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A twist in the tail: Of T cell subsets and disease

Shiv Pillai'®

In this issue of JEM, the work of Joachim et al. (2023. J. Exp. Med. https://doi.org/10.1084/jem.20231028) on knockin mice with
a specific tail mutation in LAT provides valuable insights about cytotoxic CD4* T cells and human inflammatory diseases.

A point mutation in the cytoplasmic tail of a
key T cell signaling adaptor resulted in a rodent
disease model that resembles a human fibrotic
inflammatory disease that has served as a
prototype for a set of human diseases driven by
cytotoxic CD4* T cells. These diseases cannot be
categorized using the widely used type 1, type
2, and type 3 immune mechanism paradigms.

In the last few decades, two extremely
effective, widely used, and generally “non-
specific” therapeutics have emerged that
could be considered “modern-day steroids.”
These therapies, intravenous IgG and anti-
CD20-mediated B cell depletion, were orig-
inally developed for other therapeutic
indications, but are widely used today in dis-
parate chronic inflammatory and autoimmune
diseases. While the use of B cell depletion in
some diseases in which autoantibodies play a
crucial role is relatively easy to appreciate,
beyond those disorders, there is a wide range
of inflammatory diseases in which B cell de-
pletion has proven very effective, even though
the immediate drivers of these diseases are
likely T cells. T and B cells infiltrate tissues in
many diseases characterized by tissue inflam-
mation. But how do B cells contribute to the
induction, maintenance, or exacerbation of
such diseases? Some clues have emerged from
the study of a T cell signaling adaptor.

LAT (linker for activation of T cells) is a
key adaptor of relevance to TCR signaling. It
has a very short, three-amino-acid-long
extracellular domain, and a cytoplasmic tail
that is 236 amino acids long and contains
nine tyrosine residues. Over two decades
ago, Aguado et al. (2002) and Sommers et al.

(2002) separately demonstrated that thymic
T cell development was impaired in homo-
zygous LAT Y136F knockin mice; these mice
also exhibited peripheral lymphoprolifera-
tion and rapidly developed an autoimmune
phenotype. Tyrosine 136 (tyrosine 132 in
human LAT) is required for PLCyl recruit-
ment and activation; downstream calcium
signaling is abrogated in mutant T cells. It
was later shown (Koonpaew et al., 2006)
that thymic regulatory T cell (Treg) devel-
opment is defective in these mice and the
ratios of conventional T cells to Tregs in the
periphery is very high; this may help explain
the broad autoimmune phenotypes seen.

Using a single-cell transcriptomic ap-
proach, Joachim et al. (2023) serially exam-
ined immune cells in the spleens of LAT
Y136F mice at different times after birth, and
they also used high-dimensional flow cy-
tometry in the spleen and in the lungs to
examine T and B cell subsets that infiltrate
tissues and are likely drivers of tissue in-
flammation. TCR levels on T cells in these
mice are low and re-triggering of T cells de-
pends heavily on the ligation of CD28. There
is an interesting aspect to the cellular changes
in these mice that resembles the alterations
seen in a set of human inflammatory diseases.
The pathological changes of inflammation
and fibrosis in these diseases are best attrib-
uted to their infiltration by cytotoxic CD4*
T cells (CD4* CTLs) and activated B cells and
also, likely secondarily, CD8* T cells.

CD4* CTLs were initially studied in the
context of viral infection and viral control.
These cells were initially implicated in
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tissue damage, inflammation, and fibrosis in
studies on the pathogenesis of an autoim-
mune disease called IgG4-related disease
(IgG4-RD; Mattoo et al., 2016). This disease is
characterized by slow-growing inflamma-
tory fibrotic masses in a number of different
organs, and by tissue infiltrates of T and
B cells. Circulating IgG4 levels are elevated,
as are other IgG isotypes, and in many pa-
tients, there is elevation in IgE as well.
Dramatic clinical improvement is observed
within a few weeks after B cell depletion
(Stone et al., 2012). In this disease, the CD4*
effector T cells that are clonally expanded
and infiltrate disease tissues were identified
as CD4* CTLs (Mattoo et al., 2016). The fre-
quencies of circulating CD4* CTLs and of
tissue infiltrating T cells decline after B cell
depletion. Inflamed tissues are also in-
filtrated by IgG4 expressing plasmablasts
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Activated B cells expressing CD80/86 can contribute to the repeated T cell activation required for
generation of disease-driving cytotoxic CD4* CTLs. DN, double negative.

