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SMARCA5-mediated chromatin remodeling is
required for germinal center formation

Liat Stoler-Barak!@®, Dominik Schmiedel'!®, Avital Sarusi-Portuguez’®, Adi Rogel>®, Ronnie Blecher-Gonen*®, Zhana Haimon*®, Tomas Stopka®®,

and Ziv Shulman!®

The establishment of long-lasting immunity against pathogens is facilitated by the germinal center (GC) reaction, during
which B cells increase their antibody affinity and differentiate into antibody-secreting cells (ASC) and memory cells. These
events involve modifications in chromatin packaging that orchestrate the profound restructuring of gene expression
networks that determine cell fate. While several chromatin remodelers were implicated in lymphocyte functions, less is
known about SMARCAS. Here, using ribosomal pull-down for analyzing translated genes in GC B cells, coupled with functional
experiments in mice, we identified SMARCAS as a key chromatin remodeler in B cells. While the naive B cell compartment
remained unaffected following conditional depletion of Smarca5, effective proliferation during B cell activation,
immunoglobulin class switching, and as a result GC formation and ASC differentiation were impaired. Single-cell multiomic
sequencing analyses revealed that SMARCAS is crucial for facilitating the transcriptional modifications and genomic
accessibility of genes that support B cell activation and differentiation. These findings offer novel insights into the functions
of SMARCAS5, which can be targeted in various human pathologies.

Introduction

A hallmark of the protective adaptive immune response lies in
its capacity to generate rapidly responding memory cells and
plasma cells (PC) that secrete protective antibodies, thereby
fostering long-lasting and effective immunity (Corcoran and
Tarlinton, 2016). Antigen-specific long-lived PCs predomi-
nantly originate within germinal centers (GC), which are spe-
cialized microanatomical structures located within secondary
lymphoid organs. These structures are divided into the dark
zone (DZ) and the light zone (LZ) based on lymphocyte density,
cellular assemblies, and cell surface markers (Allen et al., 2004;
Victora et al., 2010). In the LZ, B cells encounter antigens pre-
sented on follicular dendritic cells followed by uptake and pre-
sentation of peptides on major histocompatibility complex class
I (MHCII) to cognate helper T cells (Batista and Harwood, 2009;
Heesters et al., 2014; Song and Craft, 2023). Subsequently, B cells
receive T cell help signals, such as the engagement of the B cell
CD40 receptor with the T cell CD40 ligand (Liu et al., 2015).
B cells that acquire sufficient T cell-derived signals are selected
to migrate into the DZ, where extensive proliferation, clonal

expansion, and insertion of somatic hypermutations (SHM) into
the immunoglobulin genes occur. This cyclic sequence of events
within GCs leads to the generation of memory and antibody-
secreting cells (ASCs) that carry relatively high-affinity im-
munoglobulins (Stoler-Barak and Shulman, 2022; Cyster and
Allen, 2019; Victora and Nussenzweig, 2022; Kwak et al., 2019;
Shlomchik and Weisel, 2012; Steele et al., 2024).

The packaging of DNA has a significant impact on gene ex-
pression since this dynamic modulation of chromatin structure
allows or restricts access of the transcriptional machinery to the
DNA. Chromatin remodelers are enzymatic complexes that use
the energy of ATP hydrolysis to dynamically regulate and
modify the structure of the chromatin by sliding, repositioning,
ejecting, or restructuring nucleosomes (Narlikar et al., 2013). GC
formation depends on significant chromatin reorganization to
allow gene and enhancer accessibility (Doane et al., 2021). Sev-
eral families of chromatin remodelers and their functions have
been described including the SWI/SNF (switch/sucrose non-
fermentable), ISWI (imitation switch), CHD (chromodomain
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helicase DNA-binding), and INO8O (inositol-requiring 80)
complexes (Bowman, 2010; Clapier et al., 2017; Sokpor et al.,
2018; Tyagi et al., 2016; Jiang et al., 2023). Whereas in the context
of B cell immune responses, several chromatin remodelers have
been examined, such as SWI/SNF, INO80, and CHD, less is known
about the functions of the ISWI complex (Schmiedel et al., 2021;
Bossen et al., 2015; Zikmund et al., 2019; Holley et al., 2014; Papin
etal., 2022; Kracker et al., 2015; Hagman et al., 2022; Arends et al.,
2019; Deng et al., 2024). SMARCAS, also known as SNF2H, is the
core catalytic unit of the ISWI family of remodelers and is involved
in sliding, spacing, and repositioning of nucleosomes along the
DNA, rather than evicting them (Bomber et al., 2023; Barisic et al.,
2019). SMARCAS contributes to the regulation of the expression
of genes associated with cell cycle progression, DNA replication,
recombination, and repair processes (Barisic et al., 2019;
Corona and Tamkun, 2004; Clapier and Cairns, 2009; Collins
et al., 2002; Bozhenok et al., 2002; Toiber et al., 2013). Proper
control of gene expression is required for normal cellular
function, and dysregulation of chromatin accessibility can
lead to a wide range of pathologies including GC-derived
lymphoma (Papin et al., 2022). Recent studies have impli-
cated SMARCAS in the progression of several cancer types
including blood cancer (Jin et al., 2015; Thakur et al., 2022;
Stopka et al., 2000; Zikmund et al.,, 2020; Radzisheuskaya
et al., 2023; Bayona-Feliu et al., 2023; Gigek et al., 2011).
SMARCAS5 is also involved in various developmental processes
including embryonic, hematopoietic stem and progenitor cell,
and neurological differentiation (Ding et al., 2021; Kokavec
et al., 2017; Zikmund et al., 2019; Li et al., 2021; Alvarez-
Saavedra et al., 2014). With regards to immune cells, it was
demonstrated that SMARCAS5 plays an essential role in thy-
mocyte development during selection, and has a repressive or
activating effect on cytokine gene expression in activated
T cells (Zikmund et al., 2019; Precht et al., 2010). B cells un-
dergo extensive genomic reorganization during their differ-
entiation into GC and ASCs to allow the expression of genes
that promote cell cycle progression, state transition, and
dictate cellular identity (Bunting et al., 2016; Vilarrasa-Blasi
et al., 2021; Papin et al., 2022; Nutt et al., 2011). Nonetheless,
the role of SMARCAS in B lymphocyte activation and differ-
entiation has not been characterized.

Here, using Smarca5-deficient B cells, we find that SMARCAS
is essential for the effective proliferation of activated B cells, GC
formation, immunoglobulin class-switching, and ASC differen-
tiation. Using high-throughput multiomic sequencing techni-
ques, we demonstrate that SMARCAS binds and controls the
chromatin accessibility of activated B cells, pre-GC B cells, and
ASCs differentiation-promoting genes. Thus, our study demon-
strates the significance of chromatin remodeling by SMARCAS
in ensuring proper gene expression during the emergence of the
humoral immune response.

