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Human autoantibodies underlying infectious
diseases
Anne Puel1,2,3, Paul Bastard1,2,3,4, Jacinta Bustamante1,2,3,5, and Jean-Laurent Casanova1,2,3,4,6

The vast interindividual clinical variability observed in any microbial infection—ranging from silent infection to lethal
disease—is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing
specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway.
Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever
virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria,
and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie
mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF
underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies
against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-
driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but
that are otherwise redundant, thereby underlying specific infectious diseases.

Introduction
The clinical consequences of any infection vary greatly between
individuals, ranging from silent infection to lethal disease
(Casanova and Abel, 2020). The study of single-gene inborn
errors of immunity (IEI) has led to the discovery of human ge-
netic and immunological determinants of infectious diseases
(Casanova and Abel, 2020; Casanova and Abel, 2021a; Casanova
and Abel, 2021b). Most of the more than 450 IEI genetically
characterized since 1985 confer a predisposition to infectious
diseases (Bousfiha et al., 2020; Tangye et al., 2020; Tangye et al.,
2021). Following their discovery in the 1950s, each IEI was
thought to underlie various infectious diseases in individual
patients. However, from 1996 onward, some IEI were found to
underlie a single, specific infectious disease (Notarangelo et al.,
2020). These IEI include inborn errors of specific cytokines or
their response pathways disrupting immunity to specific mi-
croorganisms (Casanova and Abel, 2021a; Casanova and Abel,
2021b; Notarangelo et al., 2020; Tangye et al., 2020; Tangye
et al., 2021). Indeed, otherwise healthy patients vulnerable to
weakly virulent mycobacteria (Mendelian susceptibility to my-
cobacterial disease [MSMD]) and/or to the more virulent My-
cobaterium tuberculosis, carry inborn errors of IFN-γ, type II IFN
immunity (Bustamante, 2020; Yang et al., 2020). Patients with
inborn errors of type I IFN immunity each suffer from one or a

few viral diseases, including herpes simplex virus 1 encephalitis
(Bastard et al., 2020a; Zhang, 2020b), influenza A virus pneu-
monia (Casanova and Abel, 2021b; Lim et al., 2019; Zhang,
2020a), severe rhinovirus pulmonary diseases (Asgari et al.,
2017; Lamborn et al., 2017; Lamborn and Su, 2020), hypoxemic
COVID-19 pneumonia (Asano et al., 2021a; Casanova and Abel,
2021b; Zhang et al., 2022; Zhang et al., 2020), or adverse re-
actions to live-attenuated measles (Hambleton et al., 2013;
Hernandez et al., 2019) or yellow fever virus vaccines (Bastard
et al., 2021b; Hernandez et al., 2019). Patients with chronic
mucocutaneous candidiasis (CMC), which is occasionally asso-
ciated with staphylococcal disease, carry inborn errors of IL-
17A/IL-17F (IL-17A/F; Puel, 2020; Puel et al., 2011). Others, with
cutaneous staphylococcal diseases, suffer from inborn errors of
IL-6 (Chen et al., 2021a; Puel and Casanova, 2019). Finally, rare
inborn errors of GM-CSF, which underlie pulmonary alveolar
proteinosis (PAP), have not been associated with infections; yet,
nocardiosis and cryptococcosis have been diagnosed in other
patients with PAP (Trapnell et al., 2019).

These IEI preceded (type II IFN, GM-CSF) or followed (type I
IFNs, IL-17A/F, IL-6) the discovery of autoantibodies (auto-Abs)
neutralizing the corresponding cytokines in patients with the
same or a similar infectious phenotype (Ku et al., 2020).
By blocking their target cytokines, these auto-Abs underlie
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infectious phenocopies of inborn errors of the corresponding
cytokine or response pathway (Browne, 2014; Ku et al., 2020;
Shih et al., 2021; Table 1). Four autoimmune phenocopies of IEI
of cytokines have been reported to date (Ku et al., 2020; Tangye
et al., 2020; Fig. 1). Auto-Abs against cytokines may underlie
mycobacterial disease (type II IFN), one or a few viral diseases
(type I IFNs), mucocutaneous candidiasis (IL-17A/F), or staph-
ylococcal disease (IL-6). The infectious diseases of patients with
PAP (with no documented inborn error of GM-CSF) include
invasive nocardiosis and cryptococcosis, which have also been
seen in patients with auto-Abs to GM-CSF (with or without
PAP). The pathogenesis of these auto-Abs is largely unknown,
but they can be detected in children or adults with IEI under-
lying broader autoimmunity, such as germline loss-of-function
biallelic (or monoallelic) mutations of AIRE underlying autoim-
mune polyendocrine syndrome type 1 (APS-1). Most patients
with these auto-Abs have no diagnosed IEI (Bloomfield et al.,
2019; Puel et al., 2008). Auto-Abs against cytokines are widely
thought to underlie late-onset immunodeficiency (Ku et al.,

2020; Tangye et al., 2020), as they are more commonly found
in adults, typically with no known underlying IEI (Browne, 2014;
Browne et al., 2012a; Browne and Holland, 2010; Ku et al., 2020).
Little is known about the causes of these auto-Abs, their prev-
alence in patients with a given infection and in the general
population, the changes in their levels during the life of the
individual, their biochemical nature and diversity, their cor-
responding T and B cell epitopes, and their deleterious or
beneficial clinical consequences. We review here the emerg-
ing field of anti-cytokine auto-Abs underlying infectious
diseases.

