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The genetic background shapes the susceptibility to
mitochondrial dysfunction and NASH progression
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Non-alcoholic steatohepatitis (NASH) is a global health concern without treatment. The challenge in finding effective
therapies is due to the lack of good mouse models and the complexity of the disease, characterized by gene–environment
interactions. We tested the susceptibility of seven mouse strains to develop NASH. The severity of the clinical phenotypes
observed varied widely across strains. PWK/PhJ mice were the most prone to develop hepatic inflammation and the only
strain to progress to NASH with extensive fibrosis, while CAST/EiJ mice were completely resistant. Levels of mitochondrial
transcripts and proteins as well as mitochondrial function were robustly reduced specifically in the liver of PWK/PhJ mice,
suggesting a central role of mitochondrial dysfunction in NASH progression. Importantly, the NASH gene expression profile of
PWK/PhJ mice had the highest overlap with the human NASH signature. Our study exposes the limitations of using a single
mouse genetic background in metabolic studies and describes a novel NASH mouse model with features of the human NASH.

Introduction
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent
chronic liver disease and is a global health burden, affecting
about one in four people in western societies (Younossi et al.
2018; Younossi et al. 2016; Younossi and Henry 2022). NAFLD
includes a wide range of liver disease stages that can vary from
simple steatosis, which is usually benign and asymptomatic, to
the more severe non-alcoholic steatohepatitis (NASH). NASH is
a progressive liver disease characterized by steatosis, lobular
inflammation, and cellular injury with or without fibrosis. A
subset of patients with NASH may progress to extensive liver
fibrosis, cirrhosis, hepatic failure, and hepatocellular carcinoma
(Diehl and Day 2017; Dulai et al. 2017; Huang, El-Serag, and
Loomba 2021; Sheka et al. 2020; Singh et al. 2015). Importantly,
NASH is now one of the primary indications for liver trans-
plantation (Wong et al. 2015). The disease constitutes a huge
burden on society and continues to grow with the obesity and
type II diabetes pandemics, two health conditions strongly as-
sociated with NAFLD (Chakravarthy and Neuschwander-Tetri
2020; Diehl and Day 2017). Given the robust association with
metabolic diseases, NAFLD is regarded as the liver signature of
the metabolic syndrome (Gastaldelli 2010). Consumption of ex-
cessive calories and sugar-rich diets have been linked to the
development of the metabolic syndrome and its associated

comorbidities, including NAFLD (Abdelmalek et al. 2010; Abid
et al. 2009). However, human association studies have shown
that the combined influence of environmental, genetic, and
epigenetic factors is important to determine the onset and pro-
gression of NAFLD (Bayoumi et al. 2020; Chalasani et al. 2010;
Du et al., 2021; Eslam and George 2016; Lee et al. 2017; Romeo
et al. 2008; Speliotes et al. 2011). Not all patients with NAFLD
will progress to NASH, and identifying patients at higher risk of
disease progression is important to improve the management of
patients.

Despite ongoing efforts to find effective therapies for NASH,
the therapeutic options remain limited and there is still no
Food and Drug Administration–approved drug for this disease
(Filipovic et al. 2021; Shi and Fan 2021). Drug development for
NASH has been hindered by the limited understanding of the
disease and the lack of good animal models. NASH was once
thought to be a “two hit” process, with excess lipid accumula-
tion in the hepatocytes being the first hit and inflammation and
fibrogenesis being the second hit (Day and James 1998). This
view has more recently been challenged, and NASH is now
recognized to be a complex multiple-hit process with several
different mechanisms, tissues, and pathways playing a role in
the progression of the disease (Buzzetti et al., 2016; Loomba
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et al.,2021). However, the molecular mechanisms underlying
NAFLD progression are still incompletely understood.

Several animal models have been developed for NAFLD. They
can be distinguished into dietary models, genetic models, tox-
icity models, or a combination of these. Each model has advan-
tages and disadvantages, but none of them fully reproduces
NASH in humans (Farrell et al. 2019; Hunter et al. 2020; Im et al.
2021; Santhekadur, Kumar, and Sanyal 2018). The struggle in
finding appropriate animal models lies in the complexity of
NAFLD pathophysiology. Dietary models aim to mimic the hu-
man metabolic syndrome and often develop hepatic steatosis
and hyperglycemia, but they do not show progression to fibrosis,
or they develop significant fibrosis only at a very late stage (Eng
and Estall 2021). Fibrosis is a key histological feature of human
NASH, a prognostic indicator in patients and an important
endpoint in clinical trials of NASH (Denk et al.,2019). Toxicity
models are rapid and develop steatosis and fibrosis, but also
feature body weight loss and manifest no other aspect of the
metabolic syndrome (Farrell et al. 2019). Similarly, genetic
models of NAFLD/NASH, with mutation/ablation of a single
gene, fail to phenocopy the complexity of the human disease that
is driven by the interplay between environmental factors, epi-
genetic modifications, and multiple single-nucleotide poly-
morphisms (Eslam and George 2016).

Here we explored NASH susceptibility in mice from seven
different genetic backgrounds, i.e., C57BL/6J, DBA/2J, A/J, 129S1/
SvlmJ, WSB/EiJ, CAST/EiJ, and PWK/PhJ, that were fed a
western-style diet (WD) and housed at thermoneutrality (TN).
We found wide differences across mouse strains in nearly all
phenotypes tested, with the PWK/PhJ mice being the most
sensitive strain to NAFLD/NASH and the only strain to show
progression to fibrotic NASH. The specific pathways down-
regulated in the liver of PWK/PhJ mice were related to mito-
chondria; the PWK/PhJ strain was furthermore the only strain
with severely compromised mitochondrial function. Compari-
son of the mouse expression data with two publicly available
human NASH datasets revealed that PWK/PhJ mice were also
the closest to humans at the gene expression level. The PWK/
PhJ strain hence constitutes a novel NASH mouse model that
rapidly progresses to liver fibrosis, manifests features of the
metabolic syndrome, and thus recapitulates several aspects of
the human NASH.

Results
The mouse genetic background is a major determinant of the
physiological responses to metabolic challenges
To understand to what extent genetic differences may affect
NASH development, we investigated NASH susceptibility in
mice from seven different genetic backgrounds (C57BL/6J, DBA/
2J, A/J, 129S1/SvlmJ, WSB/EiJ, CAST/EiJ, PWK/PhJ). Six of these
strains are among the founders of the Collaborative Cross (CC;
Welsh et al. 2012) and Diversity Outbred (Churchill et al. 2012)
populations (C57BL/6J, A/J, 129S1/SvlmJ, WSB/EiJ, CAST/EiJ,
and PWK/PhJ). DBA/2J was included in this panel because it is
the founder, along with C57BL/6J, of the BXD recombinant in-
bred lines (Peirce et al. 2004; Taylor et al. 1999). With this

selection, three distinct Mus musculus subspecies are repre-
sented: Mus musculus musculus (PWK/PhJ), Mus musculus casta-
neous (CAST/EiJ), and Mus musculus domesticus (the remaining
strains; Phifer-Rixey and Nachman 2015). To mimic a metabolic
syndrome–like phenotype and induce liver disease, mice were
housed at TN starting at 6 wk of age and were fed a WD (WD-
TN) or a matched control diet (CD-TN) starting from 7 wk of age
for 17 wk (Fig. 1 A). Housing at TN, which for mice is 30°C
(Ganeshan and Chawla 2017; Škop et al. 2020), was shown to be
more effective than housing at room temperature (RT) to trigger
liver damage (Giles et al. 2017). Body weight and food intake
were monitored weekly. Body composition, energy expenditure,
glucose, and insulin tolerance were measured starting from 11
wk after diet following the timeline shown in Fig. 1 A. After
tissue collection, several biochemical, histological, and molecu-
lar measurements were performed in liver, plasma, and urine
samples (Fig. 1 B; see Table S1 for the phenotypes explanation).
The seven strains differed widely in the amount of weight
gained after 17 wk of WD (Fig. 1 C and Fig. S1 A). The C57BL/6J
and PWK/PhJ strains were the most sensitive to WD-induced
body weight gain, while WSB/EiJ and CAST/EiJ mice showed
only a modest body weight gain and were almost undis-
tinguishable from CD-fed mice (Fig. 1 C and Fig. S1 A). The in-
crease in body weight gain was mostly attributable to an
increase in fat mass, while the increase in lean mass was modest
or absent for most strains (Fig. S1, B and C). All strains had in-
creased fat mass on WD compared to the CD control. However,
the fat mass percentage at the end of the study differed widely
across strains: PWK/PhJ had the highest fat mass percentage,
while WSB/EiJ and CAST/EiJ had the lowest (Fig. S1, D–E).

To obtain a global overview of the effects of WD-TN in each
strain, we performed principal component analysis (PCA) on
all the phenotypes collected (130) for each strain separately
(Fig. 1 D). In all cases, the first principal component separates
the mice based on the diet, indicating that all the strains re-
sponded to the diet to some extent (Fig. 1 D). PCA performed on
all the phenotypes and strains together showed that mice were
closer together on CD-TN, however when put on WD-TN they
separated in three main groups (Fig. 2 A); PWK/PhJ, C57BL/6J,
DBA/2J, and 129S1/SvlmJ mice on WD were separated from the
rest of the mice along the first principal component (Fig. 2 B),
explaining 46.54% of the variance. The second principal com-
ponent, accounting for 9.85% of the variance, separated the
strains based on the genetic background (wild-derived strains
[PWK/PhJ, CAST/EiJ, and WSB/EiJ] vs. classical laboratory
strains [C57BL/6J, DBA/2J, A/J, 129S1/SvlmJ]; Fig. 2 B). PWK/
PhJ mice on WD-TN grouped separately from all other strains
and conditions, and the phenotypes that drove this separation
were related to liver damage and insulin resistance (e.g., ho-
meostatic model assessment of insulin resistance [HOMA IR],
alanine aminotransferase [ALAT], inflammation score, and liver
weight). Hierarchical clustering of the strains based on the
phenotype z-score confirmed this separation and identified two
main clusters (Fig. 2 C). One cluster contained PWK/PhJ, C57BL/
6J, DBA/2J, and 129S1/SvlmJ strains on WD, while the second
contained all the strains on CD plus A/J, WSB/EiJ, and CAST/EiJ
on WD. This indicated that PWK/PhJ, C57BL/6J, DBA/2J, and
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129S1/SvlmJ were more severely affected by the diet, compared
to A/J, WSB/EiJ, and CAST/EiJ, which were more similar to their
respective CD controls. Among the sensitive strains, the PWK/
PhJ mice were the most distant from all other strains (Fig. 2 C).

To further dissect how much selected phenotypes were af-
fected by the diet in each strain, we calculated the log2 fold
change for the WD vs. CD comparison (Fig. 2 D). While body
weight–related parameters (e.g., final body weight gain, lean
mass, and fat mass) were affected to a similar extent in PWK/
PhJ, C57BL/6J, DBA/2J, and 129S1/SvlmJ strains, PWK/PhJ mice
showed more severe insulin resistance and worsened liver
damage–related phenotypes like liver weight and plasma ALAT
and aspartate aminotransferase (ASAT) levels (Fig. 2 D and Fig.
S1, F–M). In WSB/EiJ and CAST/EiJ mice, most of the measured
phenotypes were not affected by diet, confirming that these
strains were the most resistant to theWD-TN challenge (Fig. 2, C
and D). Although both the genetic background and the diet
significantly contributed to the phenotypic variance for most of
the phenotypes (Fig. 2 E), for traits such as plasma triglycerides
and creatinine levels, the variance was mostly explained by the

genetic background. Conversely, other phenotypes such as liver
and plasma cholesterol levels, respiratory exchange ratio, and
final body weight gain were mostly determined by the diet
(Fig. 2 E). In conclusion, our phenotypic analysis in seven dif-
ferent mouse strains identified a wide spectrum of responses to
CD-TN and WD-TN with extremely sensitive and extremely
resistant strains, as well as strains that weremoderately affected
by the metabolic challenges. The PWK/PhJ mice stand out of our
analysis and the phenotypes that drove their separation from all
other strains included liver damage and insulin resistance.