Results

SMARCAS is strongly translated in GC B cells

Transcriptomic profiling is a well-established technique for
revealing the cellular state of particular subsets of cells.
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Nevertheless, it provides a snapshot of the total mRNA within
the cells, rather than characterizing the mRNA that serves as a
template for protein translation at a given time point. Thus,
complementing transcriptomic approaches with protein trans-
lation profiling introduces an additional layer of insight, en-
hancing our understanding of biological processes. To study the
translational state of GC B cells, we crossed genetically modified
RiboTag mice carrying a transgene that expresses a hemagglu-
tinin (HA)-tagged ribosomal protein, with mice expressing
B cell-specific Cre, under the Aicda promoter (Aicda.Cre.Rpl22H4)
(Sanz et al., 2009; Haimon et al., 2018). In combination with
markers detected by flow cytometry, this mouse strain allows
the isolation of ribosomes specifically from LZ and DZ B cells,
providing a tool to capture the actively translating mRNAs
(translatome), and offering insights into the genes and pathways
that are actively translated in the GC (Fig. 1 A). DZ and LZ B cells
sorted from lymph nodes (LNs) extracted from mice, 7 days after
immunization with NP-KLH, exhibited distinct gene expression
patterns. Specifically, 524 and 425 (DZ and LZ, respectively)
genes were enriched after immunoprecipitation (IP) of HA-
tagged ribosomes (translatome) compared to the total mRNA
(transcriptome) (Fig. 1, B and C). Using this screening approach,
we found multiple transcripts that were enriched in the trans-
latome, some of which are already known as key regulators in GC
cells, including Bcl6, Rgs3, Cd74, Junb, Pax5, Baspl, and Cd79a
(Fig. 1, D and E; and Table S1). Biological pathway analysis of the
translatome data revealed primarily changes in mRNA path-
ways, and changes in cell cycle, antigen presentation, lympho-
cyte activation, and metabolic processes (Fig. S1). Furthermore,
this profiling enabled us to detect a significant enrichment of
Smarca5 ribosomal-associated transcripts both in DZ and LZ
B cells, which was never previously studied in the context of
activated B lymphocytes (Fig. 1, D and E). SMARCAS5 plays an
important role in supporting the DNA damage response and
repair of double-strand breaks. Since these events occur exten-
sively during the B cell immune response, we focused on this
chromatin remodeler (Toiber et al., 2013; Lan et al., 2010; Roco
et al,, 2019). Thus, the RiboTag-expressing mice enabled us to
gain a deeper understanding of gene expression at the transla-
tional level within GC B cells in vivo after immunization and
specifically highlighted the importance of SMARCAS.

SMARCAS is essential for GC and ASC formation, but not for

B cell homeostasis

To investigate whether SMARCAD5 plays a role in B cell homeo-
stasis and immune responses in vivo, we crossed transgenic
mice carrying a conditional inactivation of the Smarca5 gene
with mice expressing B cell-specific Cre under the CD23 pro-
moter (CD23.Cre.Smarca5Wf) (Kwon et al., 2008; Kokavec et al.,
2017). Protein expression analysis revealed that naive B cells
express SMARCAS, whereas only residual levels of protein were
detected in Smarca5-deficient B cells (Fig. S2 A).

First, the immunoglobulin titers in the serum of unmanipu-
lated CD23.Cre.Smarca5™f and control mice were determined by
ELISA. Serum immunoglobulins from Smarca5-deficient mice
exhibited reduced levels of both IgM and class-switched IgA and
IgG1 compared with the control mice (Fig. 2 A). Nonetheless,
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Figure 1. GC B cells are enriched in SMARCAS mRNA transcripts during translation. (A) Scheme illustrating the experimental design. (B and C) Volcano
plots showing differential gene expression following ribosomal IP (Sort-IP) in DZ (B) and LZ (C) B cells (n = 4; two independent experiments, P value < 0.05, and
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log, FC >0.58 or less than -0.58; raw P values were adjusted for multiple testing using the procedure of Benjamini and Hochberg). (D and E) Graphs showing
normalized reads of selected enriched genes in the Sort-IP group derived from DZ (D) or LZ (E) B cells (n = 4; two independent experiments, two-tailed
Student’s t test). Each dot in the graphs represents a single mouse; *P < 0.05, **P < 0.01, ***P < 0.001.

under homeostatic conditions, no differences were detected in intact (Fig. 2 B). Yet, the frequencies of ASCs in the BM of
the frequencies of B cell subsets in the bone marrow (BM), B cell-specific Smarca5-deficient mice were significantly re-
suggesting that B cell development and homeostasis remained duced compared to their control counterparts (Fig. 2 C). Given
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Figure 2. GC and ASC formation are dependent on SMARCAS. (A) Serum IgM, IgA, and IgG1 titers as determined by ELISA in control or Smarca5-deficient
mice (n = 7-10 unmanipulated mice; two independent experiments, two-tailed Student’s t test; **P < 0.01, ***P < 0.001). (B) Representative flow cytometry
plots and frequencies of B cell subsets in the BM of unmanipulated control versus Smarca5-deficient mice (n = 5; two independent experiments, two-tailed
Student’s t test; ns, not significant). (C) Representative flow cytometry plots and frequencies of total ASCs in the BM of unmanipulated mice (n = 5; two
independent experiments, two-tailed Student’s t test; *P < 0.05). (D) Representative flow cytometry plots and frequencies of total B cells, ASCs, and GC B cells
in popliteal LNs 7 days after NP-KLH immunization (n = 10-11; four independent experiments, two-tailed Student’s t test; ***P < 0.001). (E) Representative
flow cytometry plot and frequencies of GC B cells in popliteal LNs 7 days after NP-KLH immunization of chimeric mice consisting of 50% tdTomato CD45.2 WT
and 50% CD45.2 Smarca5-deficient BM cells (n = 5; two independent experiments, two-tailed Student’s t test; ***P < 0.001). (F) Representative flow cytometry
plots and frequencies of ASCs and GC B cells in popliteal LNs 7 days after NP-KLH immunization of control and AID.Cre.Smarca4fl mice (n = 7-12; three
independent experiments, two-tailed Student’s t test; *P < 0.05, ***P < 0.001). Each dot in the graphs represents a single mouse.
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that the GC reaction is the predominant source of ASCs, we
sought to determine whether impaired GC formation is re-
sponsible for the reduced frequency of ASCs in the BM and re-
duced levels of immunoglobulins in the serum. To this end,
CD23.Cre.Smarca5™fl mice and control CD23.Cre.Smarca5™* mice
were immunized subcutaneously in the hind footpads with 4-
hydroxy-3-nitrophenyl (NP) coupled to keyhole limpet hemo-
cyanin (KLH) in alum (Stoler-Barak and Shulman, 2022). Flow
cytometric analysis of popliteal LN-derived cells 7 days following
immunization revealed a major and significant reduction in the
frequency of both ASCs and GC B cells in the absence of
SMARCAS (Fig. 2 D). To examine if this effect is B cell-intrinsic
or mediated through additional B cell-independent factors, we
immunized chimeric mice hosting 50% WT and 50% Smarca5-
deficient B cells. GC recovered from these mice contained only
WT B cells (Fig. 2 E). These results suggest that SMARCAS plays
a role in the GC and ASC formation.

We next examined whether SMAARCAS plays a role in B cell
immune responses after initial B cell activation. For this pur-
pose, we generated AID.Cre.Smarca5™f mice and compared their
ability to generate GC and ASC B cells with control mice in re-
sponse to immunization. In this mouse model, the frequency of
GC B cells was lower compared to control mice but a significant
number of GC and ASC B cells were still detected (Fig. 2 F). We
conclude that SMARCAS plays a major early role during the
initiation of the B cell response and to some extent after B cell
activation and activation-induced cytidine deaminase (AID)
expression.