Mycobacterial diseases in patients with anti–IFN-γ auto-Abs
In humans, IFN-γ is predominantly produced by activated nat-
ural killer and T cells (Schoenborn andWilson, 2007; Yang et al.,
2020). IFN-γ, which was first identified as a leukocyte antiviral
IFN (Marcus and Salb, 1966), differs from the other IFNs in that
it was later shown to be the macrophage-activating factor
(Nathan et al., 1983). Human inborn errors of IFN-γ immunity

Table 1. Inborn errors of cytokines or their receptors, their corresponding autoimmune phenocopies (anti-cytokine auto-Abs), and monoclonal
antibodies used in therapeutics, together with the associated infectious phenotypes

Cytokine Receptor of
cytokine

Inborn error
of immunity

Main infectious
disease

Phenocopies
(auto-Abs)

Infectious disease Therapeutic
withmonoclonal
Abs

Infectious disease

Type II IFN
(IFN-γ)

IFNGR1
IFNGR2

IFNG
IFNGR1
IFNGR2

- Disseminated M.
bovis–BCG disease
- Disseminated
environmental
mycobacteria disease

Auto-Abs to IFN-γ - Disseminated
environmental
mycobacteria disease
- Disseminated
tuberculosis
- Salmonellosis

- Emapalumab
- Fontolizumab
- AMG811

- Disseminated
histoplasmosis
- Disseminated
salmonellosis

Type I IFNs
(IFN-α/β)

IFNAR1
IFNAR2

IFNAR1
IFNAR2

- Herpes virus
encephalitis
- Severe influenza
- Yellow fever
- Life-threatening
COVID-19 pneumonia

Auto-Abs to IFN-α2,
other IFN-α, IFN-β,
IFN-ω

- Life-threatening
COVID-19 pneumonia
- Yellow fever vaccine
disease

- Sifalimumab/
MEDI545
- Rontalizumab/
RG-7415
- AGS-009
- S95021/19D11
-Anifrolimab/
MEDI-546

- Respiratory tract
infections
- Herpes zoster

IL-17A
IL-17F

IL-17RA
IL-17RC

IL17F
IL17RA
IL17RC

Chronic
mucocutaneous
candidiasis

Auto-Abs to IL-17A,
IL-17F

- Chronic
mucocutaneous
candidiasis

- Secukinumab/
AIN457
- Ixekizumab/
LY2439821
- Brodalumab/
AMG 827
- Bimekizumab

- Chronic
mucocutaneous
candidiasis

IL-6 IL-6R
GP130/
IL6ST

IL6R
IL6ST

Staphylococcal
cutaneous infections

Auto-Abs to IL-6 - Staphylococcal
cutaneous infections

- Tocilizumab
- Sarilumab
- Satralizumab
- Sirukumab
- Siltuximab

- Staphylococcal
cellulitis
- Pneumonia by S.
aureus

GM-CSFa CSF2RA
CSF2RB

CSF2RA
CSF2RB

- Nocardiosis?
- Cryptococcosis?

Auto-Abs to
GM-CSF

- Pulmonary and
extra-pulmonary
cryptococcosis
- Pulmonary and
extra-pulmonary
nocardiosis

- Lenzilumab
- Namilumab
- Gimsilumab
- Otilimab
- Mavrilimumab

- Nasopharyngitis
without microbe
isolation

aAs explained in the text, inborn errors of and auto-Abs to GM-CSF underlie PAP. The infectious diseases seen in these patients are relatively diverse and may
result from PAP (including its therapy) and/or from impaired GM-CSF–dependent immunity in alveolar macrophages.
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underlie MSMD (Boisson-Dupuis and Bustamante, 2021;
Bustamante, 2020). MSMD patients have a selective suscepti-
bility to severe diseases caused by bacillus Calmette-Guérin
(BCG) vaccines and environmental mycobacteria (EM). They
are typically otherwise healthy and normally resistant to other
microbes. The clinical severity of MSMD, ranging from local-
ized to disseminated infections, varies considerably between,
and even within affected kindreds, and increases with de-
creasing levels of IFN-γ activity (Bustamante, 2020; Kerner
et al., 2020). Moreover, autosomal recessive (AR) complete
IFN-γR1 (Jouanguy et al., 1996; Newport et al., 1996), IFN-γR2
(Dorman and Holland, 1998), and IFN-γ (Kerner et al., 2020)
deficiencies are the only known etiologies of MSMD that clearly
display complete penetrance in early childhood. Neutralizing
anti–IFN-γ auto-Abs (nAIGA) cause an adult-onset and ethnicity-
biased immunodeficiency characterized by susceptibility to
mycobacterial disease, mostly due to EM (Ku et al., 2020; Shih
et al., 2021). Since 2004, at least 500 patients with nAIGAs have
been reported (Doffinger et al., 2004; Hoflich et al., 2004;
Kampmann et al., 2005; Patel et al., 2005; Shih et al., 2021). All
but two of these patients were adults (aged 40–70 yr; Liew et al.,
2019), with a balanced sex ratio. These antibodies were initially
reported only in patients from South Asia, East Asia, or South-
east Asia, but two patients of European descent were recently
reported (Browne et al., 2012a; Hong et al., 2020; Ku et al., 2020;

Shih et al., 2021). Over 85% of patients with nAIGAs suffered
from disseminatedmycobacterial diseases. At least 12 EM species
have been isolated from these patients. The more virulent M.
tuberculosis has also been found in 6% of all patients (Browne
et al., 2012a; Kampitak et al., 2011; Shih et al., 2021). However,
no infection with Mycobacterium bovis–BCG has been reported in
these patients, in contrast to those with MSMD, suggesting that
the development of auto-Abs occurs after neonatal vaccination.
EM disease in patients with nAIGAs is an autoimmune pheno-
copy of adult MSMD.

Other infectious diseases in patients with anti–IFN-γ auto-Abs
Other intra-macrophagic infections have also been reported in
patients with nAIGAs, with or without mycobacterial diseases.
About 18% of all patients with nAIGAs described to date have
suffered from infections caused by Salmonella spp., Salmonella
enteritidis B, Salmonella enteritidis D, and Salmonella typhi
(Browne et al., 2012a; Shih et al., 2021). Such infections have also
been observed in MSMD patients, particularly those with im-
paired IFN-γ production (Boisson-Dupuis and Bustamante,
2021). Various fungal infectious diseases have also been docu-
mented. About 6% of all patients with nAIGAs had crypto-
coccosis (principally caused by Cryptococcus neorformans; Chi
et al., 2013; Pithukpakorn et al., 2015; Shih et al., 2021;
Wongkulab et al., 2013), 3% had histoplasmosis (Histoplasma
capsulatum; Pithukpakorn et al., 2015; Shih et al., 2021;
Wongkulab et al., 2013), and 22% had talaromycosis (Talar-
omyces [Penicillium] marneffei; Kampitak et al., 2011; Shih et al.,
2021; Tang et al., 2010; Wongkulab et al., 2013). In a recent
study of 58 HIV-negative adults from South China with severe
T. marneffei disease, almost 95% had nAIGAs, suggesting a
critical role of IFN-γ in immunity to this fungus (Guo et al.,
2020; Shih et al., 2021). Shingles was associated with intra-
macrophagic infections in about 22% of all patients with
nAIGAs, suggesting a reactivation of varicella zoster virus.
These patients each presented at least one episode of cuta-
neous shingles, but some displayed reactivation of latent
varicella zoster virus infection (Browne et al., 2012a; Chi et al.,
2013; Chi et al., 2016; Patel et al., 2005; Shih et al., 2021;
Wongkulab et al., 2013). These viral infections have occasionally
been seen in patients with AR complete IFN-γR1 or IFN-γR2
deficiency, or autosomal dominant (AD) IFN-γR1 deficiency
(Boisson-Dupuis and Bustamante, 2021; Roesler et al., 2011).
Thus, not only patients with EM disease but also those with severe
infections caused by other intramacrophagic pathogens, such as T.
marneffei, should be tested for nAIGAs.

