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Arboviral diseases are a growing global health concern. Pre-existing autoantibodies (auto-Abs) neutralizing type I interferons
(IFNs) can underlie encephalitis due to West Nile virus (WNV) (∼40% of patients) and tick-borne encephalitis (TBE, due to TBE
virus [TBEV]) (∼10%). We report here that these auto-Abs can also underlie severe forms of rarer arboviral infections. Auto-
Abs neutralizing high concentrations of IFN-α2, IFN-β, and/or IFN-ω are present in the single case of severe Powassan virus
(POWV) encephalitis studied, two of three cases of severe Usutu virus (USUV) infection studied, and the most severe of 24
cases of Ross River virus (RRV) disease studied. These auto-Abs are not found in any of the 137 individuals with silent or mild
infections with these three viruses. Thus, auto-Abs neutralizing type I IFNs underlie an increasing list of severe arboviral
diseases due to Flaviviridae (WNV, TBEV, POWV, USUV) or Togaviridae (RRV) viruses transmitted to humans by mosquitos
(WNV, USUV, RRV) or ticks (TBEV, POWV).

Introduction
Arboviral diseases are transmitted to humans by mosquitos or,
more rarely, by ticks (Davis et al., 2008). There are at least
150 human-tropic arboviruses belonging to the Togaviridae and
Flaviviridae families of RNA viruses (Madewell, 2020). The
range of clinical presentations of arboviral infections is vast.
Most individuals have silent or benign infections, whereas a few
suffer from life-threatening diseases (Pierson and Diamond,
2020). Over the last few decades, well-known emerging and

re-emerging arboviral diseases have become a growing threat
health worldwide (Gould and Solomon, 2008; Wilder-Smith
et al., 2017). An estimated 700,000 deaths due to mosquito-
borne viral infections alone occur yearly, constituting a major
global public health burden (Ketkar et al., 2019). Virulence
varies considerably between arboviruses, but interindividual
clinical variability is also considerable for each of these viruses
and remains unexplained, as in most common infectious diseases
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(Casanova, 2023; Casanova and Abel, 2024). We recently reported
that pre-existing autoantibodies (auto-Abs) neutralizing type I
interferons (IFNs) underlie ∼40% of West Nile virus (WNV) en-
cephalitis cases (Gervais et al., 2023) and ∼10% of most severe
forms of tick-borne encephalitis (TBE) (Gervais et al., 2024b).
Auto-Abs neutralizing type I IFNs have been shown to underlie
5–20% of cases of life-threatening pneumonia due to severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) (Bastard et al.,
2020, 2021a, 2021c, 2023, 2024), influenza (Zhang et al., 2022b),
or Middle East respiratory syndrome (MERS) (Alotaibi et al.,
2023) viruses, and about a third of severe adverse reactions to
the attenuated live measles and yellow fever virus (YFV) vaccines
(Bastard et al., 2021b). These findings have been replicated
worldwide by many studies (Abers et al., 2021; Acosta-Ampudia
et al., 2021; Akbari et al., 2023; Akbil et al., 2022; Arrestier et al.,
2022; Bastard et al., 2021c; Busnadiego et al., 2022; Carapito et al.,
2022; Chang et al., 2021; Chauvineau-Grenier et al., 2022; Credle
et al., 2022; Eto et al., 2022; Frasca et al., 2022; Goncalves et al.,
2021; Grimm et al., 2023; Hansen et al., 2023; Koning et al.,
2021; Lamacchia et al., 2022; Lemarquis et al., 2021; Mathian
et al., 2022; Meisel et al., 2021; Petrikov et al., 2022; Philippot et al.,
2023; Pons et al., 2023; Raadsen et al., 2022; Savvateeva et al., 2021;
Schidlowski et al., 2022; Saheb Sharif-Askari et al., 2023; Simula
et al., 2022; Solanich et al., 2021; Soltani-Zangbar et al., 2022;
Su et al., 2022; Troya et al., 2021; van der Wijst et al., 2021; Vanker
et al., 2023; Vazquez et al., 2021; Wang et al., 2021; Ziegler et al.,
2021). These auto-Abs are present in individuals of all ages in the
general population, with a prevalence increasing from0.3% to 1% in
individuals under 65 years of age to 4–7% in individuals over
65 years of age (Bastard et al., 2021a).

