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Matrix reboot: IL-17 signals CAFs to create a second
tumor T cell checkpoint

Mandy ). McGeachy2®

Excessive collagen deposition by fibroblasts surrounding some tumors has seriously limited the efficacy of checkpoint
inhibitor therapies. Chen et al. (2022. J. Exp. Med. https://doi.org/10.1084/jem.20210693) show that IL-17 promotes collagen
deposition by cancer-associated fibroblasts, enhancing immune exclusion of tumors, and that targeting IL-17-triggered HIF 1a
expression can reverse matrix mediated immune exclusion.

Immune-excluded tumors are characteris-
tically surrounded by a “wall” of cancer-
associated fibroblasts (CAFs) producing
collagen and other extracellular matrix
(ECM) proteins. Immune cells including
T cells are found in this fibrotic wall but do
not enter the tumor bed, even after they are
activated by administration of checkpoint
inhibitors such as anti-PD-L1. Hence, im-
mune exclusion represents a significant
hurdle to therapies that seek to harness the
immune system, and these types of tumors
continue to carry a poor prognosis.

Increased cancer risk is an important
comorbidity in people with inflammatory
bowel disease and other chronic inflamma-
tory disease. IL-17 has a long-established
role in the development of spontaneous tu-
mors in murine models of carcinoma in skin
and gut. This is attributed to the pro-
inflammatory functions of IL-17, as inflam-
mation helps to establish the supporting
tumor stroma. More recent studies have
highlighted the pro-proliferative effects of
IL-17 on epithelial progenitor cells in wound
healing after injury in gut and skin, and that
IL-17-enhanced proliferation of stem cells
increases the risk of tumorigenesis in the
presence of carcinogens.

In humans, high intratumoral IL-17 cor-
relates with poor prognosis and resistance
to therapy in a number of cancers. Prior
studies have indicated that IL-17 enhances

PD-L1 expression in a model of colorectal
cancer (Liu et al, 2021), and that IL-17-
recruited neutrophils exclude tumor in-
filtration of T cells following checkpoint
blockade through NETosis (Zhang et al.,
2020). The study by Chen et al. (2022) in
this issue of JEM shows an additional con-
tribution of IL-17 to tumor immune exclu-
sion by acting on CAFs to increase ECM
deposition. There have been indications that
IL-17 contributes to fibrotic disease and can
enhance pro-fibrotic phenotypes in synergy
with TGFB (Majumder and McGeachy,
2021). In vitro studies aiming to determine
mechanisms by which cytokines target fi-
broblasts are not always satisfying due to
limitations of two-dimensional culture of a
single cell type.

In the current study by Chen et al.
(2022), they employed a temporal deletion
of IL-17 receptor expression in a key target
of IL-17 signaling in vivo: fibroblasts. In
spontaneous and transferred models of skin
carcinoma, they blocked the capacity for fi-
broblasts to respond to IL-17 by tamoxifen-
induced conditional deletion of the IL-17RC
subunit of the IL-17 receptor. Fibroblast-
specific deletion of the IL-17 receptor IL-
17RC (shared by IL-17A and IL-17F) after
initiation of skin carcinoma led to reduced
proliferation and numbers of CAFS, and
reduced collagen deposition. Excitingly, this
reduction in CAFs and ECM rendered the
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tumors susceptible to anti-PD-L1 by in-
creasing entry of activated T cells into
the tumor.

In both murine and human CAFs, the
authors show that IL-17 enhances the pro-
gram for collagen deposition through in-
duction of procollagen-proline dioxygenase
(P4H) enzymes that facilitate the proper
folding and secretion of pro-collagen, and
lysl oxidase (LOX) to crosslink pro-collagen
into collagen fibers. The genes encoding
P4Hs and LOX are transcriptional targets of
HIFla, and the authors confirmed that HIFla
is required for IL-17-enhanced collagen de-
position in both mouse and human CAFS.
Through a series of elegant studies, they
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IL-17 enhances collagen deposition through HIFla expression in CAFs. Checkpoint inhibitor therapy
(anti-PD-L1) in mice with established tumors activates T cells and increases IL-17 production, leading to
increased collagen deposition and inhibition of activated CD8* T cell access to the tumor, which con-
tinues to grow. Deletion of IL-17 receptor on CAFs or blockade of IL-17 induction of HIFla with an Actl:
Hifla aptamer reduces collagen deposition around the established tumor to allow anti-PD-L1 activated
T cells to enter and restrict tumor growth. Figure created with Biorender.com.

