently early in the course of infection. Likewise, early re-
combinant IFN-β therapy may be considered to prevent the de-
velopment of hypoxemic pneumonia in patients whose auto-Abs
do not neutralize IFN-β (Monk et al., 2021; Vinh et al., 2021).
Nasal IFN-α2b could also be considered in patients without auto-
Abs or IEI affecting the response to type I IFNs (Zhou et al.,
2023). Treatment with type III IFNs is another possibility
(Sokal et al., 2023). In the most severe cases, a combination of
these therapies with plasmapheresis may be proposed (Bastard
et al., 2021c).

Children with auto-Abs against type I IFNs should be fol-
lowed prospectively. In the general population, it is not entirely
clear which group of children should be screened because of the
high risk of such auto-Abs. Children with IEI should certainly
be screened, particularly those with known genetic etiologies
of auto-Abs against type I IFNs (Ahonen et al., 1990; Chen
et al., 2014; Oftedal et al., 2015, 2023; Walter et al., 2015;
Meyer et al., 2016; Ossart et al., 2018; Bastard et al., 2021c;
Hetemäki et al., 2021a; Le Voyer, 2023; Rosain, 2023). Children
with a history of unusually severe viral infection should also be
tested, as the clinical phenotype of anti-type I IFN auto-Ab
production is expanding to include other severe viral diseases
(Bastard et al., 2021b, 2022; Gervais et al., 2023; Zhang et al.,
2022c). Children with auto-Abs neutralizing type I IFNs should
be vaccinated against SARS-CoV-2 and influenza, but not with
live-attenuated vaccines (Bastard et al., 2021b). Finally, it would
be of interest to conduct pilot studies of the screening of selected
populations, such as children with autoimmune conditions (e.g.,
lupus erythematosus, which is associated with these auto-Abs in
adults) (Gupta et al., 2016; Kisand et al., 2010; Londe et al., 2023;
Mathian et al., 2022; Panem et al., 1982). Many questions remain
unanswered. Severe viral infections might occur at higher fre-
quency in individuals with these auto-Abs. By inference from
the known risk of severe adverse reaction to the live-attenuated
virus vaccine against yellow fever in adults with auto-Abs
against type I IFNs (Bastard et al., 2021b), children with these
auto-Abs should not receive this vaccine. Surprisingly, MMR
vaccination seems to be well tolerated in APS-1 patients despite
the presence of high levels of auto-Abs against type I IFNs. Other
live attenuated vaccines (against varicella-zoster virus or mon-
key pox, for example) should probably be avoided due to the
unknown risk of adverse reaction. By contrast, children with
these auto-Abs would benefit from RNA vaccination against
SARS-CoV-2 and boosters as they are able to mount an Ab re-
sponse capable of neutralizing the virus (Bastard et al., 2022;
Sokal et al., 2023; Wolff et al., 2023). Finally, the follow-up of
these children will also be of interest as the changes in the levels
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of these auto-Abs over time and their association with other
viral, tumoral, and autoimmune diseases remain unclear. Life-
long follow-up of this cohort should provide answers to these
questions and help to improve the clinical management of these
children.

Materials and methods
Study design
We enrolled 183 patients with proven COVID-19 pneumonia
from nine countries (Brazil, France, Italy, Morocco, Saudi Ara-
bia, Spain, Peru, Turkey, and Ukraine) in this study. We col-
lected plasma or serum samples for all these individuals for
immunoassay testing for the presence of auto-Abs against type I
IFNs. 2,267 children from the general population were recruited
in Belgium (n = 126), Canada (n = 161), Estonia (n = 288), Spain
(n = 1,685), and Pakistan (n = 7). Two additional cohorts were
established independently in Estonia and Japan, and the cohorts
of patients with bacterial infections were established indepen-
dently in Spain. All individuals were recruited according to
protocols approved by local institutional review boards (IRBs).
Written informed consent was obtained in the country of resi-
dence of each patient. Experiments were conducted in France
and the United States in accordance with local regulations and
with the approval of the IRB of the Institut National de la Santé
et de la Recherche Médicale and the Rockefeller University,
respectively. Approval was obtained from the French Ethics
Committee (Comité de Protection des Personnes), the French
National Agency for Medicine and Health Product Safety, the
Institut National de la Santé et de la RechercheMédicale in Paris,
France (protocol no. C10-13), and the Rockefeller University
Institutional Review Board in New York, USA (protocol no. JCA-
0700).

