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The PML hub: An emerging actor of leukemia

therapies

Domitille Rérolle*@® and Hugues de Thé*>>*@®

PML assembles into nuclear domains that have attracted considerable attention from cell and cancer biologists. Upon stress,
PML nuclear bodies modulate sumoylation and other post-translational modifications, providing an integrated molecular framework
for the multiple roles of PML in apoptosis, senescence, or metabolism. PML is both a sensor and an effector of oxidative stress.
Emerging data has demonstrated its key role in promoting therapy response in several hematological malignancies. While these
membrane-less nuclear hubs can enforce efficient cancer cell clearance, their downstream pathways deserve better
characterization. PML NBs are druggable and their known modulators may have broader clinical utilities than initially thought.

Introduction

Promyelocytic leukemia (PML) was discovered in the context of
acute promyelocytic leukemia (APL), of which PML::RARA on-
cogenic fusion is the primary, if not sole, driver (de Thé et al.,
2017; Lehmann-Che et al., 2018). Arsenic trioxide (ATO), a
miracle APL therapy (Zhu et al., 2019), targets both PML and
PML:RARA. PML is required to cure human or murine APLs.
Vibrant PML research has developed in multiple labs, focused on
cell biology, virology, biochemistry, and roles of PML as a key
modulator of stress response and tumor suppression (Gamell et al.,
2014). Here, we will briefly summarize these aspects to focus on
the emerging role of PML as an under-recognized hub enforcing
response of hematological malignancies to different therapies.

PML nuclear bodies are dynamic and stress-sensitive
structures

PML belongs to the Tripartite Motif (TRIM or RBCC) family,
characterized by a RING finger, one or two B-Boxes, and a
coiled-coil domain, which are all required for PML oxidation,
multimerization, and post-translational modifications. PML is
expressed as a family of seven splice variants, all sharing the
N-terminal RBCC core, but differing in their C-terminal parts
(Condemine et al., 2006). Some isoforms have specific inter-
actants and may consequently exert different functions when
expressed individually, for example, on control of viral repli-
cation (Mai et al., 2022; Mathavarajah et al., 2023) or homolo-
gous recombination (Attwood et al.,, 2020; reviewed in Uggé

et al., 2022). PML drives assembly of membrane-less nuclear
domains named PML nuclear bodies (NBs). PML constitutes
their external shell, and multiple client proteins can be recruited
within the inner NBs core (Lallemand-Breitenbach and de The,
2018; Fig. 1). PML is very efficiently sumoylated and harbors a
Small Ubiquitin-like MOdifier (SUMO) interacting motif (SIM).
Contrasting with initial models (Miiller et al., 1998; Shen et al.,
2006), SUMO/SIM interactions are insufficient to promote the
initial PML aggregation into NBs (Szhin et al., 2014b), which
rather relies on PML oxidation (Jeanne et al., 2010). SUMO
conjugation of PML K160 drives subsequent interactions with
client proteins through their SIMs (Lallemand-Breitenbach
et al., 2001; Sahin et al., 2014b). PML NBs’ association with
some clients (such as Daxx or SP100) is “constitutive” (Ishov
et al., 1999), while others are recruited to NBs under specific
stress conditions, such as P53 and its modifying enzymes (Liebl
and Hofmann, 2022; Vernier et al., 2011; Fig. 1). Only a variable
fraction of PML is NB associated, some of the protein being also
anchored onto chromatin, nuclear envelope, or even cytoplasm
(Bellodi et al., 2006). PML bodies are dynamic structures that
reversibly aggregate from the diffuse nucleoplasmic PML pool
(Brand et al., 2010; Weidtkamp-Peters et al., 2008). Cell biology
of PML NB biogenesis was enlightened by studies of PML in-
teractions with ATO, which binds PML cysteines to promote NB
assembly (Jeanne et al., 2010). This is followed by PML hyper-
sumoylation, subsequent client recruitment, and client sumoy-
lation. PML hypersumoylation later initiates PML degradation
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Figure 1. PML senses stresses and initiates cellular responses. Under physiological conditions, PML proteins assemble into PML NBs that recruit client
proteins within their core, where they can be post-translationally modified, notably by SUMOs. Under oxidative stress or ATO treatment, diffuse nucleoplasmic
PML rapidly aggregates into PML NBs. Stress-induced client recruitment within PML NBs, their modification and/or degradation, enhance cellular responses to
stress, including senescence and apoptosis. S: SUMO, Ub: Ubiquitin, Ac: Acetylation.