PWK/PhJ mice are the most sensitive to liver damage and
NASH progression to fibrosis
To better understand how genetic variability may influence the
severity of the liver alterations, we performed H&E and Sirius
red staining in the seven strains to measure fat accumulation
and fibrosis development respectively (Fig. 3, A and B). Almost
all strains, with the exception the CAST/EiJ, showed increased
fat deposition on WD-TN (Fig. 3 A and Fig. S3 A). C57BL/6J,
129S1/SvlmJ, and PWK/PhJ mice, developed the most severe

Figure 1. The mouse genetic background is a major determinant of the physiological responses to metabolic challenges. (A) Schematic of the ex-
perimental pipeline. Seven mouse strains (C57BL/6J, DBA/2J, A/J, 129S1/SvlmJ, WSB/EiJ, CAST/EiJ, PWK/PhJ) were housed at TN from 6wk of age and fed aWD
or CD from 7 wk of age. The in vivo phenotypes collected are indicated. (B)Overview of the in vivo, molecular, and biochemical phenotypes collected. (C) Body
weight gain curves (expressed as percentage from the starting body weight) for each strain. The line represents the median. (D) PCA of all the in vivo and
biochemical phenotypes collected for each strain separately. For all panels: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-WD n = 7, A/J-CD
n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/EiJ-WD n = 8, PWK/PhJ-CD
n = 6, PWK/PhJ-WD n = 7. Each group of mice was assayed in two independent cohorts.
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Figure 2. The mouse genetic background is a major determinant of the physiological responses to metabolic challenges. (A and B) PCA of all the
in vivo and biochemical phenotypes collected. In A, dot colors identify the diet. In B, dot colors identify the strain. Lighter and darker colors indicate the diet (CD
and WD, respectively). Vectors are shown for selected phenotypes. (C) Heatmap of z-scores of all phenotypes, experimental groups, and phenotypes are
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liver steatosis (Fig. 3 A and Fig. S2 A). However, PWK/PhJ mice
were the only ones to develop significant fibrosis on WD-TN, as
highlighted by increased collagen deposition, indicating a more
advanced liver disease (Fig. 3 B and Fig. S2 B). Pathological
scoring of liver H&E sections revealed that while all strains
developed histological alterations to some degree, CAST/EiJ mice
were completely resistant, and their livers were histologically
undistinguishable from the CD-TN counterparts (Fig. 3 C).While
129S1/SvlmJ had the highest steatosis score, PWK/PhJ mice had
the highest inflammation and NAFLD activity scores (NAS;
Fig. 3 C).

PWK/PhJ was also the strain with the highest plasma TIMP-
1 levels (Fig. S2 C). As seen in patients with chronic liver disease,
TIMP-1 levels in PWK/PhJ mice were strongly correlated with
fibrosis (Fig. 3 D; Murawaki et al. 1997; Rosenberg et al. 2004).
Overall, PWK/PhJ mice had the most severe liver phenotype; all
liver damage–related phenotypes were significantly affected in
this strain, while CAST/EiJ were the most resistant (Fig. 3 E and
Fig. S2, A–F). Since PWK/PhJ mice were among the strains that
gained the most weight on WD-TN, we tested whether the in-
creased liver damage was simply because PWK/PhJ mice were
heavier compared the others. First, we found no significant
differences in the final body weight gained between PWK/PhJ
mice and C57BL/6J, 129S1/SvlmJ, or DBA/2J (Fig. S2 G). Second,
while liver weight, plasma ALAT levels, and steatosis correlated
with body weight in PWK/PhJ and C57BL/6J, fibrosis levels did
not correlate with body weight (Fig. S2 H). Indeed, while for
most liver damage phenotypes measured, the diet explained a
higher proportion of the phenotypic variance, the genetic
background was predominant in determining the variance in
fibrosis (Fig. 3 F). This suggests that, while initial fat accumu-
lation in the liver is primarily a consequence of environmental
challenges, the likelihood to progress to fibrotic stages is pre-
dominantly determined by genetics. Of note, 129S1/SvlmJ mice
developed the highest level of steatosis; however, steatosis was
not correlated with body weight in this strain, indicating an
important genetic contribution to liver fat accumulation for
this strain (Fig. S2 H). Indeed, 129S1/SvlmJ mice had also the
highest levels of steatosis on CD-TN compared to all other
strains (Fig. S2 A). In summary, our analyses of the pheno-
types induced by WD-TN identified a full range of responses.
Based on these responses, the seven strains can be classified
in four different groups: strains that are mostly resistant
(CAST/EiJ, WSB/EiJ), strains with medium/low systemic re-
sponse and a low degree of liver alterations (A/J, DBA/2J),
strains with high systemic response and medium level of
liver alterations (C57BL/6J, 129S1/SvlmJ), and strains with
high systemic response and severe liver alterations with fi-
brosis (PWK/PhJ).

TN exacerbates liver disease and insulin resistance without
increasing body weight gain
To assess how our experimental setup (WD-TN) differs from
more commonly used experimental setups (high-fat diet [HFD]
at RT [HFD-RT]), we compared the phenotypes collected in our
study (referred to as “TN study”) with those collected in a
companion study from our group (Bachmann et al. 2022; re-
ferred to as “RT study”). PCA of the common phenotypes showed
a clear separation of the two studies (Fig. 4 A) both on CD and
WD/HFD. Energy expenditure and plasma cholesterol levels
were among the phenotypes that contributed the most to this
separation (Fig. 4 B). Indeed, all strains had higher low-density
lipoprotein (LDL)–cholesterol when housed at TN both on CD
and WD (Fig. 4 C). All strains had also lower energy expenditure
when housed at TN and fed a WD both during the day and at
night (Fig. 4 C and Fig. S3 A) when compared to RT housing,
despite no differences being observed in total activity (Fig. 4 C).
This suggested that lower energy expenditure in mice housed at
TN was likely due to decreased thermogenesis rather than de-
creased locomotor activity.

The final body weight gain and final fat mass on WD/HFD
were mostly unaffected by the study design (Fig. 4 C). Impor-
tantly, all strains had a lower lean mass when at WD-TN (Fig. 4
C). This decrease was also seen in most strains when comparing
the CD groups at TN vs. RT (Fig. 4 C). Besides changes affecting
all strains similarly, some strains showed worsening of NAFLD/
NASH-related phenotypes like insulin resistance, liver weight,
and liver enzymes levels in the TN study compared to the RT
study (Fig. 4 C). Specifically, PWK/PhJ was the strain on which
WD-TN has the strongest effect on liver weight and liver en-
zyme levels compared to HFD-RT, despite no differences being
observed in the final body weight gain in the two studies (Fig. 4
C). This indicates that the experimental setup plays an im-
portant role in the severity of the liver phenotypes observed in
this strain and confirms that the body weight gain is not driving
the more extreme metabolic consequences observed in this
strain on WD-TN.

A comparison within studies (Fig. S3 B) showed that WD-
TN induced more robust changes and worsened most pheno-
types in the sensitive strains (C57BL/6J, 129S1/SvlmJ, DBA/2J,
and PWK/PhJ). Particularly worsened were insulin resistance,
liver weight, liver enzymes levels, and plasma cholesterol
levels, confirming our between-studies comparison (Fig.
S3 B).

TN has been shown to accelerate inflammation in metabolic
tissues like white adipose tissue (Tian et al. 2016). We hence
compared the change of expression in inflammatory genes in-
duced by HFD-RT and WD-TN (Fig. 4 D). Inflammatory genes
were strongly induced by WD-TN, while they were mostly

clustered based on the z-scores. (D) Heatmap of the log2-transformed fold changes for selected phenotypes for the comparison WD-CD for each strain.
Significance levels are indicated. (E) Variance of phenotypes explained by strain, diet, their interaction, and the residuals of the linear model expressed as the
mean sum of squares divided by the total mean sum of squares. Mean sum of squares is equal to the sum of squares divided by the degree of freedom of each
parameter. Significance levels are indicated. Statistical analysis for D: Student’s t test with Benjamini–Hochberg adjusted P values. Statistical analysis for E:
ANOVA with multiple testing-adjusted P value. *, P < 0.05; **, P < 0.01; ***, P < 0.001. For all panels: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6,
DBA/2J-WD n = 7, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/
EiJ-WD n = 8, PWK/PhJ-CD n = 6, PWK/PhJ-WD n = 7. Each group of mice was assayed in two independent cohorts.
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unaffected by HFD-RT. A link between metabolic inflammation
and insulin resistance has been hypothesized (Wu and Ballantyne,
2022), and we indeed observed that insulin resistance was exac-
erbated by WD-TN.

Overall, insulin resistance, liver damage, and inflammation
were particularly aggravated by WD-TN in the sensitive strains
compared to HFD-RT conditions, despite final body weight gain
and fat mass were similar between the two studies.

Figure 3. PWK/PhJ mice are the most sensitive to liver damage and NASH progression to fibrosis. (A and B) H&E (A) and Sirius red staining (B) of
formalin-fixed liver sections (one representative image per strain). (C) Pathological scoring of liver H&E-stained sections. See Materials and methods for details
regarding the scoring system and NAS calculation. (D) Correlation between liver fibrosis and plasma TIMP-1 levels in PWK/PhJ mice on WD-TN. Pearson R and
P value are shown. (E) Heatmap of the log2-transformed fold changes for the comparison WD-CD of liver damage–related phenotypes for each strain. Sig-
nificance levels are indicated. (F) Variance of liver damage phenotypes explained by strain, diet, their interaction, and the residuals of the linear model ex-
pressed as the mean sum of squares divided by the total mean sum of squares, as described for Fig. 2. Significance levels are indicated. Statistical analysis for E:
Student’s t test with Benjamini–Hochberg adjusted P values. Statistical analysis for F: ANOVA with multiple testing-adjusted P value. For E and F: *, P < 0.05;
**, P < 0.01; ***, P < 0.001. For all panels: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-WD n = 7, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-
CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/EiJ-WD n = 8, PWK/PhJ-CD n = 6, PWK/PhJ-WD n = 7. Each
group of mice was assayed in two independent cohorts.
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The liver transcriptional response to WD-TN is strain specific
To dissect the molecular mechanisms underlying different
phenotypic responses to WD-TN, we performed liver RNA se-
quencing (RNA-seq) in the seven strains. PCA performed on
gene expression levels separated the strains based on the sub-
species (M. musculus musculus [PWK/PhJ],M. musculus castaneous
[CAST/EiJ], and M. musculus domesticus [all other strains]; Fig. 5
A); this was expected, given the large genetic distance between
them. Differential expression analysis revealed that the strains
that had the highest steatosis levels onWD-TN (C57BL/6J, 129S1/
SvlmJ, and PWK/PhJ; Fig. S2 A) also had the highest number of
differentially expressed genes (DEGs; Fig. 5 B, colored bars, and
Fig. 5 C, left panel) on WD-TN, in line with our phenotyping

results. Among the DEGs, only 93 were common to all 7 strains,
indicating that the transcriptional response was predominantly
strain specific (Fig. 5 B, black bars). All the strains had roughly
the same proportion of up- and downregulated genes (Fig. 5 C,
left panel). PWK/PhJ and CAST/EiJ had the highest number of
strain-specific up- and downregulated genes (Fig. 5 C, right),
suggesting an effect of the subspecies in the response to the diet.
Importantly, these two strains (PWK/PhJ and CAST/EiJ) were
also the most sensitive and the most resistant to liver damage,
respectively.