Proper B cell proliferation, class-switch recombination, and
ASC differentiation in vitro require SMARCAS

Improper GC seeding could be a result of diminished B cell early
activation and cell expansion events. Thus, to examine whether
SMARCADS plays a role in B cell proliferation, splenic B cells were
labeled with CellTrace Violet (CTV) and subjected to LPS stim-
ulation for 4 days in vitro (Stoler-Barak et al., 2023). Smarca5-
deficient B cells exhibited about 1.3-fold reduced cell division
and proliferation relative to their control counterparts (Fig. 3 A).
Although this difference appears minor, a more detailed quan-
tification of specific cell cycle stages revealed a major defect in
entry into the early and late cell cycle events resulting in a
fourfold decreased number of Smarca5-deficient B cells after
4 days in culture (Fig. 3 A and Fig. S2 B). Cell cycle analysis using
EdU and 7AAD staining did not reveal any significant defect at a
specific stage in B cells that were stimulated with LPS (Fig. S2 C).
Additionally, a cell viability assay did not detect enhanced cell
death in Smarca5-deficient B cells (Fig. S2 D). We further ex-
plored CD86 upregulation as a marker of B cell activation. Early
CD86 expression in response to LPS stimulation after 16 h was
unaffected by the absence of SMARCAS, whereas late activation
4 days after stimulation was significantly compromised com-
pared with the control group (Fig. 3 B). These observations
suggest that Smarca5-deficient B cells can partially respond to
initial stimulation, but proper activation and further down-
stream events are severely impaired. Moreover, class-switch
recombination (CSR) was examined in vitro by stimulating
splenic B cells with LPS in the presence of IL-4, followed by flow
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cytometry analysis after 4 days. Whereas a population of B cells
that expressed IgGl in response to the stimulation was clearly
detected in the control cells, Smarca5-deficient B cells displayed
almost no CSR to IgGl (Fig. 3 C). Consistent with the in vivo
findings (Fig. 2, C and D), Smarca5-deficient B cells also dem-
onstrated impaired ability to differentiate into ASCs 4 days after
LPS stimulation in vitro (Fig. 3 D). Collectively, these experi-
ments indicate that SMARCAS plays a crucial role in initial B cell
activation and expansion, which greatly affects their proper
differentiation and CSR.

The formation of antigen-specific GC B cells and ASCs depends
on SMARCAS functions

Our findings highlight a crucial role for SMARCAS5 in or-
chestrating polyclonal immune responses. Since in the ab-
sence of SMARCAS5, GC structures were not formed, resulting
in a significant reduction in both ASC numbers and antibody
titers in the serum, further direct analysis of SMARCA5
functions was not feasible (Fig. 2 D). To bypass these con-
straints and enable the detection of antigen-specific GC B cells
and ASCs, we crossed GFP-expressing mice, which carry a
transgenic BCR specific for 4-hydroxy-3-nitrophenyl (NP) when
coupled to Ig\, known as B1-8" (Shih et al., 2002) with either
control or CD23.Cre.Smarca5"f mice. Subsequently, we utilized
these mice as donors for the adoptive transfer of antigen-specific
B cells into WT host mice. The mice were then immunized with
NP-KLH for 3, 5, or 7 days, followed by LN imaging and flow
cytometry quantification (Fig. 4 A). Utilizing intravital two-
photon laser scanning microscopy (TPLSM) (Stoler-Barak
et al., 2019) revealed that Smarca5-deficient B cells were un-
able to generate GC structures on day 7, though a clear B cell
response was observed at earlier time points (Fig. 4 B).

To gain further insight into the magnitude of the antigen-
specific response in the absence of SMARCAS5, we used flow
cytometry to quantify B cell subsets during the immune re-
sponse. Analysis of popliteal LNs at 3, 5, and 7 days after im-
munization revealed a significantly lower fraction of total
Smarca5-deficient B1-8" B cells compared with control (Fig. 4
C). The fraction of the cells that showed expression of activation
and GC cell markers was smaller compared to the control
cells (Fig. 4 D). Further analysis of both resting or activated
populations revealed minor changes in the viability of Smarca5-
deficient antigen-specific B cells (Fig. S3, A and B). Additionally,
on days 5 and 7 after immunization, while the majority of ASCs
in the control group were antigen-specific B1-8" B cells, almost
no B1-8" ASCs were detected in the absence of SMARCAS (Fig. 4
E). These findings confirmed the utility of the adoptive cell
transfer model to examine the role of SMARCAS at later stages of
the response.

SMARCAS is essential for the genetic rewiring of activated

B cells during the early stages of the immune response

The small fraction of early responding and GC B cells that was
detected following adoptive transfer, provided an opportunity to
probe deeper into the molecular mechanisms of SMARCAS5
during the B cell immune response. To determine the impact of
SMARCAS5 depletion on gene expression profiles during the
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Figure 3. SMARCAS is required for B cell expansion, class-switch recombination, and ASC formation. (A) Representative flow cytometry histograms and
quantification of CTV indicating the in vitro proliferation and absolute number of splenic B cells treated with LPS for 4 days (n = 5-8; two independent
experiments, two-tailed Student’s t test; **P < 0.01). (B) Representative flow cytometry histograms and frequencies of untreated B cells, and B cells stimulated
with LPS for 16 h (top) or 4 days (bottom) (n = 5-6; two independent experiments, one-way ANOVA; *P < 0.05, **P < 0.01, ***P < 0.001, ns, not significant).
(C and D) Representative flow cytometry plots and frequencies of IgG1* B cells (C) or total B cells and ASCs (D) derived from naive spleens that were either left
unmanipulated or stimulated in vitro with LPS+IL-4 for 4 days (n = 4-6; two independent experiments, one-way ANOVA; ***P < 0.001, ns, not significant). Each

dot in the graphs represents a single mouse.

early stages preceding GC seeding, we conducted bulk RNA-
sequencing (RNA-seq) experiments using transferred GFP* Bl-
8hi B cells sorted 5 days after immunization (Fig. 5 A). Our
analysis revealed 1,353 genes that were upregulated and 1,323
genes that were downregulated when comparing the control
cells to the Smarca5-deficient B cells (log, FC greater than or
equal to +0.58, adjusted P < 0.05) (Fig. 5 B). Consistent with
previous literature related to the functions of this chromatin-
remodeler (Barisic et al., 2019; Corona and Tamkun, 2004;
Clapier and Cairns, 2009; Collins et al., 2002; Bozhenok et al.,
2002), Smarca5-deficient B cells exhibited downregulation of
cell cycle and DNA repair genes. Furthermore, we report for the
first time that genes known to activate the GC and ASC differ-
entiation programs (Shi et al., 2015) were also downregulated in
the absence of SMARCAS (Fig. 5 C) providing an additional ex-
planation for the diminished GC and ASC phenotypes that we
observed (Fig. 2, Fig. 3, and Fig. 4). In addition, by using the
Metascape tool to determine the biological processes affected by
SMARCAS5 depletion, we found that cell cycle, cell division, DNA

Stoler-Barak et al.

SMARCAS is essential for B cell immune responses

repair, and DNA recombination were significantly impaired in
the deficient cells and upregulated in the control population
(Fig. 5 D). To identify the signaling pathways adversely af-
fected in Smarca5-deficient B cells, we conducted gene set
enrichment analysis (GSEA). This analysis revealed a signif-
icant downregulation of genes related to the E2F and G2M
pathways, known as entry checkpoints to phases of mitosis
and DNA synthesis (Stark and Taylor, 2004; Dimova and
Dyson, 2005) (Fig. 5 E). Collectively, these findings reveal
the pivotal involvement of SMARCAS in the processes of cell
division, DNA replication and repair in B cells, in accordance
with data previously published for other cell types (Lan et al.,
2010; Collins et al., 2002; Corona and Tamkun, 2004; Kokavec
et al., 2017). Although we compared RNA from control and
Smarca5-deficient cells that were present on day 5 in the
immunized mice, some of these differences may represent the
inability of the latter to become fully activated. Collectively,
our results identify for the first time the novel role of
SMARCAS5 in shaping the transcriptome landscape and cell
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Figure 4. SMARCAS is required to establish an appropriate antigen-specific B cell immune response. (A) Scheme illustrating the experimental design.
(B) Representative TPLSM images of intact popliteal LNs removed at the indicated time points after NP-KLH immunization (n = 3-4; three independent
experiments). Scale bar: 200 um. (C-E) Representative flow cytometry plots and frequencies of total transferred (C), activated (D; left and middle), GC (D;
right), or ASCs (E), antigen-specific B1-8" B cells in popliteal LNs at the indicated time points after NP-KLH immunization (n = 7; two independent experiments,

two-tailed Student’s t test; *P < 0.05, **P < 0.01, ***P < 0.001). Each dot in the graph represents a single mouse.

activation events governing the formation of both pre-GC
and ASCs.