COVID-19 classification
The severity of COVID-19 was assessed for each patient, as fol-
lows (Bastard et al., 2020; Zhang et al., 2020b): “critical COVID-
19 pneumonia”was defined as pneumonia developing in patients
with critical disease, whether pulmonary, with high-flow oxy-
gen, mechanical ventilation (continuous positive airway pres-
sure, bilevel positive airway pressure, intubation), septic shock,
or with damage to any other organ requiring admission to the
ICU. “Severe COVID-19”was defined as pneumonia developing in
patients requiring low-flow oxygen (<6 L/min) supplementation.

Statistics
OR and P values for the effect of auto-Abs neutralizing each
type I IFN on critical or severe COVID-19 using patients with
asymptomatic/mild disease or the general population as con-
trols, adjusted for age in three classes (≤5 years old, (5–10 years
old], and (10–18 years old]) and sex, were estimated bymeans of
Firth’s bias-corrected logistic regression (Firth, 1993; Heinze
and Schemper, 2002) as implemented in the “logistf” R pack-
age (https://rdrr.io/cran/logistf/). The risks of critical or severe
COVID-19 for carriers of different combinations of neutralizing
auto-Abs were compared by Firth’s logistic regression adjusted
for age in three classes and sex, as described above, in the

subsample of individuals (cases and individuals from the gen-
eral population) carrying the auto-Ab combinations compared.
The standard error of the mean for the prevalence of neutral-
izing auto-Abs against each type I IFN by age group and sex was
estimated with the Agresti-Coull approximation (Agresti and
Coull, 1998).

Detection of anti-cytokine auto-Abs
Gyros
Cytokines, recombinant human (rh)IFN-α2 (ref. number 130-
108-984; Miltenyi Biotec) or rhIFN-ω (ref. number SRP3061;
Merck), were first biotinylated with EZ-Link Sulfo-NHS-LC-
Biotin (cat. number A39257; Thermo Fisher Scientific), accord-
ing to the manufacturer’s instructions, with a biotin-to-protein
molar ratio of 1:12. The detection reagent contained an Alexa
Fluor 647 goat anti-human IgG Ab (ref. number A21445; Thermo
Fisher Scientific) diluted in Rexip F (ref. number P0004825; 1/
500 dilution of the 2 mg/ml stock to yield a final concentration
of 4 µg/ml; Gyros Protein Technologies). PBS-Tween (PBS-T)
0.01% buffer and Gyros Wash buffer (ref. number P0020087;
Gyros Protein Technologies) were prepared according to the
manufacturer’s instructions. Plasma or serum samples were
then diluted 1/100 in PBS-T 0.01% and tested with Bioaffy 1000
CD (ref. number P0004253; Gyros Protein Technologies) and
Gyrolab X-Pand (ref. number P0020520; Gyros Protein Tech-
nologies). Cleaning cycles were performed in 20% ethanol.