through the RNF4 SUMO-dependent ubiquitin ligase
(Lallemand-Breitenbach et al., 2001, Lallemand-Breitenbach et al.,
2008; Tessier et al., 2022; Zhu et al., 1997). The actual molecular
details of how arsenic binding promotes NB assembly remain to be
defined. Yet, mutations in PML arsenic binding site in Box B2
(discovered in therapy-resistant APL patients) alter basal NB as-
sembly and blunt ATO response (Jeanne et al., 2010; Lehmann-Che
et al,, 2014; Liu et al., 2016; Zhu et al., 2014).

PML is an exquisitely oxidation-sensitive protein and a
physiological sensor for ROS, which promote PML NB forma-
tion, similar to ATO (Guan et al., 2014; Guo et al., 2014b; Niwa-
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Kawakita et al., 2017; Sahin et al., 2014b). Importantly, PML was
implicated in multiple forms of oxidative stress responses
(Alhazmi et al., 2020; Niwa-Kawakita et al., 2017; Sahin et al,,
2014b) and hypoxia signaling (Bernardi et al., 2006; Salsman
et al, 2017; Yuan et al., 2011). P53 targets and the antioxidant
response (NRF2 targets) are activated following acute oxidative
stress in a PML-dependent manner (Guo et al., 2014b; Malloy et al.,
2013; Niwa-Kawakita et al., 2017). Pml~/~ mice are normal but
display unequivocal phenotypes when submitted to chemical
stress, such as irradiation or high fat diet, which drives high levels
of ROS or body weight increase (Carracedo et al., 2012; Niwa-
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Kawakita et al., 2017). Considering PML'’s exquisite sensitivity to
oxidation and its ability to trigger downstream antioxidant re-
sponses, basal oxidative stress derived from cell culture conditions
(rarely conducted in 3% O, atmosphere) or use of oxygen-adapted
established cell lines rather than primary cells may have blurred
results from some studies. It is thus important to focus on in vivo
situations wherein endogenous PML proteins exert unambiguous

phenotypes.

Regulation of PML expression
PML expression is modulated by key stress and senescence path-
ways. First, transcriptionally, P53 and ARF (Alternative Reading
Frame) dramatically upregulate PML expression (de Stanchina
et al,, 2004), a likely important feedforward mechanism in se-
nescence induction (see below). PML transcription is also induced
by IFN type I and II (Stadler et al., 1995; Fig. 1). PML plays a sig-
nificant role in antiviral responses (Geoffroy and Chelbi-Alix, 2011;
Patra and Miiller, 2021) through both a direct interference with
replication of multiple viruses, but also by enhancing global IFN
response through enhancement of STAT! signaling (Scherer and
Stamminger, 2016). Interestingly, several PML NB client proteins
are also IFN-inducible and modulate antiviral responses, including
Sp100, Daxx, or SUMO (Grétzinger et al., 1996; Sahin et al., 2014a).
Finally, estrogen signaling through estrogen receptor B tran-
scriptionally induces PML gene expression, modifying Survivin
and P21 expression through modulation of AKT (Datta et al,, 2019).
Apart from transcriptional regulation of the gene, PML pro-
tein’s stability is finely tuned by multiple post-translational
modifications. The first identified one is ATO-induced sumoyla-
tion, a consequence of ATO-driven NB formation, which promotes
RNF4-mediated ubiquitination and degradation by the proteasome
(Lallemand-Breitenbach et al., 2001, Lallemand-Breitenbach et al.,
2008; Tatham et al., 2008; Zhu et al,, 1997), defining a novel
proteolytic pathway. PML can also be phosphorylated, acetylated,
or ubiquitinylated, and many of these modifications were associ-
ated with modulation of PML stability or function (Hayakawa
et al., 2008; Hayakawa and Privalsky, 2004; Shah et al., 2008).
Several signaling pathways (notably kinases and de-ubiquitinase:
CK2, USP11, USP7, etc.) converge onto PML degradation, some-
times downstream of identified oncogenes (Sarkari et al., 2011;
Scaglioni et al., 2006; Wu et al., 2014; Yuan et al., 2011; reviewed in
Gamell et al., 2014). Inhibition of these signaling pathways in tu-
mor cells may thus promote PML NBs’ restoration.