In this context, we focused on three arboviral infections that
are relatively rare in humans: Powassan virus (POWV), Usutu
virus (USUV), and Ross River virus (RRV) infections. Most hu-
mans infected with these viruses do not develop symptoms or
signs of sickness (Ashraf et al., 2015; Dobler, 2010; Harley et al.,
2001; Hermance and Thangamani, 2017; Clé et al., 2019; Russell,
2002). POWV is a neurotropic orthoflavivirus transmitted by
ticks in North America (Bassam et al., 1999; Hermance and
Thangamani, 2017). The seroprevalence of POWV varies signif-
icantly between studies, ranging from 0.5% to 3% (Frost et al.,
2017; Vahey et al., 2022). An estimated 23% of infections in New
Jersey were considered severe, but with a bias toward older
people and people reporting tick bites (Vahey et al., 2022). In
another study on younger patients with no known history of tick
bites, no severe cases were found among the dozen individuals
infected (Frost et al., 2017). Fewer than 50 symptomatic cases
are reported each year in the United States and almost all these
cases are severe, with 60% occurring in people over the age of
60 years (CDC, 2024). Another neurotropic orthoflavivirus,
USUV, is transmitted by mosquitoes in Africa and Europe
(Ashraf et al., 2015; Clé et al., 2019; Nikolay et al., 2011). In Eu-
rope, the estimated seroprevalence for USUV varies consider-
ably, ranging from 0.02% to 3% (Cadar and Simonin, 2022). Just
over 100 symptomatic cases were reported in Europe between
2016 and 2021 (European Centre for Disease Prevention and
Control, 2023), including about 30 severe neurological forms
(meningitis, encephalitis, or meningoencephalitis) (Cadar and

Simonin, 2022). The final virus considered here, RRV, is an
arthritogenic alphavirus endemic to Oceania, where ∼4,000
symptomatic cases—typically presenting with fever and poly-
arthralgia or polyarthritis—are reported each year (Yuen and
Bielefeldt-Ohmann, 2021). RRV has a median seroprevalence of
19% in endemic regions (Madzokere et al., 2022). No fatal cases
of RRV infection have ever been reported and RRV-infected
patients usually recover spontaneously or following primary
care interventions (Harley et al., 2001; Russell, 2002). We
hypothesized that auto-Abs neutralizing type I IFNs (Bastard
et al., 2024; Casanova et al., 2024; Hale, 2023) might underlie
at least some cases of severe disease due to these three
arboviruses.

Results and discussion
Auto-Abs neutralizing IFN-ω in a patient with severe POWV
encephalitis
We investigated three patients with POWV disease: two men,
aged 37 (P1) and 70 (P2) years, who were hospitalized for a
moderate form of the disease with almost complete recovery,
and a 68-year-old woman (P3) hospitalized for severe enceph-
alopathy resulting in acute respiratory failure (Fig. 1 A). This
patient developed chronic respiratory failure with ventilation
dependence and experienced multiple complications, resulting
in her death ∼1 year after POWV disease. Plasma samples were
obtained from these patients during the first few days after
symptom onset (P3) or after the illness (P1 and P2). The diag-
nosis of viral infection was based on positive results for the
detection of anti-POWV IgM in the blood (and CSF for P3) and
for a plaque reduction neutralization test (PRNT) against POWV.
All three cases originated from and lived in the United States and
their ancestry was unknown, as was their medical history, with
the exception of POWV infection. Using a previously described
luciferase-based neutralization assay (Bastard et al., 2021a), we
tested 1:10 dilutions of serum or plasma from all subjects for the
neutralization of high (10 ng/ml) or low (100 pg/ml) concen-
trations of non-glycosylated IFN-α2 and/or IFN-ω, and high
(10 ng/ml) or intermediate (1 ng/ml) concentrations of glyco-
sylated IFN-β (Fig. 1, B and C). No neutralization of any of the
IFNs tested was observed with plasma samples from P1, P2,
or any of the healthy donors. By contrast, plasma from P3-
neutralized high and low concentrations of IFN-ω, like plasma
from a RAG1-deficient patient known to have neutralizing auto-
Abs against IFN-α2, IFN-β, and IFN-ω used as a positive control
(Fig. 1, B and C). Unfortunately, the small sample volumes
available precluded the testing of auto-Ab levels by another
method (e.g., ELISA). Overall, neither of the two cases of mod-
erate POWV disease tested (P1 and P2) displayed any detect-
able neutralization of type I IFNs, whereas such neutralization
was observed for the only case of severe POWV disease
tested (P3).