PCA performed on the diet-induced expression fold changes
showed a separation of the strains based on the severity of the
diet outcome on the liver along the first principal component,

Figure 4. TN exacerbates liver disease and insulin resistance without increasing body weight gain. (A) PCA of common phenotypes collected for the TN
and RT studies. Lighter and darker colors indicate the diet (CD or WD/HFD, respectively). Dot shape and color identifies the study. (B) PCA of common
phenotypes collected for the TN and RT studies (same as in A) colored by strain. Lighter and darker colors indicate the diet (CD or WD/HFD, respectively). Dot
shape identifies the study. Vectors are shown for selected phenotypes. (C) Heatmap of the log2-transformed fold changes of selected phenotypes for the
comparison TN-RT for each strain on CD (left) or WD/HFD (right). EE, energy expenditure; BW, body weight. (D) Heatmap of the log2-transformed expression
fold changes of inflammatory genes for the comparison CD-HFD/WD for each strain at RT (left) or TN (right). Significance levels are indicated. Statistical
analysis for C and D: Student’s t test with Benjamini–Hochberg adjusted P values. *, P < 0.05; **, P < 0.01; ***, P < 0.001. For all panels: C57BL/6J-CD-TN n = 8,
C57BL/6J-WD-TN n = 8, DBA/2J-CD-TN n = 6, DBA/2J-WD-TN n = 7, A/J-CD-TN n = 6, A/J-WD-TN n = 6, 129S1/SvlmJ-CD-TN n = 7, 129S1/SvlmJ-WD-TN n = 7,
WSB/EiJ-CD-TN n = 6, WSB/EiJ-WD-TN n = 6, CAST/EiJ-CD-TN n = 8, CAST/EiJ-WD-TN n = 8, PWK/PhJ-CD-TN n = 6, PWK/PhJ-WD-TN n = 7, C57BL/6J-CD-RT
n = 5, C57BL/6J-HFD-RT n = 5, DBA/2J-CD-RT n = 5, DBA/2J-HFD-RT n = 5, A/J-CD-RT n = 5, A/J-HFD-RT n = 5, 129S1/SvlmJ-CD-RT n = 5, 129S1/SvlmJ-HFD-RT
n = 4, WSB/EiJ-CD-RT n = 5, WSB/EiJ-HFD-RT n = 5, CAST/EiJ-CD-RT n = 3, CAST/EiJ-HFD-RT n = 3, PWK/PhJ-CD-RT n = 5, PWK/PhJ-HFD-RT n = 5. Each group
of mice was assayed in two independent cohorts.
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Figure 5. The liver transcriptional response to WD-TN is strain specific. (A) PCA of normalized liver gene expression data. Dot color indicates the strain.
Lighter and darker colors indicate the diet (CD orWD, respectively). (B) Upset plot showing the total number of DEGs onWD in different mouse strains (colored
bars in the bottom left corner) and number of genes that overlap between strains (black bars). The dots below each black bar indicate in which strain(s) the
indicated number of genes are differentially expressed. (C) Left: Total number of genes significantly upregulated or downregulated on WD in the liver for each
strain. Right: Number of genes significantly upregulated and downregulated only in one strain (strain-specific) in the liver on WD; percentages above each bar
represent the proportion of strain-specific DEGs. (D) PCA on the liver gene expression log2 fold changes of WD vs. CD. (E) Left: Venn diagram showing the
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with sensitive strains (C57BL/6J, 129S1/SvlmJ, and PWK/PhJ)
separating from all other strains. The second principal compo-
nent separated the strains based on the genetic background with
the wild-derived strains (PWK/PhJ, CAST/EiJ, and WSB/EiJ)
separating from all other strains (Fig. 5 D). PWK/PhJ and CAST/
EiJ strains were further apart from all other strains, reflecting
the large genetic distance between mouse subspecies. To char-
acterize the common molecular responses associated with
susceptibility to WD-TN, we performed over-representation
analysis (ORA) on overlapping up- (896) and downregulated (505)
genes in the three most sensitive strains (C57BL/6J, 129S1/SvlmJ,
and PWK/PhJ; Fig. 5 E). The 10 most significant (alpha = 0.05)
upregulated gene ontologies for biological processes (GO-BP) ex-
clusively included terms related to immune response activation,
like leukocyte migration, adhesion and activation, and cytokine
production (Fig. 5 E). On the other hand, the 10 most significantly
downregulated gene ontologies included terms related to lipid and
cholesterol metabolism (Fig. 5 E).

We then sought to characterize the strain-specific molecular
responses associated with susceptibility and resistance to WD-
TN. The PWK/PhJ strain had the most impacted transcriptome
in terms of number of DEGs (Fig. 5, B and C) and was also the
only strain to develop fibrosis. We thus we took an unbiased
approach and looked at which pathways were enriched among
the PWK/PhJ-specific DEGs. In line with our histology results,
the most significant (alpha = 0.05) upregulated GO-BP terms
were those related to fibrosis (extracellular matrix organization,
cell migration, and extracellular structure organization; Fig. 5 F).
Importantly, the 10 most significant downregulated GO-BP
terms were all related to mitochondria and included oxidative
phosphorylation (OXPHOS), ATP synthesis, and mitochondrial
respiratory chain complex assembly (Fig. 5 F). This indicated
that while inflammation and lipid metabolism are commonly
altered in less severe liver disease stages, mitochondrial dys-
function underlies more severe liver disease, and fibrosis pro-
gression. We then performed ORA on the strain-specific DEGs
for all the other strains (Fig. S3, C–F). The CAST/EiJ-specific
downregulated gene ontologies included Golgi organization,
Golgi vesicle budding, and ER to Golgi vesicle–mediated trans-
port, while 129S1/SvlmJ-specific downregulated gene ontologies
included histone and chromatin modification, methylation,
transcription elongation, and mRNA processing. Given the small
number of strain-specific DEGs, no significantly enriched gene
ontologies were identified for WSB/EiJ and A/J.

We then inferred the impact of WD-TN on the liver cellular
composition for each strain using single-cell deconvolution on
the liver RNA-seq data (Fig. 5 G; see alsoMaterials andmethods).
We observed an increase of immune cells proportion in most
strains; however, the most sensitive strains showed the highest
increase: PWK/PhJ (+5.6%), C57BL/6J (+4.3%), and 129S1/SvlmJ
(+4.2%). Among the sensitive strains, PWK/PhJ had the highest
increase in immune cells, confirming the histological scoring
(Fig. 3 C). Accordingly, the largest decrease in hepatocytes
proportion was observed for the same strains (Fig. 5 G).

WD-TN induces a strong downregulation in the mitochondrial
electron transport chain in PWK/PhJ mice
Our transcriptome analysis informed us on broad changes in the
transcriptional program of the liver under WD-TN. Strains that
were more sensitive to the environmental challenges had more
profound transcriptional changes, while extremely sensitive and
resistant strains had the highest number of strain-specific DEGs.
While mRNA expression levels are often considered a surrogate
of protein levels, it has been shown by multiple studies that
mRNA expression changes only explain a small portion of the
variability in protein levels (Vogel and Marcotte, 2012), in par-
ticular in response to environmental perturbations that lead to
oxidative stress (Vogel et al., 2011). Therefore, to corroborate
and complement our transcriptome results, we performed pro-
teomics analysis in the liver of the seven strains on CD-TN and
WD-TN. We first compared the log2 fold changes of the WD vs.
CD comparison for mRNA and protein and found a significant
positive correlation in all the strains (Fig. 6 A). PWK/PhJ mice
had the highest correlation coefficient (0.36), while CAST/EiJ
had the lowest (0.19). The overall low correlation coefficients
were due to the fact that for several genes the effect of the WD-
TN only impacted the mRNA (Fig. 6 A; RNA only) or the protein
level (Fig. 6 A; protein only), but not both. To obtain a global
overview of the effect of WD-TN on the proteome of each strain,
we performed PCA on the normalized protein abundance. The
mice grouped by strain and condition, confirming the good
quality of the sample preparation and proteomics data analysis
(Fig. 6 B). The diet had the strongest effect on the proteome of
C57BL/6J and PWK/PhJmice, as shown by the greater distance of
the CD and WD groups for these strains. To investigate which
pathways were most affected at the protein level, we performed
gene set enrichment analysis (GSEA) on the differentially ex-
pressed proteins. PWK/PhJ mice had the highest number of total

number of upregulated (upper panel) or downregulated (lower panel) genes on WD overlapping between the three strains that are most sensitive to the WD
challenge (PWK/PhJ, C57BL/6J, 129S1/SvlmJ). Right: Top 10 enriched GO-BP among the upregulated (896) or downregulated (505) genes onWD common to the
three sensitive strains. Dot size indicates significance (−log10[qvalue]). (F) Top 10 enriched GO-BP among PWK/PhJ-specific upregulated or downregulated
genes onWD. Dot size indicates significance (−log10[qvalue]). (G) Single-cell deconvolution results indicating the estimated percentage of cell types in the mice
liver. The percentages next to the boxplots indicate the change in average cell type proportion between WD and CD. In G, data are represented as box and
whiskers. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to
the largest value no further than 1.5 × IQR from the hinge (where IQR is the interquartile range, or distance between the first and third quartiles). The lower
whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge. Data beyond the end of the whiskers are called "outlying" points and are
plotted individually. Statistical analysis for G: Student’s t test with multiple testing correction. *, P < 0.05; **, P < 0.01; ***, P < 0.001. For all panels: C57BL/6J-
CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-WD n = 7, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6,
WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/EiJ-WD n = 8, PWK/PhJ-CD n = 6, PWK/PhJ-WD n = 7. Each group of mice was assayed in two independent
cohorts.
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Figure 6. WD-TN induces a strong downregulation in the mitochondrial electron transport chain in PWK/PhJ mice. (A) Correlation between gene log2
fold changes (FC) of RNA and protein for the comparison CD vs. WD of all strains combined. Pearson r and P value are shown. (B) PCA on normalized protein
levels. (C) Number of significantly enriched gene sets among the differentially expressed proteins per strain (only the strains with at least one significantly
enriched gene set are shown). (D) Representative gene sets enriched in PWK/PhJ mice. (E) Log2 fold changes of electron transport chain complex subunits (only
subunits that were differentially expressed in at least one strain are shown). For all panels: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-
WD n = 7, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 5, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 5, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 7, CAST/EiJ-WD n =
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and strain-specific significantly enriched gene sets, while CAST/
EiJ, DBA/2J, A/J, and WSB/EiJ had little or no enriched gene sets
(Fig. 6 C; only strains with at least one enriched gene set are
shown). Upregulated enriched gene sets in PWK/PhJ mice
included fibrosis, immune response, and translation, while
downregulated gene sets were related to carbohydrate, lipid
and cholesterol metabolism and mitochondrial complex as-
sembly, electron transport chain, and OXPHOS (Fig. 6 D). While
carbohydrate and lipid metabolism were downregulated in the
three most sensitive strains (C57BL/6J, 129S1/SvlmJ, and PWK/
PhJ), mitochondria-related gene sets were specifically down-
regulated in PWK/PhJ mice, confirming our transcriptome re-
sults (Fig. 6 D). To dissect which element of the electron
transport chain was most affected, we looked at the protein
expression levels of different complex subunits. We found that
complex I and complex IV were the most affected complexes
(Fig. 6 E). More than 60% of complex I subunits (27/44), 36% of
complex IV subunits (7/19), and 30% of complex III subunits (3/
10) were downregulated in PWK/PhJ mice. No differences were
found for complex II, and only one subunit of complex V was
downregulated (Fig. 6 E). In conclusion, our proteome analysis
revealed that WD had the highest impact on the proteome of
PWK/PhJ mice and confirmed our transcriptome results: strong
downregulation of mitochondria-related ontologies including
complex biogenesis, mitochondrial electron transport, and
OXPHOS were specifically downregulated in PWK/PhJ mice.