SMARCAS5 controls chromatin accessibility of GC and ASC-
determining genes

The bulk RNA-seq data may include cells that escaped the
Smarca5-deletion and responded to the antigen, although
they were unable to become fully activated and form GCs
(Fig. 4 B). To gain a more comprehensive understanding of
how SMARCAS5 regulates B cell activation before GC forma-
tion, we performed an integrated analysis using multiple
high-throughput sequencing approaches. To this end, we
employed the single-nucleus multiome technique, which
combines ATAC (assay for transposase-accessible chromatin)
and GEX (gene expression of RNA transcripts) (Wang et al.,
2022) sequencing analysis of transferred GFP* B1-8h! B cells,

Stoler-Barak et al.
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sorted 5 days after immunization. Since only a small number
of cells were recovered from individual mice, the multiome
procedure was applied to single nuclei from B cells pooled
from 10 mice. The ATAC-seq analysis of total cells identified
79,332 peaks, of which 11,882 peaks showed differential ac-
cessibility in the control cells, and only 1,168 peaks exhibited
differential accessibility in the absence of SMARCAS5 (log, FC
greater than or equal to 0.3, adjusted P < 0.1). Additionally,
Gene Ontology (GO) analysis for biological pathways revealed
that the genes associated with these differential accessibility
peaks were enriched for leukocyte activation and differenti-
ation processes (Fig. 6 A). An analysis of each individual
cluster revealed changes in chromatin accessibility in most of
them (Fig. S4 A). This analysis demonstrates the key role of
SMARCAS in influencing the accessibility of multiple genomic
areas in antigen-specific early-responding B cells.

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20240433

920z Aeniged 0| uo 3senb Aq ypd-eey0y20Z Wal/L8vZe6L/cer0rZ0ze/L L/LZZ/pd-ajonie/wal/bio ssaidny//:dpy woy papeojumoq

7 of 17


https://doi.org/10.1084/jem.20240433

A

Day -1: CD23.Cre.Smarca5™" B1-8" GFP or
CD23.Cre.Smarca5™* B1-8" GFP B cell transfer

Day 0: immunize NP-KLH s.c. .o

K—;ﬁj 5days [ \

C57BL/6 host

mRNA extraction

Lymph node Sort GFP* B cells

fl/+ fl/fl

Aicda
Bclé
S1pr2
Basp1
Fas
Sdc1

Smarcab"" Smarca5

Mitotic cell cycle (GO:0000278

DNA metabolic process (GO:0006259

Cell division (GO:0051301

DNA repair (GO:0006281

Regulation of cell cycle process (GO:0010564

Cellular response to DNA damage stimulus (GO:0006974
DNA recombination (GO:0006310

Row max

Row min

E2F targets G2M checkpoints

0.4
03
0.2

o o
S Q
3 ®
= €
g 0 NES=2.38 g NES=2.36
= FDR=0 £

0 0

e &

TINTIRTRERS I T

CD23.Cre.Smarcas™* CD23.Cre.Smarcas™
<+—>
B1-8" GFP B1-8" GFP

Bulk RNA sequencing

CD23.Cre.Smarcas”* B1-8" GFP upregulated

)
)
)
)
)
)
)

B

-Log10(padj)

Log2 fold change
(CD23.Cre.Smarca5™* B1-8" GFP/CD23.Cre. Smarca5™ B1-8" GFP)

CD23.Cre.Smarcas™* B1-8" GFP downregulated

rRNA processing (R-MMU-72312)
Cytoplasmic translation (GO:0002181)
Ribosome biogenesis (GO:0042254)
Translation (GO:0006412)

Metabolism of RNA (R-MMU-8953854)
Peptide metabolic process (GO:0006518)
Leukocyte activation (GO:0045321)

T T 1T 1 1T 11
0 10 20 30 40 50 60 70 0

-Log10(P) -Log10(P)

Inflammatory response MYC targets V2

o o
5 0. 5 0o

& 01 a2

2 02 % 01

(= S 02

@ 03] NES=2 T NES=-1.45

E 044 FDR=0.001 £ 03 FDR=0.04

= (UL LM I & L I

[ /o { =

w i n w i

CD23.Cre.Smarcas™* 4y, CD23.Cre.Smarcas™
B1-8" GFP B1-8" Grp
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We next wished to characterize the genome-wide distribu-
tion of SMARCAS5 open chromatin peaks. Approximately, 42% of
peaks were mainly localized to introns, 38% to intergenic re-
gions, 13% to gene promoters, and <5% were localized to exons.
Notably, the overall distribution of accessible genomic sites re-
mained comparable between control and Smarca5-deficient
B cells (Fig. 6 B). CUT&RUN (Cleavage Under Targets & Re-
lease Using Nuclease) is a modified protocol derived from
chromatin IP, followed by sequencing (ChIP-seq) used to analyze
protein DNA interactions on a genome-wide scale (Janssens and
Henikoff, 2019). To further examine if SMARCAS5 binding sites
are specifically associated with gene accessibility, we performed
CUT&RUN using GC B cells from LNs of WT mice. This analysis
revealed that SMARCA5 predominantly binds at promoters
(34%), introns (31.4%), and intergenic regions (25.9%) (Fig. 6 B).
To examine those chromatin changes and SMARCAS binding
sites that are associated with gene regulation (i.e., only genes
that were differentially expressed between the control and the
Smarca5-deficient cells), the ATAC-seq and CUT&RUN results
were integrated with the bulk RNA-seq data. This integration

Stoler-Barak et al.
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demonstrated that differentially expressed genes upregulated in
antigen-specific control B cells were also significantly associated
with detectable overlapping ATAC and CUT&RUN peaks (Fig. 6
C and Fig. S4 B). Thus, SMARCAS primarily regulates the ac-
cessibility and expression of bound genes rather than overall
genome-wide changes. To explore the transcriptomic landscape
promoting B cell activation and differentiation prior to GC
seeding and after antigen encounter, we examined the cell
cluster annotation of B cell subsets using the integrated ATAC
and GEX multiome profiles.

Uniform weighted nearest neighbor manifold approximation
and projection (wnnUMAP) dimensionality reduction analysis is
designed to combine diverse datasets obtained from the same
cells to establish a unified singular portrayal of single-cell
multimodal data (Hao et al., 2021). Using wnnUMAP of 5,993
control and 7,041 Smarca5-deficient individual B cell nuclei, we
identified 11 B cell clusters (Fig. 6, D and E). Although this se-
quencing procedure and subsequent analysis allowed the de-
tection of activated pre-GC B cells and ASC subsets, the identity
of the cells in other clusters was less clear (Fig. S4 C). Among the
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Figure 6. Chromatin accessibility of GC- and ASC-promoting genes is regulated by SMARCAS. (A) MA plot of the log average (A) on the X-axis, and log
ratio (M) on the Y-axis representing the changes in accessibility peaks under SMARCAS deficiency (left); GO term biological pathway analysis of genes as-
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calculated by a two-sided Wilcoxon rank sum test. (D) UMAP projections of Multiome profiles with color coding according to the different clusters. Top and
bottom UMAPs represent the control and Smarca5-deficient groups, respectively. (E) Dot plots depicting the RNA expression of selected marker genes
presented by average expression and percent expression per cluster. The top and bottom plots represent the control and deficient groups, respectively.
(F) Gene tracks depicting chromatin accessibility and expression of selected marker genes from specific clusters. Each track also represents the DNA binding

sites of SMARCAS, as shown by CUT&RUN peaks.