PML, a key senescence gene and tumor suppressor

Overexpression of mutant Ras in primary MEFs induces a se-
nescence phenotype in Pml proficient, but not in Pml~/~ primary
MEFs (Ferbeyre et al., 2000; Pearson et al., 2000). In fact,
PML~/~ cells are profoundly resistant to senescence in multiple
other experimental settings (Bernardi et al., 2008). PML can
drive senescence at least in part through its ability to control P53
signaling. Interestingly, ex vivo, overexpression of a single PML
isoform, PML-IV, can induce senescence by itself (Bischof et al.,
2002) through a mechanism involving P53 and ARF (Ivanschitz
et al., 2015). Yet, PML-IV has a low basal abundance when
compared with PML-I, a protein that retains other ancestral
domains (Mathavarajah et al., 2023). PML can also trigger P53-
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independent senescence pathways: in primary human fibro-
blasts, PML may colocalize with RB (Retinoblastoma) and E2F
and trigger RB/E2F-dependent senescence (Mallette et al., 2004;
Vernier et al., 2011).

Recent studies have demonstrated that PML NB formation
promotes client sumoylation (Sahin et al., 2014b; Tessier et al.,
2022), an important post-translational modification directly
implicated in the control of senescence (Bischof and Dejean,
2007; Yates et al., 2008). This SUMO connection is a possible
unifying mechanism underlying many effects of PML ablation or
overexpression, since most of the numerous PML-sensitive
pathways appear to be also strongly influenced by sumoylation
of some of their key regulators (Fig. 1). However, the actual
mechanistic links between PML, sumoylation, and senescence
deserve more specific studies, notably in pathophysiological
conditions, rather than on overexpression of PML-IV.

PML behaves as a weak tumor suppressor in vivo. Upon
exposition to chemical tumor initiators, PML-null mice develop
significantly more tumors than their wild-type counterparts
(Wang et al., 1998), particularly in the presence of another ac-
tivated oncogenic pathway (Haupt et al., 2013; Scaglioni et al.,
2006; Trotman et al., 2006; Wolyniec et al., 2012). In a murine
APL model in which PML::RARA is expressed under the ca-
thepsin G promoter, PML loss decreases the time of APL onset
(Rego et al., 2001). In a P53-mutated mouse model, PML loss still
induced a reduction in overall survival and an increase in the
number of tumors per mouse, arguing that PML exerts P53-
independent roles in this setting (Haupt et al., 2013). In prima-
ry human tumor samples (for instance in carcinomas from
various organs such as skin, breast, colon, lung, or prostate),
PML expression and NB formation are initially increased upon
transformation but lost when the cancer cells turn invasive
(Gambacorta et al., 1996; Gurrieri et al., 2004; Koken et al., 1995),
likely mirroring senescence/apoptosis in the natural history of
human cancer development.