Molecular characterization of anti–IFN-γ auto-Abs
AIGA levels are generally high in the blood of patients producing
these antibodies. nAIGAs block cellular responses to up to
200 ng/ml IFN-γ, as shown by the analyses of the phosphoryl-
ation of STAT1 (with normal IFN-α–induced STAT1 phospho-
rylation), the expression of HLA-DR (human leukocyte
antigen–DR isotype), the secretion of IL-12 and TNF, and the
expression of IFN-γ response genes (Browne et al., 2012a;
Krisnawati et al., 2019a; Krisnawati et al., 2019b; Nithichanon
et al., 2020; Patel et al., 2005; Shima et al., 2014). Most nAIGAs

Figure 1. Human inborn errors of and auto-Abs to cytokines underlying
infectious diseases. This figure illustrates the key actions of four of the
cytokines reviewed in this article. Gene products mutated in patients with
infectious diseases are shown in red. Auto-Abs neutralizing the cytokines are
also shown. For the sake of simplicity, only the most important cell types
involved in the biology of each of these cytokines are shown. Molecules,
including cytokines and their receptors, are also shown only on key cell types.
A more detailed description of the biology of each cytokine can be found in
specific reviews.
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are of the IgG type, usually of the IgG1, IgG3, and IgG4 sub-
classes; IgM antibodies, when identified, were not neutralizing,
and no IgA antibodies have been detected (Browne et al., 2012a;
Wipasa et al., 2018). Other auto-Abs, such as anti–GM-CSF
auto-Abs, may also be found in rare patients (Browne et al.,
2012a; Kim et al., 2014). Peptide scanning with overlapping
peptides covering the human IFN-γ protein has led to the
identification of a single major epitope targeted by the nAIGAs
in the C-terminal part of IFN-γ (amino acids 121–131, P121–131).
Amino acids 128–131 (KRKR) are crucial for IFN-γ bioactivity
and are conserved across several species. In contrast, amino
acids 121–127 are less conserved (SPAAKTG in humans and
LPESSLR in mice), and plasma from patients with nAIGAs do
not bind mouse IFN-γ, suggesting that their epitope involves
amino acids 121–127 (Lin et al., 2016). By binding to the P121–131
epitope, nAIGAs neutralize IFN-γ–mediated signaling, a pre-
requisite for their pathogenicity (Lin et al., 2016). Indeed,
nonneutralizing AIGAs in healthy individuals do not target
P121–131 and do not affect IFN-γ bioactivity (Browne et al., 2012a;
Lin et al., 2016). Finally, the P121–135 epitope has been shown to
have a sequence highly similar to that of the noc2 ribosome
assembly protein of Aspergillus spp. (Lin et al., 2016; Shih et al.,
2021; Wipasa et al., 2018). The identification of a single major
B cell epitope displaying similarity to a fungal protein in pa-
tients with nAIGAs suggests that molecular mimicry may un-
derlie the development of these auto-Abs. The development of
an engineered biologically active variant of IFN-γ, in which the
epitope (amino acids 121–127) is modified, enabling it to escape
neutralization by nAIGAs, is a possible therapeutic approach
that could be considered in patients with nAIGAs (Lin et al.,
2016). Various IgG mAbs have been used in clinics (Hommes
et al., 2006; Locatelli et al., 2020; Reinisch et al., 2006; Welcher
et al., 2015). These antibodies include emapalumab, a human
IgG1 mAb, which has been used to treat children and adults
with primary hemophagocytic lymphohistiocytosis. Unsur-
prisingly, albeit rarely, intra-macrophagic infections (e.g.,
disseminated histoplasmosis, disseminated Salmonella group D
infection, each found in one patient) have been reported among
the most serious adverse reactions (Boedigheimer et al., 2017;
Locatelli et al., 2020; Table 1).

Human genetic underpinnings of anti–IFN-γ auto-Abs
Major human genetic risk factors for nAIGAs have been iden-
tified, in the form of specific HLA class II DRB1 and DQB1 alleles
found in patients from Southeast Asia, mostly Taiwan and
Thailand (Chi et al., 2013; Ku et al., 2016; Pithukpakorn et al.,
2015). In a study of 44 Taiwanese patients and 102 controls, a
strong enrichment in HLA-DRB1*16:02 (odds ratio [OR] = 8.36,
P = 4.5 × 10−9) and HLA-DQB1*05:02 (OR = 6.54, P = 1.05 × 10−8)
was observed in patients (frequencies of 43 and 48%, respec-
tively) relative to controls (frequencies of 8 and 12%, respec-
tively; Ku et al., 2016). A weaker association of nAIGAs was also
observed with HLA-DRB1*15:02 and DRQB1*05:01. The same
study also investigated a sample of 78 Thai patients and 101
controls and found a strong enrichment in HLA-DRB1*15:02 (OR
= 5.33, P = 1.02 × 10−8) and HLA-DQB1*05:01 (OR = 4.19, P = 9.61 ×
10−6) in patients (frequencies of 43 and 33%, respectively)