PWK/PhJ mice have severe mitochondrial dysfunction on
WD-TN
The strong downregulation of mitochondrial mRNA and protein
expression in PWK/PhJ mice prompted us to characterize mi-
tochondrial content, function, complex, and supercomplex as-
sembly in the seven strains. First, we measured mitochondrial
complexes by Western blot using a total OXPHOS antibody
cocktail (ab110413; Abcam). This cocktail is optimized to quan-
tify assembled mitochondrial complexes, since each antibody is
against a subunit that is unstable when the complex is not as-
sembled. We found that, in PWK/PhJ mice, most mitochondrial
complexes were downregulated on WD-TN, in particular com-
plex IV and complex I, which was consistent with the proteomics
data (Fig. 7 A). This was specific of PWK/PhJ mice, as we did not
observe a similar downregulation in any of the other six strains
(Fig. S4, A–F). Complex II was the only complex to be upregu-
lated in PWK/PhJ mice on WD-TN, likely because of a com-
pensatory mechanism. Complex IV and complex I are main
constituents of mitochondrial supercomplexes; we thus per-
formed blue native polyacrylamide gel electrophoresis (BN-
PAGE) on isolated mitochondria and measured the amount of
supercomplexes and isolated complexes. Both isolated and su-
perassembled complex I and IV were decreased in PWK/PhJ
mice onWD-TN (Fig. 7 B). This decrease is thus likely due to the
overall reduction in the amount of single complexes, rather than

a reduction in the superassembly itself. To assess the enzymatic
activity of mitochondrial complexes on WD-TN in PWK/PhJ, we
performed in-gel activity for complex IV and I on isolated mi-
tochondria frommouse livers and found that both complex I and
IV had reduced activity on WD-TN in PWK7PhJ mice (Fig. 7 C).

While mitochondrial gene expression, protein expression,
complex assembly, and function were strongly downregulated
in PWK/PhJ mice, the mitochondria content was unchanged:
PWK/PhJ mice on CD-TN and WD-TN had comparable mito-
chondrial DNA (mtDNA) to nuclear DNA (nucDNA) ratio and
citrate synthase activity, two measurements used to estimate
mitochondrial mass (Fig. 7, D and E). Similarly, we did not ob-
serve significant changes in mitochondria content upon WD-TN
in the other six strains (Fig. S4, G and H). To further assess
OXPHOS function, we measured NAD+ and ATP levels in the
liver. PWK/PhJ was the only strain to show concomitant re-
duction of both NAD+ and ATP levels on WD (Fig. 7, F and G).
Given the specific mitochondrial dysfunction observed in PWK/
PhJ mice, we measured the plasma levels of two hepatokines,
FGF-21 and GDF-15, that are also known as “mitokines” (i.e., they
are released in the circulation upon mitochondrial stress). We
found that only in PWK/PhJ mice, both FGF-21 and GDF-15 were
concomitantly elevated by WD-TN, while FGF-21 was mostly
decreased by WD-TN in the other strains (Fig. 7, H and I). Thus,
our data suggest that PWK/PhJ mice may be more sensitive to
overnutrition-induced mitochondrial damage. This may even-
tually lead to the accumulation of oxidative stress, cell death,
inflammation, and fibrosis.

The PWK/PhJ transcriptional response to WD-TN
recapitulates changes seen in human NASH
To evaluate whether PWK/PhJ extreme susceptibility to WD-TN
is relevant for human disease modeling, we investigated the
overlap with human liver signatures associated with increased
NAS scores. We selected two human cohorts of 216 and 117 in-
dividuals with liver expression and histology assessment and
compared subjects with NAS ≥ 4 to NAS < 4 (Fig. 8 A). This al-
lowed us to define a disease signature of 219 and 403 genes that
were concordantly and significantly (alpha = 0.05) down and
upregulated, respectively, in both human datasets (Fig. 8 B). We
then compared this signature with the transcriptional response
of different mouse strains to WD-TN (Fig. 8 C and Fig. S5 A).
Interestingly, PWK/PhJ emerged as the strain with the largest
overlap of upregulated genes (171 genes or 42.4% of the human
signature), followed by 129S1/SvlmJ (135 genes or 33.5% of the
human signature), and C57BL/6J (99 genes, 24.6% of the human
signature). The number of intersecting genes is not simply
dictated by the number of DEGs in each strain. PWK/PhJ mice
have almost twice the number of upregulated human signature
genes yet a similar number of total upregulated genes as C57BL/
6J (Fig. S5 A). In addition, PWK/PhJ has 46 unique human
signature genes and shares 44 with 129S1/SvlmJ and C57BL/6J

5, PWK/PhJ-CD n = 6, PWK/PhJ-WD n = 7. Each group of mice was assayed in two independent cohorts. Statistical analysis for D and E: Student’s t test with
Benjamini–Hochberg adjusted P values. *, P < 0.05; **, P < 0.01; ***, P < 0.001. ECM, extracellular matrix; ET, electron transport; MRC, mitochondrial
respiratory chain.
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Figure 7. PWK/PhJ mice have severe mitochondrial dysfunction on WD-TN. (A) Western blot on isolated mitochondria from the liver with im-
munostaining of the five OXPHOS complexes (left) and band densitometry quantification normalized to ponceau staining (right panels) in PWK/PhJ
mice. (B) Left: BN-PAGE on liver-isolated mitochondria from PWK/PhJ mice with immunostaining of the five OXPHOS complexes. Mitochondria res-
piratory complexes and supercomplexes corresponding to each band are indicated. Right: Band densitometry quantification of the indicated complexes
and supercomplexes. (C) In-gel activity of complex IV (left, brown bands) and complex IV + complex I (right, brown bands and purple bands, re-
spectively) in liver-isolated mitochondria from PWK/PhJ mice. Respiratory complexes and supercomplexes are indicated. (D) Liver mtDNA/nucDNA
ratio. (F) Liver NAD+ quantification. (E) Liver citrate synthase activity quantification. (G) Liver ATP levels. (H and I) FGF-21 (H) and GDF-15 (I) plasma
levels measured at the end of the study using the Luminex system (see Materials and methods). Data are represented as box and whiskers. The lower and upper
hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 ×
IQR from the hinge (where IQR is the interquartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest
value at most 1.5 × IQR of the hinge. Data beyond the end of the whiskers are called "outlying" points and are plotted individually. For panels A–C: PWK/PhJ-CD n = 6,
PWK/PhJ-WD n = 6; for panels D–E: PWK/PhJ-CD n = 6, PWK/PhJ-WD n = 7; for panels F–I: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-WD n =
7, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7,WSB/EiJ-CD n = 6,WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/EiJ-WD n = 8, PWK/PhJ-
CD n = 6, PWK/PhJ-WD n = 7. Each group of mice was assayed in two independent cohorts. Statistical analysis for A–I: Student’s pairwise t test adjusted for multiple
testing: *, P < 0.05; **, P < 0.01; ***, P < 0.001. Source data are available for this figure: SourceData F7.
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Figure 8. The PWK/PhJ transcriptional response to WD-TN recapitulates changes seen in human NASH. (A) Diagram of the bioinformatic pipeline.
Differential expression analysis is performed on mouse and human RNA-seq data and transcriptional changes are characterized by logFC-ranked GSEA and by
ORA on overlapping significantly DEGs. (B) Volcano plot of DEGs (NAS ≥ 4 vs. NAS < 4) for the two human liver datasets. Numbers indicate the significant up-/
downregulated genes. Red line indicates significance threshold (Benjamini–Hochberg adjusted P value = 0.05); gray indicates non-DEGs; green indicates genes
significantly up- or downregulated in both human datasets. (C) Direction-specific percentage of human DEGs overlapping in the two human datasets, their
overlap, and in each of the seven strains. (D) Representative ORA-enriched gene sets for the upregulated gene groups defined in C. Gray indicates missing
value. (E) Representative ORA-enriched gene sets for the downregulated gene groups defined in C. (F) ORA of liver-specific cell type enrichment for the
upregulated gene groups defined in C. Every row represents a gene set for a cell type sub-population. (G) Representative GSEA-enriched gene sets. (H) Cell
type GSEA enrichment results. Rows represent gene sets for cell type sub-populations. For all panels: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6,
DBA/2J-WD n = 7, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/
EiJ-WD n = 8, PWK/PhJ-CD n = 6, PWK/PhJ-WD n = 7. Each group of mice was assayed in two independent cohorts. FDR-corrected P values: *, q < 0.05; **, q <
0.01; ***, q <0.001. BP, GO-BP; MC, mitocarta; RM, reactome; HK, Hallmark; KG, KEGG; WP, WikiPathways; reg., regulation; (+), positive; (−), negative; GF,
growth gactor; Int., interferon; Sig., signaling; epith., epithelial; Cs, cells; Bile D, bile duct; BA, bile acid, ECM, extracellular matrix.
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(Fig. S5 B). The resistant strains had very little overlap with
the human disease signature. Similar overlaps were observed
in the downregulated genes (Fig. S5 C).

To functionally characterize the overlap between the mouse
response to WD-TN and the human disease signature, we per-
formed ORA on the common genes. Among the upregulated
genes, we observed an enrichment of terms related to fibrosis,
tissue remodeling, and inflammation (Fig. 8 D). An analogous
enrichment analysis on the common downregulated genes
showed an enrichment of peroxisome, amino acid, and urea
cycle–related pathways (Fig. 8 E). In addition, commonly upre-
gulated genes were enriched for cell type–specific signatures of
Kupffer, natural killer (NK), NKT, and hepatic stellate cell sub-
populations (Fig. 8 F; see also Materials and methods). While
commonly downregulated genes were enriched for cell type–
specific signatures of hepatocytes (Fig. S5 D).

We then asked whether the global responses to WD-TN in
mice and high vs. low NAS score in humans were qualitatively
similar. For that, we performed GSEA on the expression changes
inmice and humans (Fig. 8 G). Inflammation, fibrosis, and tissue
remodeling are positively enriched in both in humans and in the
WD-TN–sensitive strains. Interestingly, mitochondria-related
gene sets were downregulated only in human datasets and
PWK/PhJ mice. Thus, mitochondria alterations that may drive
disease susceptibility in PWK/PhJ mice also represent a key
feature of human NASH. Cell type enrichment again pointed to
an increase in fibrotic and immunogenic cell types such as he-
patic stellate, Kupffer, NK, NKT, and B cells both in humans and
in the WD-TN–sensitive strains (Fig. 8 H). Taken together, our
results indicate that PWK/PhJ is the strain with the closest
transcriptional signature to human NASH and mitochon-
drial alterations are a common feature of PWK/PhJ mice and
human NASH.

A web resource on inter-strain variation in metabolic disease
susceptibility
The phenotypic traits, transcriptome, and proteome data col-
lected in this study can be explored with an online, interactive
interface (https://lisp-lms.shinyapps.io/CC_Founders_NASH/).
This resource enables researchers to examine the variation in-
duced by WD and TN in each phenotype collected and in each
mouse strain, and to choose the appropriate mouse model and
the best experimental design for study.