different clusters, most of the changes occurred in clusters 0 and
1 (Fig. S4 A), suggesting that these represent initially activated
B cells that cannot progress to other stages of B cell differenti-
ation in the absence of SMARCAS. Furthermore, the abundance
of pre-GC and ASC clusters was reduced in the Smarca5-deficient
B cells, demonstrating that this cell analysis provides similar
results, as obtained by flow cytometry (Fig. 6 D). The gene ex-
pression profiles reveal that B cells deficient in Smarca5 exhibit a
notable impairment in their capacity to undergo class-switching
to IgGl isotype (Fig. 6, D and E) and to express genes that are
associated with pre-GC B cells (cluster 11; Bcl6, Aicda, Sipr2, FAS,
Baspl) and ASCs (cluster 10; Mzbl, Xbpl, Irf4, Prdml, Sdcl) (Fig. 6,
D and E). Collectively, we conclude that SMARCAS is essential
for the expression of B cell differentiation genes.

Given our results demonstrating that SMARCAS5 plays a
crucial role in regulating GC and ASC genetic programs, we
aimed to investigate whether this protein can directly target the
critical genes that determine the fate of these B cells (Nutt et al.,
2011). Gene track analysis of open chromatin coverage alongside
ATAC and CUT&RUN peaks indicated that SMARCA5 CUT&RUN
DNA binding was enriched at genomic regions of GC and ASC-
promoting genes, as exemplified by Aicda, Baspl, Bclé, and Xbpl
tracks. Moreover, open chromatin tracks showed markedly al-
tered accessibility signals in these GC and ASC-promoting genes
in the absence of SMARCAS (Fig. 6 F and Fig. S4 D). These signals
with differential accessibility could be attributed to variable
regulatory elements such as enhancers or suppressors. Thus, we
conclude that SMARCA5 is required for driving cellular re-
sponses and B cell proliferation and fate decisions through re-
wiring gene expression by modifying gene accessibility.

Discussion

The establishment of effective long-lasting protection from
pathogens requires the differentiation of naive B cells into GC
cells and antibody-forming cells that secrete neutralizing anti-
bodies (Victora and Nussenzweig, 2022; Biram et al., 2019). This
process involves remarkable changes in the expression of genes
that control cell fate and specialized B cell subset functions
(Papin et al., 2022; Bunting et al., 2016; Vilarrasa-Blasi et al.,
2021). To identify novel genes that control cell differentiation or
cell states, we examined the translatome of the GC rather than
using typical transcriptome analyses (Haimon et al., 2018; Sanz
et al., 2009). Furthermore, our multiomic approach that com-
bined three different data sets allowed us to detect a Smarca5-
deficient B cell response on day 5, and these cells showed
profound changes in expression and accessibility of SMARCAS5-
bound genes to those detected in WT mice. These data sets were
compared with the findings obtained by bulk mRNA-seq to
provide robust and reliable results.

Stoler-Barak et al.
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We observed that SMARCAS is highly translated in the GC,
and by using a conditional knock-out mouse, we show that its
functions are essential for an intact humoral immune response.
Typically, naive B cells do not require profound changes in their
chromatin structure to support their functions under homeo-
stasis, and indeed, deletion of SMARCA4 or SMARCA5 does not
affect the naive B cell compartment (Schmiedel et al., 2021; Choi
etal.,, 2012). Nonetheless, upon encounter with cognate antigens
or danger signals such as TLR ligands, B cells begin to express a
series of genes required for their proper activation. SMARCAS
plays a role in initial B cell proliferation, suggesting that
cell cycle progression prior to robust differentiation depends
on SMARCA5-chromatin remodeling activity. Accordingly,
SMARCA5 was essential for B cell immune responses in vivo,
demonstrating that this chromatin remodeler is required for
genetic programs that mediate cellular proper activation, ex-
pansion, and differentiation. In addition to SMARCAS5’s role in
cell proliferation, we found that Xbpl, a gene essential for ASC
formation (Klein et al., 2006; Nutt et al., 2011), is controlled also
by SMARCAS, most likely by regulating its gene accessibility,
and indeed, ASCs were not formed by Smarca5-deficient B cells
in vitro or in vivo. Interestingly, early B cell development,
a process that depends on profound chromatin remodeling,
proliferation, and differentiation, was shown to depend on
SMARCA5 as well (Zikmund et al., 2019). CTCF facilitates
promoter-enhancer interactions, which are essential for GC
formation and ASC differentiation (Pérez-Garcia et al., 2017; Ong
and Corces, 2014), and its interactions with SMARCA5 might be
essential for GC seeding since deletion of either of these com-
ponents perturbs B cell differentiation (Bomber et al., 2023;
Wiechens et al., 2016; Dluhosova et al., 2014).

In agreement with its role in cell cycle progression in other
cell types (He et al, 2016; Alvarez-Saavedra et al., 2014;
Zikmund et al., 2019; Zhang et al., 2020; Kokavec et al., 2017), we
demonstrate that SMARCAS is required for proper expression of
cell cycle genes during GC seeding, and indeed, activated B cells
rapidly proliferate during both this stage and the GC response
(Glaros et al., 2021; Grenov et al., 2022). Specifically, SMARCAS5
was previously shown to play a role in pre-DNA-replication
complex formation (Sugimoto et al.,, 2011). We showed that
DNA-bound SMARCA?5 is enriched in gene promoters in agree-
ment with studies that examined other cell types (Morris et al.,
2014; Sala et al., 2011). In Smarca5-deficient B cells, the Aicda
locus was less accessible, Aicda mRNA was transcribed to a lesser
degree, and CSR to IgGl was severely impaired in vitro and
in vivo. Nonetheless, additional DNA damage-related genes such
as Msh3, Mshé, and Ung were also dependent on SMARCAS,
suggesting that this chromatin remodeler controls a wide range
of genetic programs that support CSR, and perhaps SHM (Stoler-
Barak et al, 2023; Saha et al, 202I; Chi et al., 2020).
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Furthermore, SMARCAS5 is recruited to double-strand DNA
breaks and plays a role in their proper repair (Lan et al., 2010;
Pinto Jurado et al., 2024; Aydin et al., 2014; Min et al., 2014).
These events prevent genomic instability through chromatin
remodeling (Toiber et al., 2013). Mutations related to AID
functions were correlated with transcription-replication con-
flicts, which depend on chromatin remodeling functions, in-
cluding SMARCAS5 (Bayona-Feliu et al., 2023). Thus, in vitro,
CSR depends on SMARCAS activity both for proper AID ex-
pression, and regulation of other factors associated with the
DNA-damage pathway, suggesting that SMARCA5 acts as a
master regulator of CSR in addition to other cellular functions.

Collectively, we found that SMAARCAS plays a critical role in
the B cell immune response through the control of gene ex-
pression that mediates proper B cell activation and cell cycle
progression during vectorial differentiation (Glaros et al., 2021).
Chromatin remodeler subunits are frequently mutated in lym-
phomas that arise from GCs (Papin et al., 2022; Mlynarczyk
et al., 2019; Victora et al., 2012), and some of these can be tar-
geted by drugs for cancer treatment (Jevtic et al., 2022; Oyama
et al., 2021; Kaur et al., 2019). The essential role of SMARCAS for
B cell expansion in vivo indicates that specific inhibitors could
serve as a target for the treatment of B cell lymphomas and
antibody-mediated autoimmune diseases.