Functional evaluation of anti-cytokine auto-Abs
Luciferase reporter assays
The blocking activity of anti-IFN-α2 and anti-IFN-ω auto-Abs
was assessed by measuring luciferase reporter activity. Briefly,
HEK293T cells were transfected with a plasmid containing the
firefly luciferase gene under the control of the human ISRE
promoter in the pGL4.45 backbone and a plasmid constitutively
expressing Renilla luciferase for normalization (pRL-SV40).
Cells were transfected in the presence of the X-tremeGene9
transfection reagent (ref. number 6365779001; Sigma-Aldrich)
for 24 h. Cells in DMEM (Thermo Fisher Scientific) supple-
mented with 2% FCS and 10% healthy control or patient serum/
plasma (after inactivation at 56°C, for 20 min) were either left
unstimulated or were stimulated with IFN-α2 (ref. number 130-
108-984; Miltenyi Biotec) or IFN-ω (ref. number SRP3061;
Merck) at 10 ng/ml or 100 pg/ml, or with IFN-β (ref. number:
130-107-888; Miltenyi Biotec) at 10 ng/ml for 16 h at 37°C. Each
sample was tested once for each cytokine and dose. Finally, cells
were lysed for 20 min at room temperature and luciferase levels
were measured with the Dual-Luciferase Reporter 1000 assay
system (ref. number E1980; Promega) according to the manu-
facturer’s protocol. Luminescence intensity was measured with
a VICTOR-X Multilabel Plate Reader (PerkinElmer Life Sci-
ences). Firefly luciferase activity values were normalized against
Renilla luciferase activity values. These values were then nor-
malized against themedian level of induction for non-neutralizing
samples and expressed as a percentage. Samples were considered
neutralizing if luciferase induction after normalization against
Renilla luciferase activity was below 15% the median value for
controls tested the same day.
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Phage immunoprecipitation sequencing (PhIP-Seq)
The reactivity of circulating Abs against common pathogens in
plasma samples from patients and healthy controls was analyzed
by PhIP-Seq, as previously described (Hasan et al., 2021). Pooled
human plasma for IVIg (Privigen CSL Behring AG), human IgG-
depleted serum (supplier no. HPLASERGFA5ML; Molecular In-
novations, Inc.), and plasma samples from unrelated healthy
children were included as controls. PhIP-Seq was carried out as
previously described but with the following modifications. Total
IgG levels were determined with the Human IgG total ELISA
Ready-SET-Go kit (Thermo Fisher Scientific) and diluted sam-
ples containing 4 mg total IgG were incubated at 4°C overnight
with 2 × 1010 plaque-forming units of a modified version of the
original VirScan phage library. Specifically, the T7 phage library
used here for peptide display contained the same viral peptides
as the original VirScan phage library plus additional peptides
derived from protein sequences of various microbial B cell an-
tigens available from the Immune Epitope Database (https://
www.iedb.org). For the computational analysis and back-
ground correction, the phage library was sequenced before
(input library sample) and after immunoprecipitation with
beads alone (mock IP). Single-end sequencing was performed
with the NextSeq500 system (Illumina) to generate ∼2 million
reads per sample and ∼20 million reads for the input library
samples. Reads were mapped onto the original library sequences
with Bowtie 2 and read counts were adjusted according to
library size. A zero-inflated generalized Poisson model was
used to estimate the P values to reflect enrichment for each of
the peptides. We considered peptides to be significantly en-
riched only if the −log10 P value was at least 2.3 in all repli-
cates. Species-specific score values were computed for each
serum or plasma sample by counting the significantly en-
riched peptides for a given species with a continuous subse-
quence of no more than seven residues, the estimated size of a
linear epitope, in common. We corrected for the nonspecific
binding of peptides to the capture matrix by also calculating
species-specific background score values by counting the
peptides displaying enrichment to the 90th percentile for the
mock IP samples. These peptides were used for background
subtraction.

Online supplemental material
Fig. S1 describes neutralizing auto-Abs against type I IFNs in
children with life-threatening COVID-19. Fig. S2 describes neu-
tralizing auto-Abs against IFN-α2 and/or IFN-ω in children and
adults with life-threatening COVID-19. Fig. S3 describes neu-
tralizing auto-Abs against glycosylated type I IFNs, and pro-
portion of children and adults from the general population with
neutralizing auto-Abs against type I IFNs. Fig. S4 describes
neutralizing auto-Abs against IFN-α2 or IFN-ω in children from
the general population. Fig. S5 describes neutralizing auto-Abs
against IFN-α2 and/or IFN-ω in children from the general pop-
ulation in Estonia and Japan.

Data availability
The data are available from the corresponding author upon
reasonable request. All the data needed to evaluate the