(Della-Torre et al., 2020), and most abun-
dantly by double negative 3 B cells that
transcriptionally resemble plasmablasts
(Allard-Chamard et al., 2023). A number of
other fibrotic inflammatory diseases have
since been linked to clonal expansions or
tissue infiltrates that resemble those seen in
IgG4-RD. These include systemic sclerosis
(Maehara et al., 2020), fibrosing mediasti-
nitis, a disease that has many similarities to
IgG4-RD but is linked to Histoplasma capsu-
latum (Allard-Chamard et al., 2021), the or-
bitopathy of Grave’s disease (Wang et al.,
2021), and severe COVID-19 (Kaneko et al.,
2022; Allard-Chamard et al., 2023). In fi-
brosing mediastinitis, circulating CD4* CTLs
have been shown be specifically triggered
by H. capsulatum antigens, and in severe
COVID-19, CD4* CTLs represent one of the
most abundant SARS CoV-2 antigen-specific
T cell subsets (Meckiff et al., 2020).
Extrafollicular helper T cells that express
IL-4 and IL-10 are prominent in IgG4-RD
(Maehara et al., 2018, Munemura et al.,
2022), and these cytokines are linked IgG4
class switching. Tissue evidence does not
support a type 2 immune response in IgG4-
RD. T helper 2 (Th2) cells are sparse and
they are also not prominent in the tissues of
systemic sclerosis (Maehara et al., 2020).
Overall, the tissue phenotype of human
IgG4-RD is closely mimicked by that seen in
LAT Y136F knockin mice. In these mice,
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high IgGl and elevated IgE levels and the
presence of eosinophilic infiltrates reflect
the expansion of Th cells that drive class
switching. These include T follicular helper
cells that express high levels of Bcl-6, GATA-
3, and IL-4 and which are known to drive
IgE switching (these cells likely also express
IL-13, but that was not demonstrated) as
well as extrafollicular helper CD4* T cells
that drive some switching to IgGl and
lower-affinity IgE. No Th2 cell clusters were
observed, while a prominent activated CD4*
T cell cluster identified was made up of CD4*
CTLs that did not express Gata3 or IL4, but
did express Eomesodermin and T-bet. The
inflamed lungs in these mice were in-
filtrated by CD4* CTLs, plasma cells, and
other B cells; markers for extrafollicular
B cells in mice are poorly defined, so there is
not yet a murine equivalent identified for
human double negative B cells. So, in a
broadly similar way to that seen in IgG4-
related disease, the disease-driving T cells
in these mice appear to be CD4* CTLs, and
while Th2 cells are rare, Th cells that drive
class switching to “type 2-like” Ig isotypes
are also prominent.

Joachim and colleagues, likely taking into
account the clinical response to Rituxan in
IgG4-RD, sought to understand the contri-
bution of B cells to the inflammatory disease
in these mice. While perhaps actual B cell
depletion using an anti-murine CD20

monoclonal antibody may have been a
preferable approach to address this ques-
tion, they crossed the LAT Y16F mice into
WMT mice. The marked reduction in B cells
reduced but did not eliminate CD4* CTLs,
but they did significantly attenuate disease
pathology.

There are a few interesting lessons with
wide ramifications both for immunology
and for the study of human disease that can
be drawn from these studies.

It is known that EOMES expressing CD4*
CTLs can evolve in type 2 milieus as seen in
human nasal polyps (Ma et al.,, 2021), so
there is no formal basis to link CD4* CTLs to
a type 1 milieu. The serial studies from
Joachim et al. (2023) clearly demonstrate
that Thl cells are not even a required in-
termediate for CD4* CTL generation. The
broader inference, therefore, is that diseases
driven by CD4* CTLs represent a distinct
category that does not fit the type 1, type 2,
or type 3 paradigms for immune responses
and disease.

In both humans, as seen in IgG4-RD, and
in rodents, as seen in LAT Y136F mice, a
robust IgE and/or human IgG4/murine IgGl
response can evolve in the relative absence
of Th2 cells. The milieus that drive Th2 cell
generation can sometimes overlap with
those that drive T-dependent B cell class
switching, but this kind of overlap is possi-
bly stressed more than it should be.

The expression of CD80/86 on activated
B cells likely evolved to allow tissue infil-
trating activated B cells to optimally trig-
ger and re-activate tissue CD4* T cells
generally to facilitate pathogen elimina-
tion, but this restimulation may also con-
tribute to CD4* CTL development (see
figure). It is this function of B cells that
might be abrogated by B cell depletion in
the context of disease.
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