Materials and methods

Mice

The transgenic Smarca51°*/flox mice were generated and pro-
vided by T. Stopka (First Faculty of Medicine, Charles Univer-
sity, Vestec, Czech Republic). Rpl22/4 mice were provided by S.
Jung (Department of Immunology and Regenerative Biology,
Weizmann Institute of Science, Rehovot, Israel). CD237 mice
were generated and provided by M. Busslinger (Research In-
stitute of Molecular Pathology, Vienna, Austria). B1-8" trans-
genic mice expressing the NP-specific B cell receptor were a
kind gift from M. Nussenzweig (Rockefeller University, New
York, NY). AicdaC/*, GFP, CD45.1, and tdTomato mice were
purchased from the Jackson Laboratory. WT (C57BL/6) mice
were purchased from Envigo. For the generation of chimeric
mice, CD45.1 hosts were irradiated with 950 rad and then re-
constituted with BM cells isolated from WT tdTomato CD45.2
(Smarca5+*/*) and CD45.2 CD23.Cre.Smarca5™/fl mice at a 1:1 ratio.
In all experiments, both male and female mice were used at the
age of 6-15 wk. This research complied with all relevant ethical
regulations, and all mouse experiments were approved by the
Weizmann Institute Animal Care and Use Committee (IACUC
number 01040123-3).

Immunizations

Mice were injected with 25 ul PBS containing 10 ug NP-KLH
(BioSearch Technologies) in Alum adjuvant (Thermo Fisher
Scientific) into each hind footpad.

Adoptive cell transfer
For B cell isolation, donor splenic tissue was removed and forced
through a 70-um mesh in PBS. B cells were purified using
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Table 1. Antibodies used in the study

Target antigen Clone Catalog Manufacturer
number
Flow cytometry
CD45R/B220 APC RA3- 103212 BioLegend
6B2
CD45R/B220 APC- RA3- 47-0452-82 eBioscience
e780 6B2
CD19 PB 6D5 115523 BioLegend
CD38 AF700 90 56-0381-82 eBioscience
CD95/FAS PE/Cy7 Jo2 557653 BD Biosciences
GL7 AF647 GL7 144606 BioLegend
CD138 BV605 281-2 142516 BioLegend
CXCR4-BV421 1276F12 146511 BioLegend
CD86-APC GL-1 105012 BioLegend
IgM PerCP-e710 11741 46-5790-82 eBioscience
IgD APC-e780 11-26 47-5993-82 eBioscience
IgG1-FITC RMGI1-1 406606 Biolegend
CD4 APC-e780 GK1.5 47-0041-82 eBioscience
CD8 APC-e780 53-6.7  47-0081-82 eBioscience
F4/80 APC-e780 BM8 47-4801-82 eBioscience
Gr-1 APC-e780 RB6- 47-5931-82 eBioscience
8C5
CD45.2-Bv421 104 109831 BioLegend
CUT&RUN
SNF2H ab3749 Abcam
Rabbit IgG isotype DAIE 3900S Cell Signaling
control Technology
Western blotting
SNF2H ab3749 Abcam
B-actin 3700 Cell Signaling
Anti-rabbit-HRP 7074 Cell Signaling
Anti-mouse-HRP 7076 Cell Signaling

negative selection anti-CD43 beads and magnetic-activated
cell sorting (MACS) (Miltenyi Biotec) according to the manu-
facturer’s instructions. For adoptive transfer, 3-5 x 10° total Bl-
8hi B cells were transferred by intravenous injection to host mice
1 day before the immunization.

Flow cytometry

Popliteal LNs were removed at the indicated time points after
immunization and forced through a 70-pum mesh into PBS con-
taining 2% fetal calf serum (FCS) and 1 mM EDTA (FACS wash
buffer) to attain single-cell suspensions. To block nonspecific
binding to Fc receptors, 1 pg/ml anti-CD16/32 (BioLegend) was
added to the single cell suspension on ice for 5 min. For staining
surface markers, cells were incubated with fluorescently labeled
antibodies (Table 1) at a 1:400 dilution for 30 min on ice. Cells
were gated as lymphocytes (FSC-A versus SSC-A) and single
cells (FSC-A versus FSC-H). GC cells were gated as live/single,
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B220* CD38L° FASH!, Activated cells were gated as live/single,
GL7H! and FASH. ASCs were gated as live/single and CD138*
cells. Antigen-specific B1-8" B cells were gated as GFP* cells. For
viability assessment, 7AAD (BD Biosciences) was added at a 1:50
dilution to the resuspended cells for 5 min before analysis. To
determine the absolute number of cells, 4 pl of precision count
beads (BioLegend) was added to 200 ul cell suspension (half of
the total sample). Stained cell suspensions were analyzed using a
CytoFlex flow cytometer (Beckman Coulter).

ELISA

Serum was collected from unmanipulated mice, and IgM, IgA,
and IgG1 titers were determined by ELISA using goat anti-mouse
IgM (ab97230), IgA (ab97235), and IgG1 (ab97240) conjugated to
horseradish peroxidase (Abcam) at 1:2,500.

In vitro activation, proliferation, and CSR assays

Spleens were removed and forced through a 70-um mesh
into FACS washing buffer to obtain single-cell suspensions.
For the proliferation assay, splenic cells were stained with
CTV (Invitrogen) according to the manufacturer’s in-
structions. Cells were seeded at1 x 10/ml in a 24-well plate
and incubated at 37°C in B-cell medium (RPMI-1640 me-
dium supplemented with 10% FBS, 100 pg/ml penicillin/
streptomycin, 50 pg/ml gentamycin, 2 mM glutamine and
pyruvate, nonessential amino acids, and 50 uM B-mercap-
toethanol). For activation and proliferation assays, cells
were stimulated with 50 pg/ml LPS for 4 days, and CTV
dilution was assessed by flow cytometry. For CSR assay,
cells were stimulated with 50 ug/ml LPS + 50 ng/ml mouse
IL-4 for 4 days.

Western blotting

Unstimulated or LPS-stimulated cell pellets were lysed using
radioimmunoprecipitation assay buffer (Sigma-Aldrich). Ly-
sates were clarified at 21,000 g for 15 min at 4°C, and protein
concentration was determined using the BCA protein assay
(Thermo Fisher Scientific). Samples containing 20 pg of total
protein were prepared with 4xLDS sample buffer (NuPAGE;
Thermo Fisher Scientific) and were then resolved on a 4-20%
Bis-Tris gel (GeneScript SurePAGE). Proteins were separated
by electrophoresis and were then transferred to a nitrocellu-
lose membrane (Bio-Rad) using the Trans-Blot Turbo system
(Bio-Rad). The membrane was blocked with 5% BSA in PBS-T
(wt/vol) for 1 h at room temperature, washed four times for
5 min with PBS-T, and incubated with the following primary
antibodies: rabbit anti-SNF2H (ab-3749, 1:500; Abcam, over-
night at 4°C) and mouse anti-B-actin (#3700, 1:1,000; Cell
Signaling, overnight at 4°C). Membranes were washed four
times for 5 min with PBS-T and incubated with the corre-
sponding HRP-linked secondary antibody (mouse #7076/
rabbit #7074; Cell Signaling) for 1 h at room temperature.
Super-Signal West Pico PLUS Chemiluminescent Substrate
(Thermo Fisher Scientific) was used to detect HRP activity.
The membrane was stripped using Restore stripping buffer
(Thermo Fisher Scientific) between incubation with the two
antibodies.
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EdU proliferation assay

For cell cycle analysis, 100 uM of the nucleoside analog 5-
ethynyl-2'-deoxyuridine (EdU; Molecular Probes) in PBS was
added to LPS-stimulated cells in culture. After 1 h, the cells were
stained for the surface marker B220, followed by EdU detection
using the Click-iT EdU Alexa Fluor 647 Flow Cytometry Assay
Kit (Molecular Probes) according to the manufacturer’s in-
structions. 7AAD (BD Biosciences) was added at a 1:50 dilution
5 min before analysis by flow cytometry.