Some studies have also unraveled a tumor-promoting role for
PML through control of stemness and metabolic rewiring. In
chronic myeloid leukemia, PML promotes stemness in hemato-
poietic cells, favoring the maintenance of leukemia-initiating
cells (Ito et al., 2008). Similarly, PML stimulates metabolic fu-
eling (lipids, ATP) of cancer cells, and high PML expression
correlates with poor prognosis in triple-negative breast cancers
(Carracedo et al., 2012). This may relate to the fact that these
breast tumors are almost always P53 mutants, so that the P53-
dependent PML pro-senescent role is lost. In these situations
where PML favors tumor maintenance, it could emerge as a
relevant therapeutic target. While acute ATO exposure may be
considered as an activation of PML-NB-dependent responses
(notably acute enhancement of sumoylation), chronic ATO ex-
posure, by promoting complete PML degradation, may ulti-
mately inactivate PML-responsive pathways (Ito et al., 2008).
Yet, ATO is toxic and protumor effects preclude its chronic use,
so that novel PML degraders may be sought for these settings.

PML in cancer cell clearance
Cancer therapy is one of the most extreme forms of stress
driving DNA damage or oxidative stresses, both implicated in
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Figure 2. Therapies activate PML-dependent cancer cell clearance in hematological malignancies. Two subsets of AMLs (APL and NPM1c AML) exhibit
basal impaired PML NB formation. Their reformation by oxidative stress-inducing therapies restores senescence and triggers blast clearance. In APL, PML is
required for cure. In JAK2Y67F-driven myeloproliferative neoplasms, IFN therapy is potentiated by ATO, their combination leading to PML-dependent cancer
stem cell clearance. Blue dots represent PML nuclear bodies; red stars indicate oncogenic mutations in the hematopoietic progenitor; cancer therapies are

signified by lightning symbols.

therapy response (Gorrini et al., 2013). The key role of PML in
therapy response was discovered in the context of PML::RARA-
driven APL (Ablain et al., 2014). In APL, PML NB formation is
impeded in the basal (untreated) state by large DNA-bound
PML::RARA complexes that blunt NB assembly (Daniel et al.,
1993; Koken et al., 1994). Such PML NBs disruption presum-
ably impedes their normal functions. APL is cured by a combi-
nation of ATO and all-trans retinoic acid (ATRA), two drugs that
induce PML::RARA degradation (de Thé et al., 2017). PML::RARA
degradation restores NBs' assembly from the PML proteins ex-
pressed from the normal allele, a process absolutely required for
therapy response (Fig. 2). PML NBs then activate a P53 check-
point with features of senescence, required for full therapy re-
sponse. Accordingly, in the absence of PML or P53, ATRA
therapy promotes differentiation, but does not significantly
prolong survival (Ablain et al., 2014). Such an essential role of
PML NB reformation in APL response and the ability of ATO to
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directly promote PML biogenesis (Lallemand-Breitenbach et al.,
2001; Zhu et al., 1997) argues that ATO might have dual syner-
gistic roles (PML::RARA degradation and direct enforcement of
PML NB reformation). Critically, this hypothesis is strongly
supported by the observations of mutations of the ATO binding
site of PML, but not PML::RARA, in some therapy-resistant pa-
tients (Iaccarino et al., 2016; Lehmann-Che et al., 2014). Such
dual activity of ATO likely explains the much more potent
clinical activity of ATO in APL when compared with ATRA.
This key observation raises the tantalizing prospect that
ATO targeting of normal PML may have some clinical utility
even in hematologic malignancies where the PML gene is not
rearranged.