Auto-Abs neutralizing IFN-α2, -β, and -ω in two patients with
severe USUV disease
We then investigated a cohort of 34 individuals infected with
USUV. In 31 (20 French and 11 Italian) of these individuals, the
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infection was silent and detected during blood donation. Three
patients (1 Hungarian [P4], 1 French [P5], and 1 Italian [P6]) had
severe disease (Fig. 2 A). Samples were obtained during the first
few days of infection, from the patients with severe disease. P4,
P5, and P6 were all male and were 43, 78, and 80 years old,
respectively. P4 presented with meningitis and was hospitalized
for 7 days. P5 presented with myocarditis and systemic in-
flammatory response syndrome (SIRS) complicated by acute
renal failure. Progression to cardiogenic shock in this patient
necessitated intubation and intensive care support. P6 was
hospitalized for meningoencephalitis, which progressed, re-
sulting in death within a few days (Gaibani et al., 2023). All three
cases tested positive for USUV by RT-qPCR on blood and/or
urine. As described above for the patients with POWV disease,
we assessed the neutralization of type I IFNs by plasma or serum
from the 31 silent cases, cryopreserved whole blood from P4 and
P6 (no serum or plasma samples being available for these two
cases), and the serum of P5. We also included whole-blood
samples from five healthy donors (without neutralizing auto-
Abs) and one patient with APS-1 due to AIRE deficiency (with
auto-Abs neutralizing high and low concentrations of IFN-α2,
and IFN-ω, and intermediate concentrations of IFN-β) (Fig. 2, B
and C) to confirm the interpretability of results obtained with
whole blood. None of the silently infected individuals had de-
tectable levels of neutralizing auto-Abs against any of the type I
IFNs tested. Strikingly, samples from two of the three severe
cases (P4 and P5) neutralized IFN-α2 and IFN-ω, respectively, at
both high and low concentrations, and IFN-β (at an intermediate
concentration for P4 and a high concentration for P5). P6 had no
detectable auto-Abs and, notably, had mild COVID-19 6 mo be-
fore USUV disease. These results were consistent with the auto-
Ab detection results obtained by ELISA (Fig. 2 D). Overall, none
of the 31 silently infected individuals displayed detectable

neutralization of type I IFNs, whereas such neutralization was
observed for two of the three severe cases studied.

Auto-Abs neutralizing IFN-α2 in the patient with the most
severe RRV disease
Finally, we investigated a cohort of 96 RRV-infected individuals
from Australia. RRV infection was demonstrated by IgG sero-
conversion or by the detection of anti-RRV IgM and low levels of
baseline-avidity anti-RRV IgG. In these patients, clinical severity
was determined by calculating a severity score derived from a
multidimensional reduction of the severity of prevalent symp-
toms (e.g., body aches, restless sleep, prolonged tiredness after
activity, and febrile manifestations) by principal component
analysis (Cvejic et al., 2019). Patients with a score in the top
quartile were considered to have severe disease. Those with
scores in the bottom quartile were considered to have mild
disease, and those in between were considered to have moder-
ately severe disease. Patients with severe disease typically
missed work for a mean of 14 days (range: 2–35 days). None of
the individuals with severe infection was hospitalized or died.
No differences in mean age (standard deviation, SD) were ob-
served between patients with mild (40.7 [5.1] years), moderate
(40.8 [14.0] years), and severe (41.0 [10.9]) disease (Fig. 3 A). We
assessed the neutralization of type I IFNs by plasma or serum
from these patients with the luciferase assay described above
(Fig. 3, B and C). No detectable neutralizing auto-Abs against any
of the IFNs tested were detected in any of the patients with mild
or moderate disease. By contrast, samples from one of the 24
patients with severe disease (P7)—a 55-year-old woman—
neutralized high and low concentrations of IFN-α2. P7 had the
highest severity score of the entire cohort and therefore had the
most severe disease of any of the patients tested (Fig. 3 D). In-
terestingly, P7 was the only patient to report both headaches and