relative to controls (frequencies of 12 and 10%, respectively; Ku
et al., 2016). The presence of nAIGAs was also significantly as-
sociated with HLA-DRB1*16:02 (OR = 3.80, P = 3.8 × 10−6) and
DRQB1*05:02 (OR = 2.56, P = 10−4). In addition, 100% (n = 78) of
the Thai patients carried at least DRB1*15:02 or DRB1*16:02. In
total, there were 17 homozygotes for DRB1*15:02, 6 homozygotes
for DRB1*16:02, and 12 compound heterozygotes for DRB1*15:02/
16:02, with ORs for nAIGA carriage ranging from 6.7 to 18.2,
whereas the OR in heterozygotes was about 3.6. Similar pat-
terns, but with lower OR, were observed with the two HLA-
DQB1 alleles (Ku et al., 2016). Indeed, very strong linkage
disequilibrium was observed between the associated DRB1 and
DQB1 alleles, underlying two haplotypes, with HLA-DRB1*16:
02/DQB1*05:02 common in Asian populations (2.6–18.8%), es-
pecially in Taiwan and South China, and HLA-DRB1*15:02/
DQB1*05:01 common in Southeast Asia, especially in Thailand
(Chi et al., 2013; Ku et al., 2016). HLA-DRB1*15:02 and HLA-
DRB1*16:02 are common not only in Southeast Asians but also
in Pacific Islanders and Amerindians (for HLA-DRB1*16:02). By
contrast, they are rare in Europeans and Africans, in whom
HLA-DQB1*05:01 and DQB1*05:02 are more widespread. Almost
all Asian patients with nAIGAs identified to date carry at least
HLA-DRB1*15:02 or HLA-DRB1*16:02. Interestingly, the only non-
Asian HLA-typed patient identified carried neither of these alleles,
nor either of the linked HLA-DQB1*05:01 and DQB1*05:02 alleles
(Ku et al., 2016). The mechanisms driving the occurrence of auto-
Abs in individuals carrying these HLA haplotypes remain unclear,
and the corresponding T cell epitopes are unknown.

Auto-Abs against type I IFNs
Type I IFNs are potent antiviral cytokines that operate as a first
line of defense against many viruses (Hertzog and Williams,
2013; Isaacs and Lindenmann, 1957; Isaacs et al., 1957; Lazear
et al., 2019; Meyts and Casanova, 2021; Munoz-Moreno et al.,
2021). There are 17 type I IFNs (13 IFN-α subtypes, IFN-β, -κ, -ε,
and -ω), all closely related phylogenetically, and all binding to
the same receptor composed of the IFNAR1 and IFNAR2 chains
(Lazear et al., 2019; Manry et al., 2011). Inborn errors of type I
IFN immunity underlying severe viral diseases, including in-
fluenza and COVID-19 pneumonia, have been described since
2003 (Bastard et al., 2020a; Beck and Aksentijevich, 2020;
Bousfiha et al., 2020; Duncan et al., 2015; Duncan et al., 2021;
Hambleton et al., 2013; Hernandez et al., 2019; Hernandez et al.,
2018; Kreins et al., 2015; Meyts and Casanova, 2021; Zhang et al.,
2020). Neutralizing auto-Abs against type I IFNs were first de-
tected in the 1980s, in patients treated with IFN-α or IFN-β for
various indications (Rudick et al., 1998; Vallbracht et al., 1981)
and in patients with systemic lupus erythematosus (SLE), a
condition associated with high levels of type I IFNs in the blood
(Gupta et al., 2016; Panem et al., 1982). Auto-Abs against type I
IFNs are also observed in patients with thymic abnormalities,
such as thymoma (Shiono et al., 2003), or myasthenia gravis
(Bello-Rivero et al., 2004; Meager et al., 2003). The production
of high levels of anti–type I IFN auto-Abs may be genetically
driven and may occur in early childhood, as in patients with
APS-1 carrying germline biallelic or monoallelic rare deleterious
variants of AIRE (Levin, 2006; Meager et al., 2006; Meyer et al.,
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2016; Oftedal et al., 2015). They are also found in patients with
biallelic hypomorphic mutations of RAG1 or RAG2 and combined
immunodeficiency (Walter et al., 2015), in men with hemizy-
gous mutations of FOXP3 and IPEX (Rosenberg et al., 2018), and
in women with heterozygous null mutations of X-linked NEMO
and incontinentia pigmenti (Bastard et al., 2020b). In 1984, Ion
Gresser described a 77-yr-old woman with disseminated zoster
and no history of severe viral disease in whom auto-Abs neu-
tralizing type I IFNs were detected (Pozzetto et al., 1984). Nev-
ertheless, over the last 40 yr, these auto-Abs have generally been
considered to be clinically silent.

Neutralizing auto-Abs against type I IFNs underlie severe or
critical COVID-19
In 2020, a large international cohort of patients infected with
SARS-CoV-2 was tested for the presence of auto-Abs neutraliz-
ing 10 ng/ml IFN-α2 and/or -ω. At least 10% of patients with life-
threatening COVID-19 pneumonia carried these neutralizing
auto-Abs, which were not found in any of the individuals with
asymptomatic or paucisymptomatic infection tested (Bastard
et al., 2020b). These auto-Abs were mostly found in men
(95%), and half the patients carrying them were over the age of
65 yr (Bastard et al., 2020b). These findings were subsequently
widely replicated in independent cohorts (Abers et al., 2021;
Acosta-Ampudia et al., 2021; Carapito et al., 2022; Chang et al.,
2021; Chauvineau-Grenier et al., 2022; Goncalves et al., 2021;
Koning et al., 2021; Raadsen et al., 2022; Solanich et al., 2021; Troya
et al., 2021; van der Wijst et al., 2021; Vazquez et al., 2021; Wang
et al., 2021; Zhang et al., 2022; Ziegler et al., 2021). Consistently,
patients with APS-1 and preexisting anti–type I IFN auto-Abswere
found to be at very high risk of severe disease upon SARS-CoV-
2 infection (Bastard et al., 2020b; Beccuti et al., 2020; Carpino
et al., 2021). In a large study of 22 APS-1 patients, most (n = 19,
86%) suffered from severe or critical COVID-19 and four patients
died; the others hadmild or asymptomatic infections, possibly due
to prior or early medical interventions (Bastard et al., 2021c).
Another group recently described four younger APS-1 patients
with neutralizing auto-Abs, who developed only mild or moderate
COVID-19 (Meisel et al., 2021). Overall, patients with APS-1, par-
ticularly those over the age of 25 yr, are at very high risk of de-
veloping severe or critical COVID-19 pneumonia. They should
benefit from early vaccination and prompt treatment in cases of
infection before vaccination (Bastard et al., 2021c). There are
probably also other conditions, monogenic or otherwise, under-
lying the production of these auto-Abs and conferring a predis-
position to life-threatening COVID-19 pneumonia.