Can PML targeting improve therapy response in non-APL leukemia?
In 30% of AML patients, nucleophosmin 1 (NPM1) frameshift
mutations yield a de novo nuclear export signal that retargets
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this chaperone from the nucleolus to the cytoplasm (Falini et al.,
2020). Unexpectedly, in AML cells bearing this NPM1 mutation
(NPMic), PML NBs are disorganized (El Hajj et al., 2015; Martelli
et al., 2015) through a direct interference between NPMIc and
PML (Wu et al., 2021). Since NPMIc weakens nucleolar organi-
zation, Actinomycin D (ActD), an inhibitor of RNA polymerase I
activity disrupting nucleolar assembly, was proposed to exert
synthetic lethal interactions with NPMlc. In NPMlc AML pa-
tients, pilot studies with single agent ActD showed unambiguous
clinical activity and actually cured the index AML patient (Falini
et al., 2015; Gionfriddo et al., 2021). Biologically, therapeutic
concentrations of ActD rapidly poison mitochondria—most
likely through mitochondrial DNA intercalation—to induce ROS
production and acute oxidative stress which drive PML NBs
reformation in NPMIc-expressing cell lines or patients in vivo
(Wu et al., 2021). Downstream of PML NB reformation, ActD
activates PML/P53-driven senescence and loss of clonogenic
activity in NPMlc AML cell lines. Altogether, NPMlc-driven
PML NB alteration, their reformation by therapy, and down-
stream PML/P53 dependent antitumor effects strikingly re-
semble the APL model (Fig. 2). They provide a proof of principle
that PML may be a key therapeutic switch even in the absence of
PML gene alteration.

Several studies have highlighted the importance of IFN sig-
naling downstream of radio-, chemotherapy, or demethylating
agents (Linnekamp et al., 2017; McLaughlin et al., 2020; Sistigu
et al., 2014), all settings where IFN antitumor effects could in-
volve PML and P53 (Kim et al., 2007). PML NBs are highly
druggable: IFN exposure can boost PML protein levels, while
ATO will subsequently enforce PML NB formation, their com-
bination yielding large hyperactive PML NBs (Niwa-Kawakita
etal., 2017; Quignon et al., 1998; Sahin et al., 2014b; Figs. 1 and 2).
Myeloproliferative neoplasms bearing JAK2V"”F mutations are
clinically sensitive to IFNa, which is the standard of care in
Europe (Brkic and Meyer, 2020). In principle, one way to assess
PML involvement is to look for any synergy with ATO. Indeed,
ATO strongly potentiates the efficiency of IFN in a mouse model
of Jak2VeF myeloproliferative neoplasm, allowing leukemia-
initiating cell clearance (Dagher et al., 2021; Fig. 2). Treating
mice engrafted with a mix of Pml*/* Jak2Ve"F and Pml~/-Jak2VeV’F
cells by IFN/ATO led to a dramatic enrichment of Pml~/-Jak2Ve’F
cells, demonstrating the essential role of PML in the clearance
process. Some evidence points to tumor stem cell senescence as
the driver of PML-dependent cancer cell clearance.

Formation of large PML NBs by the IFN/ATO combination
and promotion of client proteins sumoylation can also drive
changes in client stability (Tessier et al., 2022). Indeed, PML NBs
not only concentrate the enzymatic machinery for sumoylation
but also for SUMO-initiated ubiquitination and degradation
through RNF4 (Lallemand-Breitenbach et al., 2008). Thus, PML
NBs may also promote client degradation, including that of on-
coproteins (Lallemand-Breitenbach et al., 2008; Sahin et al.,
2014b; Tatham et al., 2008). For example, the TAX viral onco-
protein drives adult T cell leukemia/lymphoma (Bazarbachi
et al., 2011; Nasr R et al., 2003). The IFN/ATO combination
drives apoptosis in these leukemic cell lines, clears the disease in
mouse models, and has some clinical efficacy in patients (El Hajj
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et al., 2010; Kchour et al., 2009). Mechanistically, Tax bodies
colocalize with PML NBs, and PML promotes Tax conjugation by
SUMO2/3, leading to RNF4-dependent proteasomal degradation
of the viral oncoprotein, a likely key contributor to therapy re-
sponse (Dassouki et al., 2015; Fig. 1). Studies have also suggested
that PML NBs can downregulate the abundance of misfolded
proteins driving neurodegenerative conditions (Guo et al.,
2014a). Overall, this ability of PML to broadly modulate pro-
tein stability (even apart from toxic or oncogenic proteins) may
also mechanistically contribute to ROS or IFN responses and be
therapeutically exploited.