Figure 1. Auto-Abs neutralizing type I IFNs in individuals infected with POWV. (A) Age and sex distribution of the patients according to POWV disease
severity. (B and C) Luciferase-based neutralization assay to detect auto-Abs neutralizing 10 ng/ml IFN-α2, IFN-ω, or IFN-β (B), or 100 pg/ml IFN-α2 and IFN-ω
or 1 ng/ml IFN-β (C). The positive control (blue) was plasma from a patient with RAG1 deficiency known to carry auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-β
at a concentration of 10 ng/ml. Plasma samples from healthy donors (black) were obtained from individuals from the general population without auto-Abs
neutralizing type I IFNs. HEK293T cells were transfected with (1) a plasmid containing the firefly luciferase gene under the control of an ISRE-containing
promotor and (2) a plasmid containing the Renilla luciferase gene. The cells were then treated with type I IFNs in the presence of 10% plasma or serum from
patients or controls, and RLA was calculated by dividing firefly luciferase activity by Renilla luciferase activity. An RLA <15% of the median RLA for healthy
controls was considered to correspond to neutralizing activity (dotted line; Bastard et al., 2021a). The samples of the POWV patients were tested twice and the
associated datapoints represent the mean RLA of these independent duplicates.
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fever most of the time during infection, suggesting an unusual
neurotropism of RRV. P7’s auto-Abs against IFN-α2 were also
detected by ELISA (Fig. 3 E), and they continued to display
neutralizing activity in a follow-up sample obtained 1 year after
infection, demonstrating stability over time (Fig. 3 F). Several
patients with mild and moderate disease also had detectable
titers of auto-Abs against IFN-α2 on ELISA, but these auto-Abs
were not neutralizing (Fig. 3 E). None of the 72 individuals with
mild or moderate RRV disease displayed detectable neutraliza-
tion of type I IFNs. Such neutralization was observed for only
one of the 24 severe cases (4.2%), the patient with the highest
disease severity.

POWV and USUV infections are rare in humans and the
corresponding diseases are even rarer. RRV infection is endemic
to Australia and many South Pacific islands, but severe cases are
also rare. Among the cases we studied, auto-Abs neutralizing
type I IFNs were found to underlie the only case of severe POWV
encephalitis, two of the three cases of severe USUV disease, and

themost severe case of RRV disease. These auto-Abswere absent
from cases of moderate POWV disease, individuals with silent
USUV infection, and mild and moderate cases of RRV disease.
Due to the small number of patients with each arboviral disease,
we were unable to calculate the relative risk of developing se-
vere disease conferred by auto-Abs relative to the prevalence of
auto-Abs in the corresponding demographic group (Bastard
et al., 2021a). However, based on previous estimates of the
prevalence of these auto-Abs in the general population (Bastard
et al., 2021a) and their pathogenicity in a large proportion of
patients with two common arboviral diseases—WNV (40%)
(Gervais et al., 2023) and TBEV (10%) encephalitis (Gervais et al.,
2024b)—our current findings provide strong evidence that
these auto-Abs neutralizing type I IFN may underlie severe
POWV, USUV, and RRV diseases (Casanova et al., 2024; Puel
et al., 2022). These auto-Abs were probably present before in-
fection with these viruses, as in patients with life-threatening
COVID-19, influenza pneumonia (Bastard et al., 2020; Zhang