demonstrate that rather than inducing Hifla
gene expression, IL-17 promotes the trans-
lation of HIFla protein through Actl binding
to Hifla mRNA transcripts. In fact, this is
very much on par for IL-17 signaling, which
is increasingly found to reinforce and en-
hance its own signaling outcomes through
modulation of RNA-binding proteins in-
cluding Actl, Arid5a, and Regnase to regu-
late expression of transcription factors and
co-activators (Li et al., 2019).

Antibodies targeting IL-17 and IL-17 re-
ceptor are already in clinical use for auto-
immune diseases including psoriasis. They
have a good safety profile and have been
used off-label to reduce autoimmune ad-
verse immune-related events that arise in
some patients treated with checkpoint
blockade. So, one therapeutic implication of
this study would be to incorporate existing
IL-17-neutralizing therapies with check-
point inhibitors, supporting previous stud-
ies suggesting this add-on. However, IL-17
blockade does lead to a small increase in the
risk of oral infections with Candida species
and new onset of inflammatory bowel dis-
ease in some patients. These side effects
correspond to well-established roles for
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IL-17 in combating fungal infections in mouse
models, particularly oropharyngeal candi-
diasis, and in maintaining gut health
(Majumder and McGeachy, 2021).

The approach employed by Chen et al.
(2022) was to more precisely target just
one facet of IL-17 signaling by interrupting
the binding of Actl to Hifla mRNA. Ap-
tamers are RNA oligomers designed to
mimic the RNA target sequence of an RNA-
binding protein, in this case the stem-loop
structure that forms the Actl SEFIR binding
element (SBE) on Hifla mRNA transcripts.
The aptamer approach was previously em-
ployed by this group to target Actl binding
to the SBE at the 3'UTR of IL-17-induced
inflammatory mediators Cxcll, Tnf, and Csf2
(Herjan et al., 2018). In that study, Actl was
found to increase the stability of pro-
inflammatory mRNA transcripts down-
stream of IL-17 signaling, and inflammatory
skin disease could be blocked with SBE ap-
tamer. Here, Hifla was found to have a
unique SBE that Actl binds to enhance
translation. Excitingly, the Hifla-SBE ap-
tamer did not block inflammatory chemo-
kines and cytokines or metabolic gene
expression. It is therefore predicted that the

antimicrobial outcomes of IL-17 signaling
and proliferation important for wound
healing will be unaffected. Of course, it
would be important to confirm this premise
in cell type-specific hypoxia assays and
fungal infection models if this approach
were to move forward to pre-clinical stages.

IL-17 has been associated with fibrotic
disease in chronic infection and in idio-
pathic fibrosis, where anti-inflammatory
approaches have not been useful. One
could therefore speculate that this aptamer
approach to block the pro-fibrotic compo-
nent of IL-17 signaling could have uses be-
yond cancer. On the other hand, there are
anecdotal reports of impaired wound heal-
ing in patients receiving IL-17-blocking bi-
ologic therapy for psoriasis, and so aptamers
designed to target the inflammatory process
while sparing proliferation or matrix pro-
duction could reduce side effects in auto-
immune therapy.

The therapeutic potential raised by the
precision approach to targeting RNA-
binding protein interactions with specific
transcripts is intriguing and vast. Blocking
transcription factors such as HIFla could
have broad side effects that reduce their
long-term usefulness. However, being able
to block a key biological process in a context-
dependent way through RNA-binding pro-
tein targets suggests a new generation of
therapeutics. Actl is only used by a limited
number of receptors, principally IL-17 family
cytokines, so the effects should be quite
narrowly targeted to IL-17-induced HIFla
induction while sparing HIFla stabilization
when it is induced in a beneficial way by
other signals including local hypoxia. The
current study highlights the importance of
understanding post-transcriptional regula-
tion of gene expression by RNA-binding
proteins as an untapped reservoir for ther-
apeutic tuning of immune responses.
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