Through which cellular mechanisms could PML promote

therapy response?

PML NBs can recruit P53 and its activating enzymes, virtually all
of which may be SUMO-conjugated (Liebl and Hofmann, 2022;
Matt and Hofmann, 2018). This stress-sensitive substrate/en-
zyme concentration should greatly enhance the efficiency of
P53 post-translational modifications and subsequent transcrip-
tional activation of senescence or apoptosis effectors. Thus, in
this setting, PMLL NBs would promote recruitment/sumoylation
of P53-modifying enzymes and enforce secondary P53 post-
translational modifications that boost its signaling.

PML may also modulate senescence and therapy response
through the global control of sumoylation. Interestingly,
therapy-induced changes in sumoylation were tightly correlated
to AML'’s response to chemotherapy (Benoit et al., 2021; Bossis
et al,, 2014; Gatel et al., 2020). Global inhibition of sumoylation
has a favorable therapeutic impact, at least in part through acti-
vation of IFN signaling (Benoit et al., 2021; Lightcap et al., 2021;
Nakamura et al., 2022). In that respect, PML not only promotes
acute stress-induced sumoylation but may also regulate basal
levels of this modification through RNF4-initiated degradation of
SUMO conjugates (Sahin et al., 2014b; Tessier et al., 2022).

PML was proposed to bind TET2 and contribute to basal- or
chemotherapy-induced changes in DNA methylation and gene
expression (Song et al., 2018). While the consequences of these
PML/TET?2 enforced epigenetic changes were not explored, one
should note that in APL, two master genes involved in leukemia
initiation or progression (DNMT3A and WTI) regulate the status
of 5-methylcytosine, similar to TET2 (Cole et al., 2016; Lehmann-
Che et al., 2018; Madan et al., 2016; Rampal et al., 2014; Wang
et al., 2015; Zhao et al., 2019). A fraction of PML is chromatin-
associated. In that respect, recent studies have demonstrated a
key role of PML in epigenetic control of transposable element
silencing in mouse embryonic stem cells through promotion of
KAP1/TRIM28 complex sumoylation (Tessier et al., 2022). Fu-
ture studies should explore whether epigenetic control impacts
PML-modulated therapeutic response.

PML overexpression can dramatically sensitize cells to
apoptosis. PML-null mice survive better than wild-type mice
after irradiation or anti-Fas antibody (Bernardi et al., 2008). The
mechanisms through which PML could regulate apoptosis may
vary from one cellular system to another. Apart from PML/
P53-dependent apoptosis, some groups have described PML-
dependent caspase activation (Okazaki et al., 2012). For example,
in multiple myeloma or hepatocellular carcinoma (Crowder
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et al, 2005; Herzer et al, 2009), TNF-related apoptosis-
inducing ligand is upregulated in a PML-dependent manner.
Moreover, PML can favor DNA damage responses that are
upstream or independent from P53 in different models, for
instance through c-Jun or CHK2 (Dellaire et al., 2006; Salomoni
et al., 2005; Yang et al., 2006).