Neutralizing auto-Abs against type I IFNs in ∼20% of patients
with severe or critical COVID-19
The use of more sensitive assays to detect auto-Abs neutralizing
more physiological concentrations of type I IFNs (100 pg/ml in
plasma diluted 1/10) revealed the presence of such Abs in up to
13.6% of patients of all ages with critical COVID-19. The preva-
lence of these auto-Abs increased with age, and they were found
inmore than 20% of patients with critical COVID-19 over the age
of 80 yr, and accounted for almost 20% of all COVID-19 deaths
(Bastard et al., 2021a). In addition, 6.8% of patients with severe,

but not critical COVID-19 also carried such auto-Abs. These data
strongly suggested that individuals with these auto-Abs were at
higher risk of developing life-threatening disease. Indeed, the
highest ORs were obtained for the patients having auto-Abs
neutralizing both IFN-α2 and IFN-ω at 10 ng/ml or 100 pg/ml
(OR = 67, P < 7.8 × 10−13 or OD = 54, P < 10−13), whereas ORs were
lower, although still highly significant, for individuals carrying
auto-Abs against IFN-α2 or IFN-ω alone. Auto-Abs against IFN-β
were also found in about 1% of patients with critical COVID-19,
with an OR of 5 (P = 0.043). Testing was not performed for auto-
Abs against IFN-ε or IFN-κ. In the patients tested, the auto-Abs
against type I IFNs were present before SARS-CoV-2 infection,
as in patients with APS-1 (Bastard et al., 2021c). Their presence
resulted in lower levels of IFN-stimulated gene expression in the
blood (van derWijst et al., 2021), and theywere also found in the
upper respiratory tract (de Prost et al., 2021; Lopez et al., 2021),
along with diminished type I IFN activity in the nasal mucosae
(Lopez et al., 2021). It is unknown whether these auto-Abs are
present and functional in the lower respiratory tract. Overall,
these data demonstrate that the neutralization of only one
subtype or group of type I IFNs (the 13 IFN-α, or IFN-ω, or IFN-β)
is sufficient to underlie life-threatening COVID-19 pneumonia
(Casanova and Abel, 2021b; Zhang et al., 2022).

Neutralizing auto-Abs against type I IFNs in the general
population
Given the greater risk of severe or critical COVID-19 in in-
dividuals with neutralizing auto-Abs against type I IFNs, espe-
cially in the elderly (Bastard et al., 2020b; van der Wijst et al.,
2021), samples collected from a large general population cohort
of over 34,000 individuals aged 20–100 yr before the COVID-19
pandemic were tested. Strikingly, the prevalence of auto-Abs
neutralizing 10 ng/ml (and 100 pg/ml) IFN-α and/or IFN-ω in-
creased significantly with age, with 0.17% of individuals under
the age of 70 yr tested positive for these antibodies (1.1% for 100
pg/ml), and more than 1.4% of those over the age of 70 yr (4.4%).
The prevalence of these antibodies even reached 4.2% (7.1%) for
individuals between the ages of 80 and 85 yr. However, it de-
creased slightly after the age of 85 yr, perhaps because the in-
dividuals with these auto-Abs died before the COVID-19
pandemic from other illnesses related to the presence of the
auto-Abs. No specific HLA class II alleles have been associated
with the production of auto-Abs against type I IFNs. The B and
T cell epitopes are unknown. These auto-Abs nevertheless
contribute to the increase in the risk of critical COVID-19 in the
elderly population. This increase in anti–type I IFN auto-Ab
production in the elderly resembles that already described for
various other auto-Abs since the 1960s (Hooper et al., 1972;
Myasoedova et al., 2020; Parks et al., 2014; Potocka-Plazak et al.,
1995; Shu et al., 1975). These auto-Abs appear to have remained
clinically silent in these individuals until SARS-CoV-2 infection,
although a more complete analysis of the medical history of
these individuals is required. Indeed, auto-Abs against type I
IFNs were recently shown to underlie severe adverse events
following vaccinationwith the live attenuated yellow fever virus
vaccine (Bastard et al., 2021b). It is therefore clearly possible that
they may also underlie other severe viral or malignant diseases,
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especially in the elderly. Various anti-IFN mAbs have been used
in clinical practice (e.g., sifalimumab, an anti–IFN-α IgG1 mAb,
or anifrolumab, an anti-IFNAR1 mAb, used for the treatment of
SLE, in particular), and have occasionally been linked to an in-
crease in the incidence of shingles or respiratory tract infections
(Furie et al., 2017; Khamashta et al., 2016; Petri et al., 2013;
Tummala et al., 2021; Table 1).

IL-17A/F and mucocutaneous candidiasis
In humans, the essential and redundant roles of IL-17A/F have
emerged through the molecular identification and cellular
characterization of inborn errors of IL-17 immunity (Puel, 2020;
Puel et al., 2012). Following the identification of STAT3 defi-
ciency as the main genetic cause of AD “classical” hyper IgE
syndrome (HIES; Holland et al., 2007; Minegishi et al., 2007;
Renner et al., 2007), several teams reported low proportions of
Th17 cells in HIES patients (de Beaucoudrey et al., 2008; Ma
et al., 2008; Milner et al., 2008; Minegishi et al., 2009). Im-
paired IL-17 production, possibly due to impaired STAT3-
dependent cellular responses to IL-6, IL-21, and/or IL-23 (Zhou
and Littman, 2009), has been proposed as an explanation for the
recurrent bacterial infections and CMC seen in these patients.
Similarly, patients with AR IL-12p40 or IL-12Rβ1 deficiency, and
a lack of IL-12 and IL-23 production or of response to these cy-
tokines, respectively, also have abnormally small proportions of
Th17 cells, possibly due to the absence of IL-23 signaling (de
Beaucoudrey et al., 2008; Ma et al., 2016). These patients typi-
cally suffer from MSMD, but about 25% also display CMC
(Bustamante, 2020). Finally, about two thirds of patients with
AR deficiency of caspase recruitment domain-containing pro-
tein 9—an adaptor acting downstream from the C-type lectin
receptors that recognize fungal motifs and lead to the production
of pro-inflammatory cytokines, including pro-Th17 cytokines
(i.e., IL-6, IL-23)—have low proportions of Th17 cells (Corvilain
et al., 2018). Most of these patients suffer from extensive/in-
vasive fungal diseases mostly caused by ascomycete fungi, and
about 40% have CMC (Corvilain et al., 2018; Li et al., 2017). These
findings suggested a role for IL-17A/F in mucocutaneous pro-
tection against Candida albicans and, possibly, Staphylococcus
aureus (Puel et al., 2010b). This role was definitively demon-
strated by the identification of 13 inborn errors of IL-17 immu-
nity, including AD IL-17F and JNK1 deficiencies and AR IL-17RA,
IL-17RC, and ACT1 deficiencies, in particular, all of which impair
or abolish IL-17A/F signaling and are associated with CMC (Puel,
2020). Some defects, such as AR IL-17RA, AR ACT1, and AD JNK1
deficiencies, are also associated with staphylococcal skin dis-
eases (Li et al., 2019).