Discussion
Pre-clinical disease models are essential for drug discovery and
drug testing. Many mouse models exist for NAFLD/NASH;
however, none of them seem to reproduce the complexity of the
human disease. Besides consuming unhealthy diets high in fat
and sugar content, humans live almost constantly in their
thermoneutral zone, which minimizes energy expenditure
(Ganeshan and Chawla 2017). However, laboratory mice are
usually housed in mild cold stress conditions (Ganeshan and
Chawla 2017). Here, to reproduce experimental conditions
closer to human, we used an experimental design that combined
WD and TN housing to induceNASH in seven genetically diverse

mouse strains. The cardiovascular physiology andmetabolism of
mice change considerably when they are housed at TN. Mice
housed at TN have lower heart rate, lower energy expenditure,
and increased metabolic inflammation (Ganeshan and Chawla
2017; Tian et al. 2016). Accordingly, in our study, we observed
a strong reduction in energy expenditure when mice were
housed at TN compared to RT. All strains housed at TN also had
increased plasma LDL-cholesterol, independently of the diet
(Fig. 4 C). This is in line with a recent study that found that cold
exposure increases cholesterol conversion to bile acids in the
liver to promote adaptive thermogenesis (Worthmann et al.
2017). Additionally, mice housed in thermoneutral conditions
had a remarkable reduction in lean mass and more severe
metabolic outcomes. TN housing was already shown to induce a
more severe liver damage in C57BL/6J mice fed a HFD (Giles
et al. 2017). However, in this first study, the development of
overt fibrosis was not observed. Here, by extending the exper-
iment to seven genetically diverse mouse strains and using a
WD, we obtained a full spectrum of phenotypes. The PWK/PhJ
strain was the most sensitive to the environmental challenges;
PWK/PhJ mice had the highest inflammation score, showed the
highest increase in immune cell infiltration, and were the only
ones to develop extensive liver fibrosis. Furthermore, PWK/PhJ
mice were the most similar to human NASH at the molecular
level. Of note, significant liver fibrosis is very difficult to induce
in dietary mouse models and normally takes several months to
develop (Ipsen et al.,2020; St. Rose et al. 2022). We also iden-
tified 129S1/SvlmJ and C57BL/6J strains as highly sensitive to the
environmental challenges, with development of liver steatosis
and increased inflammation but with a less severe liver phe-
notype. Conversely, CAST/EiJ mice were found to be completely
resistant to the clinical alterations as well as to the hepatic
histological alterations induced by WD-TN. This suggests that,
although WD-TN is overall more suited than more classical ex-
perimental designs (HFD-RT) to induce metabolic alterations
and liver disease, the different strains display different degrees
of disease severity. These data together suggest that experi-
mental conditions closer to human (different genetic back-
grounds and WD combined with TN) may unravel novel and/or
more severe phenotypes in the mice that are more similar to the
metabolic alterations observed in human and may be more
suitable to model diseases and test drug targets (Ganeshan and
Chawla 2017). Additionally, the genetic background chosen in
metabolic studies is as important as other experimental pa-
rameters, such as the type of diet and the housing temperature,
and should be carefully considered.

The transcriptional reprogramming of the liver induced by
WD-TN is also highly dependent on the genetic background,
with a surprisingly large proportion of strain-specific DEGs.
Among the strain-specific pathways, mitochondria were par-
ticularly dysregulated in PWK/PhJ mice, a phenotype that was
not observed in any of the other strains. Upon WD feeding and
thermoneutral housing, we indeed observed reduced mRNA,
protein expression, assembly and activity of mitochondrial
respiratory complexes and supercomplexes, and reduced levels
of NAD+ and ATP in PWK/PhJ mice, underlining the importance
of mitochondrial dysfunction in the progression of NASH. This
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suggests that PWK/PhJ mitochondria may be more sensitive to
damage induced by metabolic challenges and may be the
reason why this strain progresses to a more severe liver
phenotype. Further investigations are however required to
test this hypothesis.

Altogether, our results emphasize that the genetic back-
ground of the animal model used is a strong determinant of the
extent of phenotypic changes triggered by environmental chal-
lenges. Therefore, gene–environment interactions should be
taken into account when designing pre-clinical metabolic stud-
ies, and care should be used when interpreting results and
testing drugs in mice from a single genetic background (Nadeau
and Auwerx 2019; Nelson et al. 2022).

In summary, our study dissected gene–environment inter-
actions in the development of NAFLD/NASH and identified in
the PWK/PhJ a novel NASH mouse model with features similar
to human NASH. Due to these characteristics, the PWK/PhJ
strain may become instrumental for the study of NASH patho-
genesis and the discovery and testing of novel approaches to
manage this widespread disease. Our data are made publicly
available and can be easily explored through our online app
(https://lisp-lms.shinyapps.io/CC_Founders_NASH/), which will
help researchers choose the best experimental design and genetic
background for metabolic studies in the mouse.

Limitations of the study
Although wewere able to point out specific regulatory pathways
that are changed upon challenge by WD-TN, one limitation of
the present study is that it was not designed to identify specific
genes that underpin these changes. Mapping causal loci and
genes that predispose to susceptibility and/or to protection
against the variousmetabolic traits and NASHwill be the subject
of a more extensive genetic study, in which a cross between
sensitive and resistant strains will be performed. Due to the lack
of longitudinal data, we cannot determine whether the differ-
ences observed between strains would in the long term be
flattened or whether the mitochondrial alterations observed in
PWK/PhJ are a cause or a consequence of the disease progres-
sion. Further investigation will be required for an in-depth
characterization of the disease progression in PWK/PhJ mice.
Lastly, whether the different responses of the liver to metabolic
challenges that we observe in different strains are cell autono-
mous or come from other tissues, other systemic effects and/or
differences in inter-organ communication remains to be defined
and will likewise be the subject of further investigation.

Materials and methods
Choice of mouse models
This study used seven domesticated (C57BL/6J, DBA/2J, A/J,
129S1/SvlmJ) or wild-derived (CAST/EiJ, PWK/PhJ, WSB/EiJ)
inbred mouse strains drawn from founders of the well-
characterized BXD and collaborative cross-panels, which are
well known for their genetic diversity. Only male mice were
used. The CC founder strains NOD/ShiLtJ and NZO/HlLtJ were
excluded because they naturally develop diabetes and other
symptoms in the absence of environmental challenges (Kollmus

et al. 2020; NOD: diabetes and immune defects; NZO: severe
obesity and diabetes).

Mouse handling
Mouse strains were imported from Charles River and bred at the
École Polytechnique Fédérale de Lausanne (EPFL) animal facility
for more than two generations before incorporation into the
study. Mice were housed with two to five animals per cage
under a 12-h light/dark cycle, with ad libitum access to food and
water at all times. Starting from 6 wk of age, all mice were
housed at 30°C (TN). From 7 wk of age, the mice were fed WD
(Research Diets D12079B; 40% kCal from fat, 17% kCal from
protein, and 43% kCal from carbohydrates), or a matched CD
(Research Diets D16042904B; 10% kCal from fat, 17% kCal from
protein, and 73% kCal from carbohydrates). Strains were en-
tered into each group randomly. Body weight was measured
weekly from 7 wk of age until sacrifice. In vivo phenotyping
tests started after 11 wk of diet (at 18 wk of age) and were per-
formed every 2 wk to reduce the stress on the animals following
the pipeline shown in Fig. 1 A. All animal experiments were
performed according to Swiss ethical guidelines and approved
by the Service de la Consommation et des Affaires Vétérinaires
of the Canton de Vaud (license VD3418).

Tissue collection
Mice were sacrificed at 24 wk of age after 17 wk of diet treat-
ment. Mice were fasted for 4 h in the morning before sacrifice,
and they were sacrificed between from 1:30 and 4 p.m. Before
sacrifice, mice received isoflurane anesthesia followed by a
complete blood draw from the vena cava and perfusion with
cold phosphate-buffered saline. Immediately after, liver,
kidney, heart, spleen, gastrocnemius, brown adipose tissue,
epididymal, and subcutaneous white adipose tissue were
collected and flash-frozen in liquid nitrogen. The blood was
placed into EDTA-coated tubes and centrifuged at 4,500
revolutions per minute (rpm) for 10 min at 4°C before. The
plasma supernatant was collected and flash-frozen in liquid
nitrogen for plasma analyses. Parts of the liver and kidney
were stored in formalin or optimal cutting temperature
compound for histological analysis.

Body composition analysis (Echo-MRI)
Body composition analysis was performed at 18 wk of age. Each
mouse was placed briefly in an Echo-MRI (magnetic resonance
imaging) machine (the 3-in-1; Echo Medical Systems), where
lean and fat mass are recorded, along with total body weight,
taking ∼1 min per individual.

Indirect calorimetry
At 18 wk of age, after 11 wk of diet treatment, the mice were
housed in the Comprehensive Lab Animal Monitoring Sys-
tem (CLAMS; Columbus Instruments) for 48 h. Mice were
housed in individual metabolic cages and movement, and
oxygen consumption (VO2), and carbon dioxide production
(VCO2) were measured every 16 min. The first 24 h were
considered adaptation, and the second 24 h were used for
data analysis.
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Oral glucose tolerance test (OGTT)
For the OGTT, micewere fasted overnight and on themorning of
the experiment received a gavage of a 20% glucose solution in
water (10 ml [2 g]/kg body weight). Blood glucose levels were
measured from the tail vein using a glucometer before the ga-
vage and 15, 30, 45, 60, 90, 120, 150, and 180min after. Bloodwas
also collected at 0 (pregavage), 15, and 30min tomeasure fasting
insulin and glucose-stimulated insulin secretion.

Intra-peritoneal insulin tolerance test (ipITT)
For the ipITT, mice were fasted for 4 h in the morning. The test
was performed in the afternoon. Insulin (0.5 U/kg body weight)
was injected intraperitoneally. Blood glucose levels were mea-
sured from the tail vein using a glucometer prior to injection and
after 15, 30, 45, 60, 90, and 120 min after injection.

Plasma analyses
Plasma parameters were measured on two-times diluted sam-
ples (1:1 ratio of plasma to diluent) using DimensionXpand Plus
(Siemens Healthcare Diagnostics). The biochemical tests were
performed according to the manufacturer kit for each parame-
ter: enzymatic creatinine (DF270B; SiemensHealthcare), glucose
(DF40; Siemens Healthcare), high-density lipoprotein (DF48B;
Siemens Healthcare), LDL (DF131; Siemens Healthcare), choles-
terol (DF27; Siemens Healthcare), transaminase ASAT (DF41A;
Siemens Healthcare), transaminase ALAT (DF143; Siemens
Healthcare), urea nitrogen (DF21; Siemens Healthcare), and
triglycerides (DF69A; Siemens Healthcare).

Plasma levels of TIMP-1, FGF-21, and GDF-15 were measured
using the Mouse Premixed Multi-Analyte Kit (LXSAMSM; R&D
Systems) in a Luminex 200 system following themanufacturer’s
instructions.