Figure 2. Auto-Abs neutralizing type I IFNs in individuals infected with USUV. (A) Age and sex distribution of the patients according to USUV disease
severity. (B and C) Luciferase-based neutralization assay to detect auto-Abs neutralizing 10 ng/ml IFN-α2, IFN-ω, or IFN-β (B), or 100 pg/ml IFN-α2 and IFN-ω
or 1 ng/ml IFN-β (C). The positive control (blue) was plasma from a patient with RAG1 deficiency known to carry auto-Abs neutralizing IFN-α2, IFN-ω, and IFN-β
at a concentration of 10 ng/ml. Healthy donor plasma (black dots) and whole blood (black stars) samples were tested as negative controls; whole blood was
tested because we had only whole-blood samples available for two of the three severe USUV cases. The asymptomatic cases (gray) tested positive for anti-
USUV Abs during a blood donation but did not report symptomatic disease. HEK293T cells were transfected with (1) a plasmid containing the firefly luciferase
gene under the control of an ISRE-containing promotor and (2) a plasmid containing the Renilla luciferase gene. The cells were then treated with type I IFNs in
the presence of 10% plasma or serum from patients or controls, and RLA was calculated by dividing firefly luciferase activity by Renilla luciferase activity. An
RLA <15% of the median RLA for healthy controls was considered to correspond to neutralizing activity (dotted line; Bastard et al., 2021a). Each sample was
tested once. (D) Correlation between ELISA and neutralization assay results for the detection of auto-Abs neutralizing type I IFNs.
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et al., 2022b), or WNV encephalitis (Gervais et al., 2023), and as
suggested recently by an elegant longitudinal survey of a large
Swiss cohort (Fernbach et al., 2024). However, it was not pos-
sible to demonstrate this unequivocally due to the absence of
sample collection from the patients before infection.

These findings suggest that people at risk of producing these
auto-Abs, such as patients with a history of severe viral disease
(Bastard et al., 2024), autoimmunity (Beydon et al., 2022;
Mathian et al., 2022), or an inborn error of self-tolerance
(Bastard et al., 2021a), and elderly individuals (Bastard et al.,
2021a), would benefit from testing for these auto-Abs if they
inhabit or plan to travel to areas of endemicity for POWV, USUV,
or RRV. Our findings also suggest that treatment with a type I
IFN that is not neutralized by these auto-Abs may be beneficial
in patients testing positive for these viral infections before or
during hospitalization. In principle, patients with auto-Abs
neutralizing IFN-α2 could potentially benefit from treatment
with IFN-β, whereas those with auto-Abs neutralizing IFN-β

would benefit from treatment with IFN-α2 (Bastard et al.,
2021e). High doses of the antigenic IFN itself might also be
considered as a potentially beneficial means of overcoming these
auto-Abs, as reported for the administration of GM-CSF to pa-
tients with auto-Abs neutralizing GM-CSF in the context of
pulmonary alveolar proteinosis (Tian et al., 2020). We recently
developed a rapid diagnostic test that can provide results within
a few hours that could be used to screen for these auto-Abs in
patients admitted with suspected arboviral disease (Gervais
et al., 2024a).

Auto-Abs neutralizing type I IFNs can underlie severe dis-
eases due not only to three respiratory RNA viruses—SARS-
CoV-2 (Bastard et al., 2021a, 2023, 2021c, 2020, 2022b; Puel
et al., 2022), influenza virus (Zhang et al., 2022b), and MERS
(Alotaibi et al., 2023)—but also six flaviviruses: YFV-17D
(Bastard et al., 2022a, 2021b; Duncan et al., 2022; Hernandez
et al., 2019), WNV (Gervais et al., 2023), TBEV (Gervais et al.,
2024b), POWV, and USUV, and a systemic alphavirus, RRV.