TPLSM image acquisition

A Zeiss LSM 880 upright microscope fitted with a Coherent
Chameleon Vision laser was used for imaging experiments.
Whole LNs were dissected and images were acquired with a
femtosecond-pulsed two-photon laser tuned to 940 nm. The
microscope was fitted with a filter cube containing 505 LPXR
to split the emission to a detector (with a 500-550 nm filter
for GFP fluorescence). Tile images were acquired as 100-200
pm Z stacks with 5-pm intervals between each Z plane. The
zoom was set to 1.5 and images were acquired at 512 x 512 x-y
resolution. Images were processed using Imaris software
(Bitplane).

Ribosome IP

For IP of tagged ribosomes (RiboTag) from cell lysates, followed
by the extraction and sequencing of the associated mRNAs, four
mice were immunized subcutaneously with 50 ul KLH (45 pg
per mouse) emulsified in CFA. After 7 days, the inguinal LNs
were collected and filtered through a mesh with FACS wash
buffer. Fluorescently labeled antibodies were added for 30 min
on ice. GC B cells were identified as live/single, B220*, CD38",
FAS*, F4/80~, Gr-1-, CD4~, CD8" cells. DZ and LZ cells were gated
as CXCR4M CD86'° and CXCR4!° CD86". A total of 3 x 10° DZ and
2 x 10° LZ B cells per mouse were sorted into FACS wash buffer
and subjected to the ribosomal IP protocol. After sorting, the
sample was divided to one third (“sort” sample) and two thirds
(“sort-IP” sample) into separate tubes. The samples were
centrifuged at 400 g for 10 min at 4°C. Supernatants were re-
moved, and the pellet from the “sort” tube was resuspended in
100 pl Dynabeads mRNA direct kit lysis/binding buffer (Life
Technologies). The pellet of the “sort-IP” tube was lysed in
800 pl of ice-cold lysis buffer (50 mM Tris, pH 7.4, 100 mM KCl,
12 mM MgCl,, 1% NP-40, 1 mM dithiothreitol [DTT], 1:100 pro-
tease inhibitor cocktail [Sigma-Aldrich], 200 U/ml RNasin
[Promega)], and 0.1 mg/ml cycloheximide [Sigma-Aldrich] in
RNase-free double distilled water (DDW). 10 ug of anti-HA
antibody (H9658; Sigma-Aldrich) were added followed by an
overnight incubation with slow rotation in a cold room. In par-
allel, 100 pl per sample of Dynabeads Protein G (Thermo Fisher
Scientific) were washed three times with lysis buffer and kept
overnight at 4°C. The next day, the beads were added to each
sample, followed by incubation for 2 h on a rotator in a cold
room. Next, the samples were washed three times with high-salt
buffer (50 mM Tris, 300 mM KCI, 12 mM MgCl,, 1% NP-40, 1 mM
DTT, 1:200 protease inhibitor, 100 U/ml RNasin, and 0.1 mg/ml
cycloheximide in RNase-free DDW) for 5 min per wash in a
cold room on a rotator. Following the washes, beads were
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magnetically selected and the excess buffer was removed. Fi-
nally, 100 pl Dynabead mRNA direct kit lysis/binding buffer
(Life Technologies) was added to the beads and RNA was ex-
tracted according to the manufacturer’s instructions for bulk
RNA-seq.

Bulk RNA-seq and data processing

Mice were injected subcutaneously with NP-KLH in alum into
the hind footpad (10 pg in 25 pl per side) for 5 days. Popliteal
LNs were sorted for CD4-, CD8~, GR-1-, F4/80-, and GFP*
expression for antigen-specific B cells. Next, 3 x 10* cells were
sorted directly into 100 pl Dynabeads mRNA direct kit lysis/
binding buffer (Life Technologies) using a FACS ARIA cell
sorter (BD) and immediately frozen on dry ice. mRNA was
isolated using the Dynabeads mRNA direct kit according to the
manufacturer’s instructions (Life Technologies). A bulk ad-
aptation of the massively parallel single-cell RNA-seq protocol
(MARS-seq) was used (Jaitin et al., 2014; Keren-Shaul et al.,
2019) to generate RNA-seq libraries for transcriptomic
analysis. Alignment and differential expression analysis was
performed using the UTAP pipeline v1.10.280 (Kohen et al.,
2019). The pipeline quantifies the genes annotated in RefSeq
(extended by 1,000 bases toward the 5" edge and 100 bases in
the 3’ direction). The threshold for significant differential ex-
pression was log,FC > 0.58 or less-than -0.58, P < 0.05. Volcano
plots were created using Prism Version 10.0 (GraphPad). GSEA
was performed using GSEA 4.3.2 with the GSEA preranked tool
(Subramanian et al., 2005). The Molecular Signature Database
hallmark gene sets were used to perform pathway enrichment
analysis. The Metascape v3.5.20240101 tool (Zhou et al., 2019)
was used to define unique pathways that were significantly
modified based on the threshold indicated above.

CUT&RUN analysis

Two WT mice were immunized subcutaneously with 50 ul KLH
(45 pg per mouse) emulsified in CFA. After 7 days, the inguinal
LNs were collected and filtered through a mesh with FACS wash
buffer. Fluorescently labeled antibodies were added for 30 min
on ice. GC B cells were identified as B220*, CD38-, FAS*, GL7*,
F4/80-, Gr-1-, CD4-, CD8-, and CD138" cells. A total of 5 x 10° GC
B cells per mouse were sorted into PBS, washed twice, and
subjected to the CUT&RUN protocol version 3, as previously
described (Janssens and Henikoff, 2019). Briefly, GC B cells were
added to a concanavalin A-coated bead slurry that was pre-
incubated with CaCl, and MnCl, to activate the beads. The cells
and beads were rotated for 10 min at room temperature to en-
sure that all cells were coated onto the beads. The cells of each
mouse were divided into two samples. Tubes were then placed
into a magnetic stand to separate the cells from the liquid and
the supernatants were discarded. The cell-bead mixtures were
resuspended in 100 ul of antibody buffer containing 0.05%
digitonin for permeabilization. Next, 1 pl of monoclonal rabbit-
anti mouse SNF2H antibody (Abcam) or a rabbit monoclonal
isotype antibody (Cell Signaling Technologies) was added to the
permeabilized samples and the mixture was incubated over-
night on a rotator. The following day, the beads were washed
twice, and then incubated for 1 h in 150 pl of digitonin-
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containing wash buffer with 700 ng/ml of pA/G-MNase
(kindly provided by the lab of Steven Henikoff, Howard Hughes
Medical Institute, Seattle, WA, USA). After incubation, the
beads were washed twice and resuspended in 100 pl of digitonin-
containing wash buffer. The beads were then chilled to 0°C in a
metal block resting in ice. Finally, 2 pl of 100 mM CaCl, was
added to activate the MNase activity, resulting in a final con-
centration of 2 mM. The reaction was stopped after 30 min. The
bead-cell mixture was incubated for at least 30 min at 37°C to
release restricted DNA fragments. Then, the tubes were placed
into a magnetic stand and the supernatants containing DNA
fragments of interest were collected. DNA fragments were used
directly for library preparation by performing joint end repair
and poly A tailing, Truseq adapter ligation and PCR enrichment
with the KAPA HiFi master mix (Roche) for 10-14 cycles.
CUT&RUN libraries were then analyzed with a Nova-Seq 6000
sequencer (Illumina) using paired end sequencing.