BN-PAGE and in-gel activity
The BN-PAGE and in-gel activity assay protocols were described
in detail previously (Jha et al., 2016). Briefly, 15 mg of frozen
liver tissue were homogenized in ice-cold isolation buffer (0.2M
sucrose, 10 mM Tris, 1 mM EGTA/Tris pH 7.4, pH adjusted to 7.4
with 1 M HEPES buffer, protease inhibitors). Following cen-
trifugation, isolated mitochondria protein content was quanti-
fied using detergent-compatible protein assay (Bio-Rad). For
BN-PAGE immunoblotting and in-gel activity, 50 mg mito-
chondria extract was solubilized using 5% digitonin. Electro-
phoresis of solubilized mitochondrial proteins was performed
using the NativePAGE system (Novex) using 3–12% gradient
gels. For immunoblotting, samples were run at 150 V for 30 min
and at 250 V for an additional 90 min. Proteins were transferred
on a polyvinylidene fluoride membrane using an iBlot Gel
Transfer device (Invitrogen) and incubated with primary anti-
bodies (Anti-OXPHOS Complex Kit [cat. no. ab110413; Abcam]
and Anti-MTCO1 antibody [ab14705; Abcam]) to detect total
OXPHOS proteins. Immunostaining of the membrane was per-
formed using Western Breeze Chromogenic Immunodetection
System (Invitrogen). For complex I and IV in-gel activity assays,
samples were run at 150 V for 30min and at 250 V for additional
150 min to obtain maximal separation of supercomplex bands.
Gels were run at 4°C to preserve enzymatic activity. After

electrophoresis, gels were incubated first with complex IV
substrate solution (Jha et al., 2016) until the appearance of
brown bands indicative of complex IV activity. The gels were
subsequently incubated in complex I substrate solution (Jha
et al., 2016) at 21°C (RT) until the appearance of purple bands
indicative of complex I activity.

Western blot
For Western blot, 5 mg of radioimmunoprecipitation assay
(RIPA) buffer–solubilized mitochondria were mixed to 4×
Laemmli buffer and loaded on a NuPAGE 4–12% Bis-Tris Gel
(NP0336BOX; Thermo Fisher Scientific). Gels were run at 200 V
for 1 h in 3-(N-morpholino)propanesulfonic acid–SDS running
buffer. Proteins were then transferred to polyvinylidene fluo-
ride membranes at 100 V for 2 h on ice. Membranes were
blocked with 5% BSA in a mixture of Tris-buffered saline and
Tween 20 for 1 h at 21°C and were then incubated overnight at
4°C with total OXPHOS rodent WB antibody cocktail (#ab110413,
1:1,000; Abcam). After three washes with a mixture of Tris-
buffered saline and Tween 20, membranes were incubated
with HRP-conjugated anti-mouse secondary antibody (1:2,000).
Images were quantified by densitometry using Fiji software and
normalized to ponceau staining.

ATP quantification
For ATP measurement, 15–20 mg of frozen liver sample was
homogenized in RIPA buffer with protease inhibitors. Ho-
mogenized samples were rotated for 20 min at 4°C and then
spun down at 11,000 rpm for 20 min at 4°C. The supernatant
was used for protein quantification with detergent-compatible
protein assay (Bio-Rad). Protein samples were diluted to
1 mg/ml with RIPA buffer. ATP concentration was measured
using CellTiter-Glo Luminescent Cell Viability Assay (G755A;
Promega). Protein samples (20 ml of 20 mg) were assayed
per well; the volume in each well was brought to 100 ml with
PBS and then mixed with 100 ml CellTiter-Glo reagent. After
10 min incubation at 21°C, the luminescence signal was
recorded.

mtDNA/nucDNA ratio
mtDNA abundance was quantified as described (Quiros et al.
2017), with some modifications. In short, DNA was extracted
from 15 mg of frozen liver samples using the NucleoSpin Tissue
kit (#740952; Macherey-Nagel) following the manufacturer’s
instructions. The resulting genomic DNA was diluted to 10 ng/
ml and 2 ml (20 ng) were used for quantitative PCR on a Roche
LightCycler 480 using TB Green Premix Ex Taq (RR420W; Ta-
kara) mastermix. For mtDNA quantification, primers recogniz-
ing three different mitochondrial genes were used: 16S rRNA
(forward: 59-CCGCAAGGGAAAGATGAAAGAC-39, reverse: 59-
TCGTTTGGTTTCGGGGTTTC-39), ND1 (forward: 59-CTAGCA
GAAACAAACCGGGC-39, reverse: 59-CCGGCTGCGTATTCTACG
TT-39), dloop (forward: 59-AATCTACCATCCTCCGTGAAACC-39,
reverse: 59-TCAGTTTAGCTACCCCCAAGTTTAA-39). For nucDNA
quantification, primers against the Hk2 gene were used (forward:
59-GCCAGCCTCTCCTGATTTTAGTGT-39, reverse: 59-GGGAAC
ACAAAAGACCTCTTCTGG-39).

Benegiamo et al. Journal of Experimental Medicine 16 of 21

Genetic differences in NASH susceptibility https://doi.org/10.1084/jem.20221738

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/220/4/e20221738/1447718/jem
_20221738.pdf by guest on 09 February 2026

https://doi.org/10.1084/jem.20221738


Liver NAD+ measurement
NAD+ was extracted using acidic extraction method and ana-
lyzed by high-performance liquid chromatography (HPLC) mass
spectrometry as described (Yang and Sauve 2006). Briefly,
∼10mg of frozen ground livers were used for NAD+ extraction in
10% perchloric acid and neutralized in 3 M K2CO3 on ice. After
final centrifugation, the supernatant was filtered and the in-
ternal standard (NAD+-C13) was added and loaded onto a column
(150 Å∼2.1 mm; Kinetex EVO C18, 100 Å). HPLC was run for
1 min at a flow rate of 300 ml/min with 100% buffer A (meth-
anol/H2O, 80/20% vol/vol). Then, a linear gradient to 100%
buffer B (H2O + 5 mM ammonium acetate) was performed (at
1–6min). Buffer B (100%)wasmaintained for 3min (at 6–9min),
and then a linear gradient back to 100% buffer A (at 9–13 min)
started. Buffer A was then maintained at 100% until the end (at
13–18 min). NAD+ eluted as a sharp peak at 3.3 min and was
quantified on the basis of the peak area ratio between NAD+ and
the internal standard and normalized to tissue weight and pro-
tein content.

Citrate synthase activity
Citrate synthase activity was measured following the protocol of
Sigma’s citrate synthase assay kit (CS0720; Sigma-Aldrich).

Liver triglycerides and cholesterol measurement
For liver triglycerides and cholesterol measurements, lipids
were extracted as described previously (Jha et al. 2014). Tri-
glyceride and cholesterol content in hepatic lipid fraction was
quantified with enzymatic assays (Roche) using glycerol and
cholesterol as standards.

RNA isolation
For mRNA, livers were crushed in liquid nitrogen, and then
10 mg of tissues were suspended in TRIzol (Invitrogen) and
homogenized with stainless steel beads using a TissueLyser
II (Qiagen) at 30 Hz for 2 min. RNA was extracted and pu-
rified using Direct-zol-96 RNA kits (Zymo Research). mRNA
concentration was measured for all samples. All samples
passed a quality check of purity (NanoDrop) and fragmen-
tation (FragmentAnalyzer).

RNA-seq
RNA libraries were prepared for sequencing using SMARTER
mRNA-Seq Library Prep Kit standard protocols. RNA-seq was
performed on a BGISEQ-500. FastQC (default parameters) was
used to verify the quality of the mapping. No low-quality reads
were present, and no trimming was needed. The STAR aligner
was used for mapping the RNA-seq data to the C57BL/6J refer-
ence genome and determining gene counts. We did not use
distinct genomes for each strain due to various genome quality
differences between mouse strains that could create bigger ar-
tifacts than mapping all strains on the same reference genome
in terms of mapping efficiency and gene count estimation.
Differential expression was performed using Limma-Voom
with package version 3.42.2 (Ritchie et al. 2015) on trimmed
mean of M values (TMM)–normalized counts computed with
EdgeR calcNormFactors (Robinson et al., 2010). DEGs were

determined with the contrast WD vs. CD. The significance
threshold was set at 5% after Benjamini–Hochberg multiple
testing correction.

Proteomics analysis
Sample preparation
400 µl of guanidine hydrochloride solution in Tris-buffered
saline at pH 8 was added to ∼20 mg liver frozen powder. Sam-
ples were homogenized in the Tissue Lyser II (Qiagen) for 2 min
at 25 Hz followed by centrifugation for 10mins. at 14,000 rpm at
4°C. The supernatants were heated up to 65°C for 5 min, and
bath sonicated at medium strength for 5 min. The samples were
subsequently centrifuged at 4,000 rpm for 10 min at 4°C, and
the supernatant was collected. Protein concentrations were de-
termined with a Bradford assay, and 25 µg of protein was used
for the proteomics sample preparation procedure. The samples
were then reduced, alkylated, and trypsinized. After trypsini-
zation, peptides were cleaned using SOLAμ solid phase extrac-
tion plates and eluted in an 80% acetonitrile solution with 0.1%
trifluoroacetic acid water. Peptides were then dried and ana-
lyzed by liquid chromatography with tandem mass spectrome-
try (LC-MS/MS).

BoxCar Proteomics HPLC-MS analysis
A library was first created by mixing equal amounts of proteins
from each sample. Digested and desalted samples were frac-
tionated into 24 fractions using an OFF-gel PI-based system
(3100; Agilent) as described by the manufacturer. Each fraction
was desalted using SDB-RPS Stage Tips and dried by vacuum
concentrator. The resulting 24 samples were resuspended in 2%
acetonitrile; 0.1% formic acid and 1 µg was injected for LC-MS/
MS analysis over 90 min. gradients using standard shotgun
data-dependent acquisition mode. Individual samples were ac-
quired using a BoxCar LC-MS/MS method described elsewhere
(Meier et al. 2018). Briefly, due to protein high dynamic range
of the samples, BoxCar termed acquisitions were performed
through sequential and interspaced narrow m/z windows ul-
timately covering the full mass range. A first full scan was ac-
quired followed by two BoxCar-based ones covering 400 to
1200 m/z range. The nano-flow separations were performed on
an Ultimate 3000 RSLC nano-UPLC system (Thermo Fisher
Scientific) connected online with an Exploris 480 Orbitrap
mass spectrometer (Thermo Fisher Scientific) at the EPFL
Proteomics Core Facility. A capillary precolumn (Acclaim Pep-
Map C18; 3 μm-100 Å; 2 cm × 75 μm ID; Thermo Fisher Scientific)
was used for sample trapping and cleaning. Analytical separa-
tions were performed at 250 nl/min over a 90-min biphasic
gradient on a 50-cm long in-house packed capillary column (75
μm ID; ReproSil-Pur C18-AQ; 1.9 μm silica beads; Dr. Maisch).
Initial full scans were acquired with a resolution of 120,000
(i.e., at 200 m/z) as well as the following two BoxCar scans. The
five most intense parent ions were selected from the first full
scan and fragmented by high-energy collision dissociation with a
normalized collision energy of 30%, using an isolation window of
1.4 m/z. Fragmented ion scans were acquired with a resolution of
15,000 (i.e., at 200m/z) and selected ionswere then excluded for
the following 25 s.
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Data analysis
We compiled an in silico M. musculus proteome for the seven
strains by including all annotated proteins from C57BL/6J, DBA/
2J, 129S1/SvlmJ, A/J, CAST/EiJ, PWK/PhJ, and WSB/EiJ in En-
sembl release 107 (available at https://www.ensembl.org/info/
data/ftp/index.html). The resulting FASTA files were then pre-
processed with an in-house script to remove all initiator me-
thionines and signal peptides, as annotated in Uniprot. Thermo
raw files were searchedwithMaxQuant version 2.1.0.0 (Cox and
Mann, 2008). Cysteine carbamidomethylation was included as a
fixed modification, while methionine oxidation and protein
N-terminal acetylation were included as variable modifications.
We allowed for a maximum of two missed cleavages and
searched the data with MaxQuant’s match-between runs fea-
ture, while also enabling the identification of second peptides.
Peptide intensities were imported fromMaxQuant’s peptides.txt
file into R version 4.1.0, running on RStudio Workbench version
1.4.1717-3. Contaminants, reverse sequences, and proteins only
identified by modified peptides were removed from the data.
Raw intensities were then log2-transformed and normalized
with robust linear regression normalization, as implemented in
the NormalizerDE R package. We then removed proteins iden-
tified by a single peptide, as well as peptides with fewer than two
identifications. Differential abundance analysis was performed
withMSqRob (Goeminne et al., 2016, Goeminne et al., 2018), and
included a fixed intercept, as well as fixed effects for strain, diet,
and their interaction. The fixed effects for diet, strain, and diet:
strain interaction were assigned a combined ridge penalty es-
timated by exploiting the link between ridge regression and
mixed models. We further included random effects for sample
and peptide sequence. P values were adjusted for multiple
testing with the Benjamini–Hochberg false discovery rate (FDR)
procedure.