Figure 3. Auto-Abs neutralizing type I IFNs in individuals infected with RRV. (A) Age and sex distribution of the patients according to RRV disease
severity. (B and C) Luciferase-based neutralization assay to detect auto-Abs neutralizing 10 ng/ml IFN-α2, IFN-ω, or IFN-β (B), or 100 pg/ml IFN-α2 and IFN-ω
or 1 ng/ml IFN-β (C) in patients with mild (brown), moderate (orange) or severe (red) RRV disease. HEK293T cells were transfected with (1) a plasmid containing
the firefly luciferase gene under the control of an ISRE-containing promotor and (2) a plasmid containing the Renilla luciferase gene. The cells were then treated
with type I IFNs in the presence of 10% plasma or serum from patients or controls, and RLA was calculated by dividing firefly luciferase activity by Renilla
luciferase activity. An RLA <15% of the median RLA for healthy controls was considered to correspond to neutralizing activity (dotted line; Bastard et al., 2021a).
Each sample was tested once. (D) Correlation between IFN-α2 neutralization and the severity score of the patients. The severity score was based on the
evaluation of symptoms, such as muscle pain after activity, needing to sleep longer, prolonged tiredness after activity, tired muscles after activity, headache,
pains in the arms/legs, waking up tired, arms/legs feeling heavy, fevers, back pain, joint pain, and weak muscles. (E) Correlation between ELISA and neu-
tralization assay results for the detection of auto-Abs neutralizing IFN-α2. (F) Neutralization of 10 ng/ml IFN-α2 by the original plasma sample (T1) and a
longitudinal plasma sample (T2) from P7 obtained 1 year later. The HDs tested (black) were healthy individuals tested at the time of collection of each of the
patient samples, but the HD samples are not longitudinal.

Gervais et al. Journal of Experimental Medicine 5 of 10

Auto-Abs against IFN-I in rare arboviral diseases https://doi.org/10.1084/jem.20240942

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/221/12/e20240942/1934153/jem
_20240942.pdf by guest on 10 February 2026

https://doi.org/10.1084/jem.20240942


Unlike the other viruses mentioned, RRV is not usually neuro-
tropic. These auto-Abs against type I IFNs may also underlie
severe disease caused by other arboviruses or respiratory vi-
ruses, or even non-respiratory viruses. They might also underlie
natural viral infections of organs other than the lungs and brain.
However, this hypothesis seems unlikely, given the surprisingly
narrow range of severe viral diseases seen in patients with au-
tosomal recessive complete genetic deficiencies of IFNAR1 or
IFNAR2 (Abolhassani et al., 2022; Bastard et al., 2022a, 2021d;
Duncan et al., 2015; Duncan et al., 2022; Hernandez et al., 2019).
These patients suffer mostly from adverse reactions to attenu-
ated live viral vaccines (Hernandez et al., 2019), critical viral
pneumonia (Meyts and Casanova, 2021; Abolhassani et al., 2022;
Bastard et al., 2022a; Duncan et al., 2022; Zhang et al., 2022a), or
encephalitis (Bastard et al., 2021d, 2022a; Meyts and Casanova,
2021). The finding of auto-Abs underlying severe WNV en-
cephalitis, TBE, POWV, USUV, or RRV disease in turn suggests
that germline genetic deficiencies of type I IFN immunity should
be sought in patients with severe arboviral diseases who do not
carry auto-Abs against type I IFNs.

Materials and methods
Patients
We enrolled an international cohort of three patients infected
with POWV from the US, 40 individuals infected with USUV (20
from France and 20 from Italy), and 96 individuals infected with
RRV from Australia. Written informed consent was obtained in
the country of residence of each patient, in accordance with local
regulations and with institutional review board (IRB) approval.
Sampling was performed during acute infection for the severe
POWV case and after recovery for the two patients with mod-
erate POWV disease. The USUV patients were sampled within a
week of symptom onset and the asymptomatic cases were
sampled at undermined times after infection. The RRV cases
were sampled a mean of 33 days (range: 6–87 days) after
symptom onset, and the severe RRV cases were sampled a mean
of 14 days (range: 2–35 days) after symptom onset. In P1, P2, and
P3, POWV infection was identified on the basis of the detection
of anti-POWV IgM in the blood (and CSF for P3) followed by a
PRNT against POWV. For USUV infection, P4 was diagnosed by
RT-qPCR on serum samples. P5 was diagnosed by RT-qPCR on
serum samples and by the presence of neutralizing IgM anti-
USUV antibodies in the serum at day 8 after symptoms onset.
Samples from P6 were tested in molecular and serological as-
says: serum, plasma, and urine specimens were extracted from
500 µl of the sample, eluted in a volume of 55 µl and tested by
multiplex real-time PCR, which revealed the presence of USUV
in all sample types (Gaibani et al., 2023). The asymptomatic
cases were identified on the basis of positive results for RT-qPCR
on serum samples. Finally, all RRV cases were diagnosed by
serological analysis revealing the presence of anti-RRV IgM
antibodies. The experiments for measurement of auto-Abs to
type I IFNs were conducted in France and the USA, in accor-
dance with local regulations and guidance from the French
National Agency for Medicine and Health Product Safety, the
Institut National de la Santé et de la RechercheMédicale in Paris,