Neutralizing auto-Abs against IL-17A/F
CMC is one of the three most common clinical manifestations
of APS-1 patients, often the earliest to appear (Cheng and
Anderson, 2012). In 2010, two independent studies reported
that almost all APS-1 patients, of all ages, tested, had high serum
titers of IgG auto-Abs against at least one of the Th17 cytokines
(IL-17A, IL-17F, and/or IL-22; Liang et al., 2006; Zheng et al.,
2007), neutralizing up to 50 ng/ml IL-17A, 10 ng/ml IL-17F,
and/or 0.5 ng/ml IL-22 (in plasma diluted 1/10; Kisand et al.,

2010; Puel et al., 2010a). None of the healthy controls, healthy
heterozygous relatives, or patients with various endocrine or
autoimmune disorders tested in parallel had such auto-Abs
(Kisand et al., 2010; Puel et al., 2010a), except two patients
with thymoma, who were the only two patients with docu-
mented CMC out of the 35 patients with thymoma tested (Kisand
et al., 2010). Apart from high levels of auto-Abs against IFN-α
and IFN-ω, none of the patients had neutralizing auto-Abs
against any of the 13 other cytokines tested (including nAIGAs
and known antibodies against cytokines involved in Th17 cell
differentiation or maintenance, such as IL-23). A few patients
had high levels of auto-Abs against at least one of the three cy-
tokines in the apparent absence of CMC (Kisand et al., 2010; Puel
et al., 2010a), but the prevalence and titers of neutralizing auto-
Abs were higher in patients with CMC than in those without
CMC (Kisand et al., 2010). Auto-Abs against IL-17 cytokines were
detectable before the onset of CMC in the informative serum
samples of four patients with APS-1 and one with thymoma,
with no clear increase in titer after CMC onset, suggesting that
they were not triggered by candidiasis (Kisand et al., 2010). No
specific HLA class II alleles or haplotypes have been associated
with the production of anti–IL-17A/F auto-Abs. The T and B cell
epitopes are unknown. Auto-Abs against IL-17A, IL-17F, and/or
IL-22 are detected in >90% of patients with APS-1, in whomCMC
is a hallmark of the disease (Kisand et al., 2021; Philippot et al.,
2021; Puel and Casanova, 2021; Wolff et al., 2013). The lack of
staphylococcal skin disease in most APS-I patients may result
from residual IL-17A/F immunity, or the compensatory effect of
other IL-17 cytokines. The identification of auto-Abs against IL-
17A, IL-17F, and/or IL-22 in APS-1 solved the long-standing
enigma of CMC in this disorder. The description of mild or
moderate oral candidiasis in up to 21% of patients treated with
therapeutic Abs blocking IL-17A/F signaling (Reich et al., 2021)
was predicted by studies of APS-1 patients (Kisand et al., 2021;
Philippot et al., 2021; Puel and Casanova, 2021; Table 1).

IL-6 and staphylococcal disease
The role of human IL-6, like that of IL-17A/F, has been pro-
gressively clarified by the study of IEI impairing its signaling
(Chen et al., 2021a; Puel and Casanova, 2019). The description of
dominant-negative mutations of STAT3 as the main cause of AD
HIES (Asano et al., 2021b; Minegishi et al., 2007) revealed that
impaired STAT3-dependent signaling downstream from several
cytokines, including IL-6 (Kane et al., 2014), caused the complex
clinical and cellular phenotype observed in these patients
characterized by severe early-onset atopic dermatitis, recurrent
skin and sino-pulmonary bacterial infections, CMC, poor or
delayed clinical and biological signs of inflammation, eosino-
philia, high serum IgE levels, low levels of memory B and Th17
cells, and various nonhematopoietic features (Tsilifis et al.,
2021). Following this discovery, additional IEI associated with
most, if not all of the clinical features observed in classical HIES,
were reported, including AR deficiency of ZNF341, a transcrip-
tion factor governing STAT3 expression and activity (Beziat
et al., 2018; Frey-Jakobs et al., 2018), and partial AR (Chen
et al., 2021b; Schwerd et al., 2017; Shahin et al., 2019) or AD
(Beziat et al., 2020) deficiencies of GP130, the signaling receptor
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subunit common to all IL-6 family cytokines (Rose-John, 2018),
suggesting that impaired IL-6 immunity underlies many of the
key immunological and clinical features of HIES. Patients with
AR IL-6R deficiency were first reported in 2019 (Nahum et al.,
2020; Spencer et al., 2019). These patients displayed most of the
clinical features of HIES, including severe atopic dermatitis,
recurrent bacterial sinopulmonary infections, recurrent staph-
ylococcal skin abscesses, poor inflammatory responses with
undetectable C-reactive protein, high IgE levels, with or without
eosinophilia, low-to-normal levels of memory B cells, and low
but detectable levels of Th17 cells. These findings suggest that
impaired IL-6 signaling drives most of the clinical presentations
of HIES, and that this cytokine plays a crucial role in protection
against bacterial mucocutaneous diseases, particularly those
caused by staphylococci (Puel and Casanova, 2019).