Human NASH RNA-seq datasets
Differential expression (human)
Public human liver bulk RNA-seq processed counts were
downloaded from the Gene Expression Omnibus (GEO) under
the accession numbers GSE135251 (Govaere et al. 2020) and
GSE162694 (Pantano et al. 2021). Samples (subjects) were
grouped according to the NAS stage, resulting, respectively, in
148, 53 samples with NAS ≥ 4 and 68, 64 samples with NAS < 4.
Lowly expressed genes were filtered with the edgeR filter-
ByExpr function version 3.28.1 (Robinson et al., 2010). Differ-
ential expression was performed using Limma-Voom with
package version 3.42.2 (Ritchie et al. 2015) on TMM-normalized
counts computed with EdgeR calcNormFactors (Robinson et al.,
2010). We determined differential expressed genes with the
contrast NAS ≥ 4 vs. NAS < 4 accounted for sex using the fol-
lowing design formula: ∼NAS_group + sex. We set the signifi-
cance threshold at 5% after Benjamini–Hochberg multiple
testing correction.

Human–mouse comparison
After differential expression analysis, we performed GSEA
analysis using ClusterProfiler version 3.14.3 (Yu et al. 2012) and
the Gene Ontology–Biological Process (GO-BP), KEGG, Reactome,

Wikipathways, and Hallmark annotations retrieved fromMSigDB
with the msigdbr package version 7.4.1 (Dolgalev 2021). We also
retrieved and used mitochondrial gene sets from Mitocarta
version 3.0 (Rath et al. 2021). We performed ORA on the
overlapping genes significantly differentially expressed in
mouse and human data using the same gene set annotations
and ClusterProfiler (Yu et al. 2012), with 10,000 permuta-
tions. Multiple testing correction was performed with
Benjamini–Hochberg.

Estimation of cell type proportions
To estimate the cellular composition of the mouse liver samples,
we performed single-cell deconvolution using MuSiC version
0.2.0 (Wang et al. 2019) on raw bulk RNA-seq counts using the
default parameters and a maximum number of iteration equal to
1,500. We retrieved liver FACS single-cell RNA-seq processed
counts and samples annotations from GEO under accession no.
GSE109774 and from the supplementary data provided by the
Tabula Muris consortium authors (Schaum et al. 2018). We
determined the percentage of immune cells by summing the
contributions of NK, Kupffer, and B cells. Endothelial cells
annotation refers to endothelial cells of the hepatic sinusoid.
A t test and Benjamini–Hochberg multiple testing correction
was used to test the significance of cell type composition in-
duced by WD-TN compared to CD.

Liver histology
Liver specimens were collected from all mice immediately after
euthanasia and were fixed in 10% neutral buffered formalin for
24–48 h. After fixation, representative specimens from every
liver were trimmed and processed with conventional paraffin
embedding technique. Paraffin-embedded specimens were then
blocked and sliced using rotary microtome at 5-micron thick-
ness. Sliced sections were stained either with H&E or Picro-
Sirius red (PSR) using an internal protocol.

Histopathological analysis
Specimens were examined unbiased for the presence of histo-
pathologic lesions. The NAS was evaluated as previously de-
scribed (Hübscher 2006; Kleiner et al. 2005). The scoring was
performed as follows: (A) Steatosis (amount of lipid vacuoles
accumulation): Grade 0 = <5%; 1 = 5–33%; 2 = 33–66%; 3 = >66%,
with 0.5 intervals. (B) Hepatocellular ballooning (presence of
ballooned cells): 0 = none; 1 = few balloon cells; 2 = many cells/
prominent ballooning, with 0.5 intervals. (C) Lobular inflam-
mation: 0 = none; 1 = <2 foci per 200×; 2 = 2–4 foci; 3 = >4 av-
erage foci/200× field, with 0.5 intervals. (D) NAFLD: Sum of
scores in parameters A, B, and C. (E) Other lesions: Lesions other
than those mentioned above were scored on a semi-quantitative
score from 0 to 5 (0 = no lesions, 1 = subtle, 2 = mild, 3 =
moderate, 4 = severe, 5 = marked).

Quantitative liver tissue section image analysis for vacuoles
and collagen content
Automated tissue section–based quantification of vacuoles in
hepatocytes (steatosis) and PSR histochemical staining (surro-
gate for collagen)was performed using image analysis algorithms
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in Visiopharm (version 2020.08.0.8126; Visiopharm). Whole-tissue
sections (two liver lobes per animal) were defined as regions of
interest and included in the analysis. An image analysis algorithm
first was applied to segment and quantify areas of tissue comprised
of intracytoplasmic lipid vacuoles in hepatocytes. A second algo-
rithm was applied to quantify the PSR staining in the region of
interest, excluding the image areas comprised of lipid vacuoles.
PSR-positive areawas then quantified and expressed as a percent of
the total tissue area of interest (excluding image area of lipid
vacuoles).

Quantification and statistical analysis
No statistical methods were used to predetermine sample size.
The exact value of n, the statistical methods used to determine
significance and error bars are described in the figure legends.
All replicates represent biological replicates. Statistical tests
were performed using R. All P values <0.05 were considered
significant; *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.

Material availability
This study did not generate new unique reagents.

Online supplemental material
Fig. S1 shows that the mouse genetic background is a major
determinant of the physiological responses to metabolic chal-
lenges (related to Fig. 1 and Fig. 2). Fig. S2 shows that PWK/PhJ
mice are the most sensitive to liver damage and NASH pro-
gression to fibrosis (related to Fig. 3). Fig. S3 shows a comparison
of the effect of HFD-RT andWD-TN on different phenotypes and
strain-specific ORA (related to Fig. 4 and Fig. 5). Fig. S4 shows
that PWK/PhJ mice have severe mitochondrial dysfunction on
WD-TN (related to Fig. 7). Fig. S5 shows that the PWK/PhJ
transcriptional response to WD-TN recapitulates changes seen
in human NASH (related to Fig. 8). Table S1 lists phenotypes
description and abbreviations.

Data availability
All the raw data used in this study were deposited at Mendeley
Data (https://doi.org/10.17632/dntgsyznzs.1; Benegiamo, 2023).
All RNA-seq data were deposited in the GEO database under
accession number GSE201819. All the results generated by the
present study are available through our online app (https://lisp-
lms.shinyapps.io/CC_Founders_NASH/). Any additional infor-
mation required to reanalyze the data reported in this paper is
available from the corresponding authors upon request. Essen-
tial scripts used in this study were deposited at Mendeley Data
(https://doi.org/10.17632/dntgsyznzs.1; Benegiamo, 2023).
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Škop, V., J. Guo, N. Liu, C. Xiao, K.D. Hall, O. Gavrilova, and M.L. Reitman.
2020. Mouse thermoregulation: Introducing the concept of the ther-
moneutral point. Cell Rep. 31:107501. https://doi.org/10.1016/j.celrep
.2020.03.065

Speliotes, E.K., L.M. Yerges-Armstrong, J.Wu, R. Hernaez, L.J. Kim, C.D. Palmer,
V. Gudnason, G. Eiriksdottir, M.E. Garcia, L.J. Launer, et al. 2011. Genome-
wide association analysis identifies variants associated with nonalcoholic
fatty liver disease that have distinct effects onmetabolic traits. PLoS Genet.
7:e1001324. https://doi.org/10.1371/journal.pgen.1001324

St Rose, K., J. Yan, F. Xu, J. Williams, V. Dweck, D. Saxena, R.F. Schwabe, and
J.M. Caviglia. 2022. Mouse model of NASH that replicates key features

of the human disease and progresses to fibrosis stage 3. Hepatol. Com-
mun. 6:2676–2688. https://doi.org/10.1002/hep4.2035

Taylor, B.A., C. Wnek, B.S. Kotlus, N. Roemer, T. MacTaggart, and S.J. Phil-
lips. 1999. Genotyping new BXD recombinant inbred mouse strains and
comparison of BXD and consensus maps. Mamm. Genome. 10:335–348.
https://doi.org/10.1007/s003359900998

Tian, X.Y., K. Ganeshan, C. Hong, K.D. Nguyen, Y. Qiu, J. Kim, R.K. Tangirala,
P. Tontonoz, and A. Chawla. 2016. Thermoneutral housing accelerates
metabolic inflammation to potentiate atherosclerosis but not insulin
resistance. Cell Metabol. 23:165–178. https://doi.org/10.1016/j.cmet.2015
.10.003

Vogel, C., and E.M. Marcotte. 2012. Insights into the regulation of protein
abundance from proteomic and transcriptomic analyses. Nat. Rev.
Genet. 13:227–232. https://doi.org/10.1038/nrg3185

Vogel, C., G.M. Silva, and E.M. Marcotte. 2011. Protein expression regulation
under oxidative stress. Mol Cell Proteomics. 10:M111.009217. https://doi
.org/10.1074/mcp.M111.009217

Wang, X., J. Park, K. Susztak, N.R. Zhang, and M. Li. 2019. Bulk tissue
cell type deconvolution with multi-subject single-cell expression
reference. Nat. Commun. 10:380. https://doi.org/10.1038/s41467
-018-08023-x

Welsh, C.E, D.R.Miller, K.F.Manly, J.Wang, L.McMillan, G.Morahan, R.Mott,
F.A.Iraqi, D.W.Threadgill, and F.P.de Villena. 2012. Status and access to
the collaborative cross population. Mamm. Genome. 23:706–712. https://
doi.org/10.1007/s00335-012-9410-6

Wong, R.J., M. Aguilar, R. Cheung, R.B. Perumpail, S.A. Harrison, Z.M.
Younossi, and A. Ahmed. 2015. Nonalcoholic steatohepatitis is the
second leading etiology of liver disease among adults awaiting liver
transplantation in the United States. Gastroenterology. 148:547–555.
https://doi.org/10.1053/j.gastro.2014.11.039

Worthmann, A., C. John, M.C. Rühlemann, M. Baguhl, F.A. Heinsen, N.
Schaltenberg, M. Heine, C. Schlein, I. Evangelakos, C. Mineo, et al. 2017.
Cold-induced conversion of cholesterol to bile acids in mice shapes the
gut microbiome and promotes adaptive thermogenesis. Nat. Med. 23:
839–849. https://doi.org/10.1038/nm.4357

Wu, H., and C.M. Ballantyne. 2020. Metabolic inflammation and insulin re-
sistance in obesity. Circ. Res. 126:1549–1564. https://doi.org/10.1161/
CIRCRESAHA.119.315896

Yang, T., and A.A. Sauve. 2006. NAD metabolism and sirtuins: Metabolic
regulation of protein deacetylation in stress and toxicity. AAPS J. 8:
E632–E643. https://doi.org/10.1208/aapsj080472

Younossi, Z., Q.M. Anstee, M. Marietti, T. Hardy, L. Henry, M. Eslam, J.
George, and E. Bugianesi. 2018. Global burden of NAFLD and NASH:
Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol.
Hepatol. 15:11–20. https://doi.org/10.1038/nrgastro.2017.109