A PML/mitochondrial apoptotic or metabolic connection?
Complicating the elucidation of PML/apoptosis crosstalks, PML
exerts a critical role on mitochondria, a key apoptosis regulator.
PML may act upstream of peroxisome proliferator-activated
receptors (PPARs) signaling, notably through the control of the
acetylation status of its PGC1A co-activator. PPARs are a family
of transcription factors sensing nutrients and modulating me-
tabolism, in particular fatty acid oxidation. A PML-PPAR-fatty
acid oxidation axis fuels asymmetric division and normal he-
matopoietic stem cell pool maintenance (Ito et al., 2012) or
triple-negative breast cancer survival (Carracedo et al., 2012).
This PML-controlled mitochondrial fitness could be tightly
linked to therapeutic response (see below). In addition to NB-
enforced PGC1A/PPAR activation, the abundantly expressed
PML-I isoform contains a nuclear export signal, inducing its
nucleo-cytoplasmic shuttling. This PML cytoplasmic fraction
was involved in mitochondrial-endoplasmic reticulum contact
sites, where it could participate in the transfer of calcium from the
endoplasmic reticulum to mitochondria and confer sensitivity to
death (Giorgi et al., 2010). Interestingly, cytoplasmic PML was also
proposed to dump the autophagic flux and prevent uncontrolled
growth (Missiroli et al., 2016). In AML models where the NPMlc
mutation targets PML and NBs organization, major alterations in
mitochondrial fitness were noted (Wu et al., 2021). The latter may
account for the exquisite sensitivity of NPMlc AMLs not only to
ActD but also to Venetoclax, a pro-apoptotic BCL-2 inhibitor
(Masarova et al., 2021). Indeed, ActD dramatically synergizes with
Venetoclax in vivo in a PML-dependent manner (Wu et al., 2021).
Several studies focusing on SUMO-proteases have stressed the key
role of SUMOs in the control of mitochondrial apoptosis (Fu et al.,
2014; Guo et al., 2013; Prudent et al., 2015). Whether this is
influenced by PML and may also contribute to the PML/mito-
chondria apoptosis axis is unsettled.

Mitochondria/drug sensitivity correlations appear to be quite
specific for tumor/therapy pairs. In ovarian cancers, high levels
of oxidative phosphorylation (OXPHOS) correlated with cis-
platin response (Gentric et al., 2018). In this setting, high PML
protein levels (but not transcript) were tightly correlated to
OXPHOS status, stressing the role of post-translational
modifications-regulated stability of endogenous PML proteins. In
contrast, high mitochondrial OXPHOS activity actually predicts
resistance to cytarabine in AML (Bosc et al., 2021; Farge et al.,
2017). These opposing effects might be linked to P53 status
(ovarian cancers are almost always P53 mutant, while the rare P53-
mutant AMLs are constantly therapy resistant). How PML con-
trols mitochondrial metabolic functions in basal condition or upon
stress and any consequence for therapy response should be
mechanistically approached through modulation of endogenous
PML cytoplasmic localization. Finally, PML loss also induces
mitochondrial defects and cytokine production in the

Rérolle and de The

Pml nuclear bodies and leukemia therapy

microenvironment to boost tumor growth and impair therapy
response (Missiroli et al., 2023). More broadly, possibly through
the control of cytokine signaling, PML contributes to the cross-talk
between the tumor and the microenvironment (Guarnerio et al.,
2018) and could modulate response to immune therapies, as
proposed for inhibitors of sumoylation (Lightcap et al., 2021).

Concluding remarks

PML is a protein at the crossroads of multiple stress responses
and acts as a sensor to amplify cellular responses that participate
in cancer cell clearance, notably through control of SUMO con-
jugation. Multiple correlative studies in solid tumors have
revealed tight (positive or negative) links between PML ex-
pression and patient outcomes. These may reflect intrinsic
differences in tumor aggressiveness, P53 status, metabolism or
interplay with their immune stroma, but also the ability of PML
to arbitrate therapy response. The functional differences be-
tween PML isoforms, the respective importance of global PML
abundance or its NB association, all call for a reappraisal of PML
role in patient prognosis or drug response. Structure-function
analysis of endogenous PML in tumor models in vivo could also
provide invaluable mechanistic insights into therapy response.
Finally, PML NBs are druggable, but could also be fine-tuned by
other compounds than IFN or ATO, including drugs that spe-
cifically promote or impede NB biogenesis. PML-targeted
pharmacology may only be in its infancy and greatly broad-
ens the well-explored setting of APL therapy.
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