Neutralizing auto-Abs against IL-6
Four patients with high levels of IgG (IgG1 or IgG4) auto-Abs
neutralizing up to 50 ng/ml IL-6 (plasma diluted 1/10) have
been reported since 2008 (Bloomfield et al., 2019; Nanki et al.,
2013; Puel et al., 2008). These patients (aged from 11 mo to 67 yr)
suffered from recurrent staphylococcal subcutaneous abscesses
(n = 2), Escherichia coli and Streptococcus intermedius thoracic
empyema (n = 1), or severe septic shock probably due to S. aureus
(n = 1). None of the patients displayed any detectable increase in
serum C-reactive protein concentration during infectious epi-
sodes. In the only patient tested, memory B cell counts were low,
and serum IgE levels were high (Bloomfield et al., 2019). IL-6
was barely detectable in whole blood from the patients after
stimulation, despite normal production by monocytes (as as-
sessed by intracellular staining) or peripheral blood mononu-
clear cells tested in the absence of patients’ plasma (Bloomfield
et al., 2019; Puel et al., 2008). B cell epitope mapping was per-
formed with 15-mer peptides overlapping by 10 amino acid
residues, generated from the human IL-6 protein sequence. A
peptide (LTKLQAQNQWLQDMT) was strongly bound by the
serum samples of both patients tested (Nanki et al., 2013).
However, no specific HLA class II allele or any other genetic
variant, whether germline or somatic, has been associated with
the occurrence of neutralizing anti–IL-6 auto-Abs. The T-cell
epitope remains unknown. Collectively, inborn errors of the
IL-6 pathway and their autoimmune phenocopies suggest that
IL-6 is crucial for immunity to bacterial diseases, including
staphylococcal skin diseases in particular, and for acute-phase
inflammatory responses. Consistent with this conclusion, occa-
sional bacterial skin and sinopulmonary infections, such as
cellulitis and pneumonia, possibly caused by S. aureus, have been
reported in patients following treatment with tocilizumab (a
humanized monoclonal Ab against the IL-6 receptor), sir-
ukumab, or siltuximab (anti–IL-6 mAbs; Aletaha et al., 2021;
Pawar et al., 2019; Rose-John et al., 2017; Table 1).

GM-CSF and infections
PAP is a severe lung disease characterized by the accumulation
of surfactant lipids and proteins in the alveolar space, resulting
in progressive respiratory failure and an increase in the risk of
infection (Trapnell et al., 2003). Rare patients with severe early-

onset PAP due to inborn errors of the GM-CSF pathway have
been reported since 1997, with AR deficiency of the βc receptor
chain (Dirksen et al., 1997) common to the receptors for IL-3, IL-
5, and GM-CSF, or AR deficiency of GM-CSFRα, encoded by the
CSF2RA gene (Martinez-Moczygemba et al., 2008; Suzuki et al.,
2008; Suzuki et al., 2010). These mutations may impair the
terminal differentiation of alveolar macrophages, through im-
pairment of the GM-CSF–dependent induction of expression of
the transcription factor PU.1 in these cells, as shown in GM-
CSF–deficient mice, resulting in a lower capacity to catabolize
surfactant (Trapnell et al., 2019). Several cases of super-
infections with unusual pathogens were reported from the early
1960s onward, before the identification of any genetic or im-
munological cause of PAP, some of which were caused by No-
cardia spp. (Pascual et al., 1989). In a literature review aiming to
identify all reported cases of PAP and unusual infections be-
tween 1950 and mid-2010, 75 cases were found, with nocardial
infections being the most frequent, identified in n = 32 (43%)
cases, with Nocardia asteroides as the causal agent in 19 cases
(Punatar et al., 2012). Most patients suffered from pulmonary
nocardiosis (n = 24), with or without infections at other sites,
including the central nervous system (CNS, n = 6; Punatar et al.,
2012). Other infections were also reported in these patients:
mycobacterial (n = 28, 37%) in some, mostly due toM. tuberculosis
(n = 21, 75%), with a few cases of Mycobacterium kansasii (n = 4,
14%) orMycobacterium avium (n = 3, 11%) infections, or fungal in
others (n = 15, 20%), mostly caused by Aspergillus spp. (n = 5,
33%), Cryptococcus spp. (n = 6, 40%), or Histoplasma capsulatum
(n = 4, 27%; Punatar et al., 2012). Human GM-CSF is thus re-
quired for the efficient removal of surfactant by alveolar mac-
rophages, and thereby and/or by hitherto unknownmechanisms
for pulmonary defense against several pathogens, including
Nocardia and Cryptococcus in particular. Yet, the rare patients
with inborn errors of the GM-CSF receptor had PAP but no
documented infection. There is therefore no causality between
GM-CSF deficiency and nocardiosis or cryptococcosis.

Neutralizing auto-Abs against GM-CSF
High titers of neutralizing auto-Abs against GM-CSF have been
reported in patients with idiopathic PAP worldwide since 1999
(Kitamura et al., 1999; Seymour and Presneill, 2002), in about
90% of the more than 400 PAP cases reported (Trapnell et al.,
2019). These patients typically developed symptoms in adult-
hood (Seymour and Presneill, 2002). In addition to typical res-
piratory infections, these patients also displayed pulmonary and
extrapulmonary (e.g., CNS) infections with various pathogens,
including Nocardia spp., mycobacteria, Histoplasma spp., Cryp-
tococcus spp., and Aspergillus spp. These infections may be sec-
ondary to PAP, the use of steroids, and/or impaired GM-CSF
signaling directly compromising alveolar macrophage immunity
to these pathogens (Punatar et al., 2012). Since 2013, high titers
of IgG (mostly IgG1) auto-Abs neutralizing 10 ng/ml GM-CSF
(plasma diluted 1/10) have been found in patients with adult-
onset isolated idiopathic disseminated disease mostly due to
Cryptococcus spp., almost exclusively Cryptococcus gattii (Applen
Clancey et al., 2019; Browne et al., 2012a; Crum-Cianflone et al.,
2017; Demir et al., 2018; Huynh et al., 2020; Kuo et al., 2017;
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Panackal et al., 2017; Perrineau et al., 2020; Rosen et al., 2013;
Saijo et al., 2014; Stevenson et al., 2019; Viola et al., 2021), No-
cardia spp. (Rosen et al., 2015), or more rarely, Aspergillus spp.
(Arai et al., 2015). Some of these patients eventually developed
PAP after their infectious disease (Rosen et al., 2013). The brain
and lungs were the most frequently affected organs. Most of the
patients were male (72%) and of various ancestries. A recent
genome-wide association study of autoimmune PAP in patients
and controls of Japanese ancestry found that the HLA class II allele
HLA-DRB1*08:03, which is common in Asian populations (e.g., 8.3%
in Japanese individuals) but very rare or absent in other pop-
ulations, including Europeans (e.g., 0.3% in Germans, 0% in Ital-
ians), was associated (P = 0.035) with high levels of anti–GM-CSF
auto-Abs in patients, suggesting an underlying genetic predisposi-
tion for the production of these auto-Abs, at least in individuals of
Asian ancestry (Sakaue et al., 2021). In contrast, no HLA class II
allele was associated with these auto-Abs in a study of 47 European
patients with PAP (Anderson et al., 2019). The T and B cell epit-
opes remain unknown. Thus, studies of inborn errors of GM-
CSF and their autoimmune phenocopies suggest that GM-CSF is
a crucial cytokine for immunity to Nocardia and Cryptococcus
spp., particularly in the lungs and CNS, and that patients with
idiopathic isolated cryptococcosis or nocardiosis may suffer from
inborn errors of the GM-CSF pathway. Several anti–GM-CSF
(lenzilumab/KB003, namilumab/AMG203, TJ003234, gimsilu-
mab, otilimab/GSK3196165) or anti–GM-CSFRα (mavrilimumab)
mAbs have been developed for clinical use in patients with
various conditions (e.g., severe asthma, psoriasis, rheumatoid
arthritis, COVID-19, chronic myelomonocytic leukemia). Rare
infectious events have been reported (e.g., nasopharyngitis) with a
slightly higher incidence than that for the placebo group. However, to
our knowledge, no cases with features of PAP have been identified
(Molfino et al., 2016; Patnaik et al., 2020; Table 1). Overall, while it is
clear that inborn errors of and auto-Abs to GM-CSF underlie PAP, the
infections seen in these patients are relatively diverse and may be a
consequence of PAP itself (and its consequences, including steroid
therapy) and/or of a dysfunction of GM-CSF–dependent immunity,
especially in alveolar macrophages.