Younossi, Z.M., A.B. Koenig, D. Abdelatif, Y. Fazel, L. Henry, and M. Wymer.
2016. Global epidemiology of nonalcoholic fatty liver disease-Meta-
analytic assessment of prevalence, incidence, and outcomes.Hepatology.
64:73–84. https://doi.org/10.1002/hep.28431

Younossi, Z.M., and L. Henry. 2022. Fatty liver through the ages: Nonalco-
holic steatohepatitis. Endocr. Pract. 28:204–213. https://doi.org/10.1016/j
.eprac.2021.12.010

Yu, G., L.-G. Wang, Y. Han, and Q.-Y. He. 2012. clusterProfiler: an R package
for comparing biological themes among gene clusters. OMICS. 16:
284–287. https://doi.org/10.1089/omi.2011.0118

Benegiamo et al. Journal of Experimental Medicine 21 of 21

Genetic differences in NASH susceptibility https://doi.org/10.1084/jem.20221738

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/220/4/e20221738/1447718/jem
_20221738.pdf by guest on 09 February 2026

https://doi.org/10.7554/eLife.05959
https://doi.org/10.7554/eLife.05959
https://doi.org/10.1002/cpmo.21
https://doi.org/10.1002/cpmo.21
https://doi.org/10.1093/nar/gkaa1011
https://doi.org/10.1093/nar/gkaa1011
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1038/ng.257
https://doi.org/10.1053/j.gastro.2004.08.052
https://doi.org/10.1016/j.jhep.2017.10.031
https://doi.org/10.1016/j.jhep.2017.10.031
https://doi.org/10.1038/s41586-018-0590-4
https://doi.org/10.1001/jama.2020.2298
https://doi.org/10.1038/s41401-021-00822-1
https://doi.org/10.1016/j.cgh.2014.04.014
https://doi.org/10.1016/j.cgh.2014.04.014
https://doi.org/10.1016/j.celrep.2020.03.065
https://doi.org/10.1016/j.celrep.2020.03.065
https://doi.org/10.1371/journal.pgen.1001324
https://doi.org/10.1002/hep4.2035
https://doi.org/10.1007/s003359900998
https://doi.org/10.1016/j.cmet.2015.10.003
https://doi.org/10.1016/j.cmet.2015.10.003
https://doi.org/10.1038/nrg3185
https://doi.org/10.1074/mcp.M111.009217
https://doi.org/10.1074/mcp.M111.009217
https://doi.org/10.1038/s41467-018-08023-x
https://doi.org/10.1038/s41467-018-08023-x
https://doi.org/10.1007/s00335-012-9410-6
https://doi.org/10.1007/s00335-012-9410-6
https://doi.org/10.1053/j.gastro.2014.11.039
https://doi.org/10.1038/nm.4357
https://doi.org/10.1161/CIRCRESAHA.119.315896
https://doi.org/10.1161/CIRCRESAHA.119.315896
https://doi.org/10.1208/aapsj080472
https://doi.org/10.1038/nrgastro.2017.109
https://doi.org/10.1002/hep.28431
https://doi.org/10.1016/j.eprac.2021.12.010
https://doi.org/10.1016/j.eprac.2021.12.010
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1084/jem.20221738


Supplemental material

Benegiamo et al. Journal of Experimental Medicine S1

Genetic differences in NASH susceptibility https://doi.org/10.1084/jem.20221738

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/220/4/e20221738/1447718/jem
_20221738.pdf by guest on 09 February 2026

https://doi.org/10.1084/jem.20221738


Figure S1. The mouse genetic background is a major determinant of the physiological responses to metabolic challenges. (A) Initial (circles) and final
(triangles) body weight in grams on CD (light colors) andWD (dark colors). (B and C) Fat mass and leanmass on CD andWD for each strain expressed in grams.
(D and E) Fat mass and lean mass on CD and WD for each strain expressed in percentage of the total body weight. (F) OGTT curves. (G) Glucose-stimulated
insulin secretion measured during OGTT at the indicated timepoints. BW, body weight. (H) Insulin tolerance test. Glycemia levels are expressed as percentage
of the initial glycemia. (I) Fasting glycemia measured after 12-h fasting. (L) Fasting insulin measured after 12-h fasting. (M) HOMA IR calculated from 12-h
fasting insulin and glucose levels from I and L using the formula [fasting insulin (mU/liter) × fasting glucose (mmol/liter)]/22.5. In F–H, data are represented as
mean ± SEM. In A–E and I–M, data are represented as box and whiskers. The lower and upper hinges correspond to the first and third quartiles (the 25th and
75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is the interquartile range,
or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge. Data beyond
the end of the whiskers are called “outlying” points and are plotted individually. Statistical analysis for A–E and I–M: pairwise t test adjusted for multiple
testing. *, P < 0.05; **, P < 0.01; ***, P < 0.001. For all panels: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-WD n = 7, A/J-CD n = 6, A/J-WD
n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/EiJ-WD n = 8, PWK/PhJ-CD n = 6, PWK/
PhJ-WD n = 7. Each group of mice was assayed in two independent cohorts.
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Figure S2. PWK/PhJ mice are the most sensitive to liver damage and NASH progression to fibrosis. (A) Steatosis percentage measured from H&E-
stained liver sections. (B) Fibrosis percentage, measured as percentage of collagen content from Sirius red–stained liver sections. (C) Plasma TIMP-1 levels.
(D) Liver weight normalized to body weight at sacrifice. (E) Plasma ALAT levels. (F) Plasma ASAT levels. (G) Final body weight gain onWD. Significance level is
shown for the comparison of each strain with the PWK/PhJ strain. (H) Pairwise correlations of body weight with key liver damage phenotypes for each strain
on WD-TN. Pearson r and P values are shown. In A–G, data are represented as box and whiskers. The lower and upper hinges correspond to the first and third
quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is
the interquartile range, or distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of
the hinge. Data beyond the end of the whiskers are called “outlying” points and are plotted individually. Statistical analysis for A–G: Pairwise t test adjusted for
multiple testing. *, P < 0.05; **, P < 0.01; ***, P < 0.001. For all panels: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-WD n = 7, A/J-CD n = 6,
A/J-WD n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/EiJ-WD n = 8, PWK/PhJ-CD n = 6,
PWK/PhJ-WD n = 7. Each group of mice was assayed in two independent cohorts.
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Figure S3. Comparison of the effect of HFD-RT and WD-TN on different phenotypes and strain-specific ORA. (A) Energy expenditure (hour averages)
at TN (continuous lines) or RT housing (dotted lines). Lines indicate the median. Lighter and darker colors indicate the diet (CD or WD/HFD, respectively).
(B) Heatmap of the log2-transformed fold changes of selected phenotypes for the comparison CD-HFD for each strain at RT (left) or TN (right). Significance
levels are indicated. EE, energy expenditure; BW, body weight; RER, respiratory exchange ratio; eWAT, epidydimal white adipose tissue; scWAT, subcutaneous
white adipose tissue. (C–F) Top 10 enriched GO-BP terms among 129S1/SvlmJ-specific (C), CAST/EiJ-specific (D), C57BL/6J-specific (E), and DBA/2J-specific (F)
upregulated or downregulated genes on WD. Dot size indicates significance (−log10[qvalue]). For A and B: C57BL/6J-CD-TN n = 8, C57BL/6J-WD-TN n = 8,
DBA/2J-CD-TN n = 6, DBA/2J-WD-TN n = 7, A/J-CD-TN n = 6, A/J-WD-TN n = 6, 129S1/SvlmJ-CD-TN n = 7, 129S1/SvlmJ-WD-TN n = 7, WSB/EiJ-CD-TN n = 6,
WSB/EiJ-WD-TN n = 6, CAST/EiJ-CD-TN n = 8, CAST/EiJ-WD-TN n = 8, PWK/PhJ-CD-TN n = 6, PWK/PhJ-WD-TN n = 7, C57BL/6J-CD-RT n = 5, C57BL/6J-HFD-
RT n = 5, DBA/2J-CD-RT n = 5, DBA/2J-HFD-RT n = 5, A/J-CD-RT n = 5, A/J-HFD-RT n = 5, 129S1/SvlmJ-CD-RT n = 5, 129S1/SvlmJ-HFD-RT n = 4, WSB/EiJ-CD-RT
n = 5,WSB/EiJ-HFD-RT n = 5, CAST/EiJ-CD-RT n = 3, CAST/EiJ-HFD-RT n = 3, PWK/PhJ-CD-RT n = 5, PWK/PhJ-HFD-RT n = 5. Each group of mice was assayed in
two independent cohorts. Statistical analysis for B: Student’s t test with Benjamini–Hochberg adjusted P values. *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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Figure S4. PWK/PhJ mice have severe mitochondrial dysfunction on WD-TN. (A–F)Western blot on liver-isolated mitochondria with immunostaining of
the five OXPHOS complexes (left) and band densitometry quantification normalized to ponceau staining (right panels) in C57BL/6J (A), DBA/2J (B), A/J (C),
129S1/SvlmJ (D), WSB/EiJ (E), and CAST/EiJ (F) mice. (G) mtDNA to nucDNA ratio (average of three different mitochondrial genes [16S, ND1, and dloop] and
HK2 nuclear gene) measured in the liver. (H) Citrate synthase activity measured in liver protein extracts. Data are represented as box and whiskers. The lower
and upper hinges correspond to the first and third quartiles (the 25th and 75th percentiles). The upper whisker extends from the hinge to the largest value no
further than 1.5 × IQR from the hinge (where IQR is the interquartile range, or distance between the first and third quartiles). The lower whisker extends from
the hinge to the smallest value at most 1.5 × IQR of the hinge. Data beyond the end of the whiskers are called “outlying” points and are plotted individually. For
A–F: C57BL/6J-CD n = 6, C57BL/6J-WD n = 6, DBA/2J-CD n = 6, DBA/2J-WD n = 5, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 6, 129S1/SvlmJ-WD n = 6,
WSB/EiJ-CD n = 5, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 6, CAST/EiJ-WD n = 6. For G–H: C57BL/6J-CD n = 8, C57BL/6J-WD n = 8, DBA/2J-CD n = 6, DBA/2J-WD
n = 7, A/J-CD n = 6, A/J-WD n = 6, 129S1/SvlmJ-CD n = 7, 129S1/SvlmJ-WD n = 7, WSB/EiJ-CD n = 6, WSB/EiJ-WD n = 6, CAST/EiJ-CD n = 8, CAST/EiJ-WD n = 8,
PWK/PhJ-CD n = 6, PWK/PhJ-WD n = 7. Statistical analysis for all panels: pairwise t test adjusted for multiple testing: *, P < 0.05; **, P < 0.01. Source data are
available for this figure: SourceData FS4.
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Figure S5. The PWK/PhJ transcriptional response toWD-TN recapitulates changes seen in human NASH. (A) Pairwise significantly (alpha = 0.05) DEGs
overlap size in human (NAS ≥ 4 vs. <4, concordant in the two datasets) and mouse (WD-TN vs. CD). Upper diagonal: Upregulated genes; lower diagonal:
downregulated genes. (B) Upset plot showing the exclusive intersection sizes for the overlapping upregulated genes defined in Fig. 8 B. Only the first nine
intersections are shown. (C) Upset plot showing the exclusive intersection sizes for the overlapping downregulated genes defined in Fig. 8 B. Only the first nine
intersections are shown. (D)ORA liver–specific cell type enrichment for the downregulated gene groups defined in Fig. 7 C. Every row represents a gene set for
a cell type sub-population. FDR-adjusted P values: *, q < 0.05; **, q < 0.01; ***, q < 0.001.
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Table S1 is provided online and shows phenotype descriptions and abbreviations.
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