conclusions of the paper are present in the paper or the online
supplemental material.
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Figure S1. Neutralizing auto-Abs against type I IFNs in children with life-threatening COVID-19. (A) Gyros (high-throughput automated ELISA) results
for auto-Abs against IFN-α2 for positive controls (n = 4), pediatric patients (n = 188), and healthy controls (n = 16). (B) Plot of anti–IFN-α2 auto-Ab IgG levels, as
determined by Gyros, against their neutralization capacity at 10 ng/ml in the luciferase assay. For plasma from each patient, luciferase activity was normalized
against the mean induction of control plasma tested on the same day in the luciferase assay. The horizontal dotted line indicates the threshold of neutral-
ization, defined as the level of induction below 15% of the mean value for controls tested on the same day. (C–J) Proportion by age of pediatric and adult
patients from the general population positive for neutralizing auto-Abs (in plasma 1:10) against (C) IFN-α2 at 10 ng/ml, for both sexes; (D) IFN-α2, at 10 ng/ml,
for men or women; (E) IFN-ω, at 10 ng/ml, for both sexes; (F) IFN-ω, at 10 ng/ml, for men or women; (G) IFN-β, at 10 ng/ml, for both sexes; (H) IFN-β, at 10 ng/
ml, for men or women; (I) IFN-α2 and IFN-ω, at 10 ng/ml, for both sexes; and (J) IFN-α2 and IFN-ω, at 10 ng/ml, for men or women.
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Figure S2. Neutralizing auto-Abs against IFN-α2 and/or IFN-ω in children and adults with life-threatening COVID-19. (A–J) Proportion by age of
pediatric and adult patients from the general population positive for neutralizing auto-Abs (in plasma 1:10) against (A) IFN-α2 and IFN-ω, at 100 pg/ml, for both
sexes; (B) IFN-α2 and IFN-ω, at 100 pg/ml, for men or women; (C) IFN-α2, at 100 pg/ml, for both sexes; (D) IFN-α2, at 100 pg/ml, for men or women; (E) IFN-ω,
at 100 pg/ml, for both sexes; (F) IFN-ω, at 100 pg/ml, for men or women; (G) IFN-α2 only, at 10 ng/ml, for both sexes; (H) IFN-α2 only, at 10 ng/ml, for men or
women; (I) IFN-ω only, at 10 ng/ml, for both sexes; and (J) IFN-ω only, at 10 ng/ml, for men or women.
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Figure S3. Neutralizing auto-Abs against glycosylated type I IFNs, and proportion of children and adults from the general population with neu-
tralizing auto-Abs against type I IFNs. (A) Results for the neutralization of various doses of the glycosylated form of IFN-α2 or IFN-ω in the presence of
plasma (1/10 dilution) from children with (C−) and without (C+) auto-Abs neutralizing type I IFNs. Relative luciferase activity is shown (ISRE dual luciferase
activity, with normalization against Renilla luciferase activity) after stimulation with 10 ng/ml IFN-α2 or IFN-ω in the presence of plasma (1/10 dilution). RLA:
relative luciferase activity. (B–H) Proportion of children and adults from the general population with neutralizing auto-Abs against type I IFNs. (B) Prevalence
of auto-Abs neutralizing type I IFNs, by type of IFN neutralized. (C–H) Proportion, by age, of pediatric and adult individuals from the general population positive
for neutralizing auto-Abs (in plasma diluted 1:10) against (C) IFN-β, at 10 ng/ml, for both sexes; (D) IFN-β, at 10 ng/ml, for men or women; (E) IFN-α2 and IFN-ω,
at 10 ng/ml, for both sexes; (F) IFN-α2 and IFN-ω, at 10 ng/ml, for men or women; (G) IFN-α2 and IFN-ω, at 100 pg/ml, for both sexes; and (H) IFN-α2 and IFN-
ω, at 100 pg/ml, for men or women.
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Figure S4. Neutralizing auto-Abs against IFN-α2 or IFN-ω in children from the general population. (A–H) Proportion, by age, of pediatric and adult
individuals from the general population positive for neutralizing auto-Abs (in plasma diluted 1:10) against (A) IFN-α2, at 10 ng/ml, for both sexes; (B) IFN-α2, at
10 ng/ml, for men or women; (C) IFN-ω, at 10 ng/ml, for both sexes; (D) IFN-ω, at 10 ng/ml, for men or women; (E) IFN-α2 only, at 10 ng/ml, for both sexes; (F)
IFN-α2 only, at 10 ng/ml, for men or women; (G) IFN-ω only, at 10 ng/ml, for both sexes; and (H) IFN-ω only, at 10 ng/ml, for men or women.
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Figure S5. Neutralizing auto-Abs against IFN-α2 and/or IFN-ω in children from the general population in Estonia and Japan. (A) Results for the
neutralization of 10 ng/ml IFN-α2, IFN-ω, or IFN-β or 100 pg/ml IFN-α2 or IFN-ω in the presence of plasma (1/10 dilution) from children from Japan (n = 249).
(B) Results for the neutralization of 10 ng/ml or 100 pg/ml IFN-α2, IFN-ω, or IFN-β in the presence of plasma (1/10 dilution) from children from Estonia (n =
200). (A and B) Relative luciferase activity is shown (ISRE dual luciferase activity, with normalization against Renilla luciferase activity) after stimulation with
IFN-α2, IFN-ω, or IFN-β in the presence of plasma (1/10 dilution). RLA: relative luciferase activity.
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