CUT&RUN data processing

Reads were aligned to the mm10 genome assembly using Bowtie
(Langmead et al., 2009) and peaks were called using MACS2
(zhang et al., 2008). Peaks from both replicates were combined
using bedtools (Quinlan and Hall, 2010) and only peaks that
overlapped with ATAC-seq peaks were considered for down-
stream analysis (14,574 peaks). The peaks were annotated using
HOMER (Heinz et al., 2010).

Multiome analysis

Isolated B cells from five pooled control or CD23.Cre.Smarca5™/f
B1-8h GFP* donor animals were adoptively transferred (3-5 x
10) to ten recipient WT mice. After 4 h, the mice were in-
jected subcutaneously with NP-KLH in alum into the hind
footpad (10 pg per side) and intraperitoneally (25 pg per side).
Inguinal and popliteal LNs were removed 5 days later, and
cells from all ten recipient mice were sorted together as a
single pooled sample. 7 x 10* GFP* cells were sorted into
FACS wash buffer, and nuclei were isolated using the
Chromium Nuclei Isolation Kit (10x Genomics) according to
the manufacturer’s instructions. Nuclei were counted using
trypan blue and hemocytometer and imaged at 40x magni-
fication to assess their quality. Nuclei were diluted in nuclei
buffer supplemented with 1 mM DTT and 1 U/pl RNAse in-
hibitor to a final concentration of 3,700 nuclei/pl and im-
mediately processed with the Chromium Next GEM Single
Cell Multiome ATAC + Gene Expression kit (10x Genomics)
according to the manufacturer’s protocol. Final libraries
were quantified by qPCR with the NEB-next Library Quant
Kit (New England Biolabs) and with Qubit and TapeStation.
Sequencing was done with a Nova-Seq 6000 (Illumina) using
two SP100 cycle kits (for the ATAC-seq library and the gene
expression library), allocating 25,000 read pairs per nucleus
for the ATAC-seq library and 20,000 read pairs per nucleus
for gene expression libraries.

Multiome data processing
CellRanger-arc pipeline (Zheng et al., 2017; Satpathy et al., 2019)
(v2.0.2; 10x Genomics) with default parameters was used for
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demultiplexing, alignment (mml0 reference genome, 2020-A
version, downloaded from 10x website), filtering, barcode
counting, peak calling, and counting of both ATAC and GEX
molecules. Downstream analysis was done using Seurat (Hao
et al,, 2021) (v4.9) and Signac (Stuart et al., 2021) (v1.9) pack-
ages. First, each modality (ATAC or GEX) was analyzed sepa-
rately. For ATAC data, cells with the percentage of reads in peaks
below 40%, or with ATAC fragments below 1,000 or above
100,000 were filtered, as well as cells with nucleosome en-
richment >4, transcriptional start site enrichment <2, or black
list fraction >10%. Cellranger peaks of both KO and control
samples were merged using the GenomicRanges package
(Lawrence et al., 2013) in R, and the samples were integrated
using the “FindIntegrationAnchors” function after normaliza-
tion using the “RunTFIDF” function, and Data reduction using
the “RunSVD” function. For GEX data, cells that had <500 UMISs,
<250 or >6,500 genes, and >10% of mitochondrial reads were
removed. GEX samples were integrated using the SCTransform
workflow in Seurat (Lawrence et al., 2013; Hafemeister and
Satija, 2019). Both ATAC and GEX data were integrated using
the weighted nearest neighbor (WNN) method in Seurat. The
WNN graph was used for UMAP visualization and clustering.
Peaks were re-called using the “CallPeaks” function with group
by cluster. A total of 79,332 peaks were identified. The peaks
were exported in BED format and were annotated using HO-
MER. Differential accessible (DA) peaks between conditions
were found using the “RunPresto” function from the “Seurat-
Wrappers” package with default settings (test.use = “wilcox”).
Peaks with avg log,FC above 0.3 or below -0.3 and with FDR
<0.1 were considered as DA. The “LinkPeaks” function with
default settings was used to find peaks that are correlated with
the expression of nearby genes. Overlap between ATAC seq
peaks and SMARCAS5 CUT&RUN peaks was evaluated using the
GenomicRanges package. Specific genomics regions showing
ATAC-seq coverage, peaks, and gene expression were plotted
using the “CoveragePlot” function from the Signac package. Dot
plots of specific genes were plotted using the “DotPlot” func-
tion from Seurat with custom-made modifications using the
“ggplot” (Wickham, 2016) package and “ggnewscale” R pack-
age, version 0.4.3.

Statistical analysis

Statistical significance was determined using GraphPad Prism
Version 10.0 using the statistical tests and number of repetitions
indicated in each figure.

Online supplemental material

Fig. S1 shows an analysis of the biological processes in DZ and
LZ B cells affected by ribosomal IP. Fig. S2 presents an ex-
tended analysis of the proliferation and viability of LPS-
stimulated B cells in the absence of SMARCAS. Fig. S3 shows
the effect of Smarca5 deficiency on the viability of resting and
activated antigen-specific B cells 5 days after immunization.
Fig. S4 exhibits an extended analysis of the chromatin dif-
ferential accessibility in the absence of SMARCAS. Table S1
contains the list of translated genes (translatome) for DZ and
LZ B cells.
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Data availability
The data are available in the main article, its supplemental
material, source data file, and in GEO dataset GSE261015.
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Figure S1. Translatome biological processes. Pathway analysis of enriched genes in DZ or LZ B cells following ribosome IP (Sort-IP) (n = 4; two independent
experiments, adjusted P value < 0.05, and log, FC > 0.58 or less than -0.58; raw P values were adjusted for multiple testing using the procedure of Benjamini
and Hochberg).
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Figure S2. SMARCAS is required for proper cell division and not for cell viability. (A) SMARCAS protein expression was determined by western blot
analysis of B cells that were either left unmanipulated or stimulated with LPS. Blots show two independent biological repeats. (B) Flow cytometry histograms
of all repetitions related to Fig. 3 A, and quantification of CTV in each cell division of the in vitro proliferation of B cells treated with LPS (n = 8; two independent
experiments). (C) Analysis of the different cell-cycle stages in LPS stimulated B cells by EAU incorporation and 7AAD DNA staining (n = 5-6; two independent
experiments, two-tailed Student’s t test; ns, not significant). (D) Flow cytometry histograms and the fraction of live or dead cells measured by the viability dye
7AAD, of LPS-stimulated splenic B cells (n = 5-6; two independent experiments, one-way ANOVA; ns, not significant). Each dot in the graph represents a single
mouse. Source data are available for this figure: SourceData FS2.
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Figure S3. The viability of resting and activated antigen-specific B cells is not substantially impaired following SMARCAS depletion. (A and B) Flow
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two independent experiments, one-way ANOVA; *P < 0.05, **P < 0.01; ns, not significant). Each dot in the graph represents a single mouse.
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Figure S4. Changes in chromatin accessibility in the absence of SMARCAS5. (A) MA plots of the log average (A) on the X-axis, and log ratio (M) on the Y-axis
representing the changes in accessibility peaks under SMARCAS deficiency for each expression cluster. (B) Venn diagrams indicating the intersection and total
number of peaks of the ATAC and CUT&RUN datasets. (C) Dot plots depicting the RNA expression of the most expressed genes in each cluster presented by
average expression and percent expression. Left and right plots represent the control and deficient groups, respectively. (D) Gene tracks of chromatin ac-
cessibility and SMARCAS DNA binding sites as shown by CUT&RUN peaks for selected marker genes.

Provided online is Table S1. Table S1 contains the list of translated genes (translatome) for DZ and LZ B cells.
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