Concluding remarks
These studies provide a compelling evidence that autoimmunity
may not only be triggered by infection (Bigley and Cooper, 2021;
Knight et al., 2021), but that it can predate infection and be
causal for infectious disease. The findings reviewed here have
direct clinical implications for the diagnosis and management of
patients with auto-Abs against any of these four or five cyto-
kines. The depletion of auto-Abs or of the corresponding B cells
may prevent relapses of infection, as shown for mycobacterial
disease (Browne et al., 2012b; Czaja et al., 2014; Koizumi et al.,
2017; Pruetpongpun et al., 2016). The detection of these auto-Abs
before the occurrence of disease may lead to specific measures
being taken, such as vaccination against the pathogen, or
treatment with mAb against the pathogen, or early treatment
with exogenous recombinant cytokines (e.g., IFN-β) following
infection, as exemplified by COVID-19 (Vinh et al., 2021). The
detection of these auto-Abs may also constitute a contraindica-
tion for some vaccinations, such as vaccination with live

attenuated viruses in patients with auto-Abs against type I IFNs
(Bastard et al., 2021b). These studies also raise the possibility
that other infectious diseases may be caused by the same or
other auto-Abs directed against cytokines. For example, other
viral illnesses may develop due to the presence of auto-Abs
against type I IFNs, and mycobacterial diseases or diseases
caused by intramacrophagic microorganisms may develop due to
the presence of auto-Abs against type II IFN (Bastard et al., 2021a;
Shih et al., 2021). It will, therefore, be of interest to test for known
auto-Abs in various cohorts of patients with idiopathic infectious
diseases. Conversely, it may also be useful to test the hypothesis
that these auto-Abs protect against some cytokine-dependent
conditions (Uggenti et al., 2019). For example, it has been sug-
gested that auto-Abs against type I IFNs are associated with a
milder course of SLE (Gupta et al., 2016; Morimoto et al., 2011).
The discovery of new auto-Abs directed against cytokines is an-
other important challenge. Broad screening for auto-Abs in pa-
tients with infectious diseases would benefit from being
performed at least 1 yr after infection, as infections can themselves
trigger the production of various auto-Abs. This search would also
benefit from the discovery of new inborn errors of cytokines.

These studies also pose more fundamental biological ques-
tions. A first set of questions concerns their causes. The pro-
duction of auto-Abs against type I IFN and IL-17 may result from
IEI impairing T cell tolerance (Kisand et al., 2010; Meager et al.,
2006; Puel et al., 2010a), but little is known about the genetic
basis of other auto-Abs. All the various IEI underlying type I IFN
auto-Abs impair T cell tolerance in the thymus or the periphery
(Bastard et al., 2021c; Bastard et al., 2020b; Rosenberg et al.,
2018; Walter et al., 2015). The sudden increase in the produc-
tion of auto-Abs against type I IFNs in individuals over the age of
60 yr is another mystery (Bastard et al., 2021a). This increase
may be due to genetic or epigenetic causes, which may be
germline or somatic. The distribution of these auto-Abs by age,
sex, and ancestry is known only for those directed against type I
IFNs (age, sex) and type II IFN (ancestry; Bastard et al., 2021a;
Bastard et al., 2020b; Browne et al., 2012a; Shih et al., 2021). It
will also be important to determine the distribution of auto-Abs
against other cytokines in the general population. The East Asian
predominance of auto-Abs against type II IFN reflects the higher
frequency of predisposingHLA-DRB1 alleles in these populations
(Chi et al., 2013; Ku et al., 2016; Pithukpakorn et al., 2015),
raising questions about possible HLA associations for other anti-
cytokine auto-Abs, as suggested for anti–GM-CSF auto-Abs in
PAP patients of Japanese ancestry (Sakaue et al., 2021). Another
fundamental question is the nature of the cytokine-specific Igs
and their B cell epitopes, which are known only for auto-Abs
against type II IFN (Lin et al., 2016) and IL-6 (Nanki et al., 2013).
The high prevalence of auto-Abs against type I IFN in the elderly
European population, and in almost all patients with APS-1, to-
gether with the diversity of the type I IFNs recognized, suggests
that there is unlikely to be an HLA association and implies the
existence of multiple T cell epitopes, or a promiscuous T cell
epitope. Auto-Abs against IL-17A/F are also found in most APS-
1 patients. Investigations of the causes, nature, distribution, and
consequences of known and newly discovered auto-Abs against
cytokines promise to be an exciting area of study.
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