France, and with the approval of the IRB of the Rockefeller
University in New York, NY, USA, respectively.

Luciferase reporter assay
The blocking activity of anti-IFN-α2, anti-IFN-ω, and anti-IFN-β
auto-Abs was assessed in a reporter luciferase assay, as previ-
ously described (Bastard et al., 2021a). Briefly, HEK293T cells
were transfected with a plasmid encoding the firefly luciferase
gene under the control of the human IFN-sensitive response
element (ISRE) promoter in the pGL4.45 backbone and a plasmid
constitutively expressing the Renilla luciferase as a control for
transfection (pRL-SV40). Cells were transfected in the pres-
ence of the X-tremeGene9 transfection reagent (ref. number
6365779001; Sigma-Aldrich). After 24 h, cells in Dulbecco’s
modified Eagle medium (Thermo Fisher Scientific) supple-
mented with 2% fetal calf serum and 10% control or patient
serum/plasma/whole blood (after heat inactivation at 56°C, for
20 min) were either left unstimulated or were stimulated with
unglycosylated rhIFN-α2 (ref. number 130-108-984; Miltenyi
Biotec), unglycosylated rhIFN-ω (ref. number 300-02J; Pepro-
tech) at a concentration of 10 ng/ml or 100 pg/ml, or glyco-
sylated rhIFN-β (ref. number 300-02BC; Peprotech) at a
concentration of 10 or 1 ng/ml for 16 h at 37°C under an at-
mosphere containing 5% CO2. Finally, the cells were lysed by
incubation with a lysis buffer (provided in ref. number E1980;
Promega) for 20 min at room temperature and luciferase levels
were measured with the Dual-Luciferase Reporter 1000 assay
system (ref. number E1980; Promega) according to the manu-
facturer’s protocol. Luminescence intensity was measured with
a VICTOR-X Multilabel Plate Reader (PerkinElmer Life Sci-
ences). Firefly luciferase activity values were normalized against
Renilla luciferase activity values. The resulting values (luciferase
induction) were then normalized against the median level of
induction for non-neutralizing samples and expressed as a
percentage (relative luciferase activity [RLA] ratio, %). Samples
were considered to be neutralizing if the RLA ratio was below
15% of the median value for controls tested on the same day.

ELISA
ELISA was performed as previously described (Puel et al., 2008).
In brief, 96-well ELISA plates (MaxiSorp; Thermo Fisher Sci-
entific) were coated by overnight incubation at 4°C with 1 μg/ml
rhIFN-α (ref. number 130-108-984; Miltenyi Biotec), rhIFN-ω
(ref. number 300-02J; Peprotech), or rhIFN-β (ref. number
300-02BC; Peprotech). The plates were washed (PBS/0.005%
Tween 20), blocked by incubation with the same buffer sup-
plemented with 2% BSA, washed, and incubated with 1:50 di-
lutions of plasma samples from the patients or positive and
negative controls for 2 h at room temperature. Each sample
was tested once. Plates were thoroughly washed (PBS/0.005%
Tween 20) and horseradish peroxidase–conjugated Fc-specific
IgG fractions from polyclonal goat antiserum against human
IgG (Nordic Immunological Laboratories) were added to a final
concentration of 1 μg/ml. Plates were incubated for 1 h at room
temperature and washed. The substrate was added and optical
density was measured (450 nm). All the incubation steps were
performed with gentle shaking (600 rpm).
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Data availability
All data supporting the findings of this study are available
within the main text and supplemental material and from the
corresponding authors upon request.
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