
TECHNICAL ADVANCES AND RESOURCES

Analysis of classical neutrophils and
polymorphonuclear myeloid-derived suppressor cells
in cancer patients and tumor-bearing mice
Filippo Veglia1*, Ayumi Hashimoto2*, Harsh Dweep2, Emilio Sanseviero2, Alessandra De Leo1, Evgenii Tcyganov2, Andrew Kossenkov2,
Charles Mulligan3, Brian Nam3, Gregory Masters3, Jaymala Patel4, Vipul Bhargava4, Patrick Wilkinson4, Denis Smirnov4,
Manuel A. Sepulveda4, Sunil Singhal5, Evgeniy B. Eruslanov5, Razvan Cristescu6, Andrey Loboda6, Yulia Nefedova2, and
Dmitry I. Gabrilovich7

In this study, using single-cell RNA-seq, cell mass spectrometry, flow cytometry, and functional analysis, we characterized the
heterogeneity of polymorphonuclear neutrophils (PMNs) in cancer. We describe three populations of PMNs in tumor-bearing
mice: classical PMNs, polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs), and activated PMN-MDSCs with
potent immune suppressive activity. In spleens of mice, PMN-MDSCs gradually replaced PMNs during tumor progression.
Activated PMN-MDSCs were found only in tumors, where they were present at the very early stages of the disease. These
populations of PMNs in mice could be separated based on the expression of CD14. In peripheral blood of cancer patients, we
identified two distinct populations of PMNs with characteristics of classical PMNs and PMN-MDSCs. The gene signature of
tumor PMN-MDSCs was similar to that in mouse activated PMN-MDSCs and was closely associated with negative clinical
outcome in cancer patients. Thus, we provide evidence that PMN-MDSCs are a distinct population of PMNs with unique
features and potential for selective targeting opportunities.

Introduction
Polymorphonuclear neutrophils (PMNs) are the most abundant
innate immune cells, with a well-defined role in protection of
the host from different pathogens and in tissue remodeling. In
recent years, their role in regulation of adaptive immunity has
emerged. It is especially evident in cancer. PMNs are important
components of the tumormicroenvironment (TME; Coffelt et al.,
2016; Shaul et al., 2020). PMNs in cancer are functionally di-
verse (Mishalian et al., 2017; Ng et al., 2019). PMNs have been
implicated in antitumor activity (Fridlender et al., 2009; Granot
et al., 2011; Singhal et al., 2016). However, a large body of evi-
dence indicates that their potent role in negative regulation of
immune responses in cancer and their presence in cancer pa-
tients is associated with poor prognosis and therapeutic out-
comes (Zhou et al., 2018). Immune suppressive activity of PMNs
is attributed to polymorphonuclear myeloid-derived suppressor
cells (PMN-MDSCs), a population of pathologically activated
PMNs. These cells suppress the functions of T lymphocytes, B

lymphocytes, and natural killer cells and also promote tumor
progression and metastasis via nonimmune mechanisms
(Condamine et al., 2015b; Veglia et al., 2018). The question is
how to separate PMNs with neutral or antitumor activity from
those with protumorigenic activity. Can these two populations
of cells coexist in the same tumor hosts? If yes, what is the re-
lationship between these cells? Answers to these questions are
important not only for better understanding of the biology of the
cells, but also for the development of selective targeting of PMN-
MDSCs.

Until now, separation of PMN-MDSCs from other PMNs in
the same mouse was not possible due to the absence of specific
markers. Therefore, all PMNs in tumor-bearing (TB) mice are
considered PMN-MDSCs, based on the fact that immune sup-
pressive activity was found only in PMN-MDSCs from TB mice,
but not in PMNs from tumor-freemice. Thus, the nature of PMN
diversity in cancer and the specific contribution of different
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populations of cells to regulation of immune function and tumor
progression has remained unclear.

In cancer patients, PMN-MDSCs can be separated from other
PMNs by gradient centrifugation. This allows for identification
of a distinct transcriptomic profile of PMN-MDSCs and identi-
fication of LOX-1 as a marker of human PMN-MDSCs (Condamine
et al., 2016). Recent studies confirmed the clinical relevance of this
marker (Kim et al., 2019; Kumar et al., 2017; Si et al., 2019).
However, one marker may not fully identify the population of the
cells, and the coexistence of different groups of PMNs in cancer
patients has remained unclear. A number of studies of the tumor
landscape demonstrated a strong negative prognostic value of
PMNs in tumor tissues (Gentles et al., 2015; Zhang et al., 2020).
However, what population of PMNs contributes to this phenom-
enon remained unknown.

Recent studies established a gene signature of PMNs and
PMN-MDSCs at the single-cell level from transcriptomes ob-
tained from sequenced Gr1+ cells in mice and CD45+ cells in
humans. Using single-cell RNA sequencing (scRNA-seq), it has
been confirmed that PMNs isolated frommice with spontaneous
mammary tumors showed a gene signature that was different
from PMNs from control mice. Importantly, the MDSC state was
largely conserved between mice and humans (Alshetaiwi et al.,
2020). Although it helps to characterize MDSCs, it does not
capture the PMN repertoire. The biggest challenge is identifi-
cation of the PMN profile in tumor tissues. Low transcriptional
activity of these cells may contribute to the lack of critical in-
formation. To overcome these limitations and obtain a com-
prehensive understanding of the heterogeneity of PMNs in
cancer, we used scRNA-seq in a pure population of PMNs fol-
lowed by cell mass spectrometry, flow cytometry, and functional
analysis. We identified molecular, phenotypic, and functional
characteristics of PMN-MDSCs and their relations to other
PMNs. We determined that populations of classical PMNs and
PMN-MDSCs coexist in the same TB hosts and identified po-
tential marker of mouse PMN-MDSCs.

Results
PMN-MDSCs represent two distinct populations of
neutrophils in TB mice
To assess the heterogeneity of PMNs in cancer, we employed
scRNA-seq. Since transcriptional activity of PMNs is much
lower than most other cells in TME, RNA-seq of unseparated
cells in TME usually results in underrepresentation of transcripts
associated with PMNs. Therefore, we sorted CD45+Ly6G+Ly6Clow

PMNs (Fig. 1 A) and processed for scRNA-seq using the 10x Ge-
nomics Chromium platform. We evaluated PMNs from spleens of
tumor-freemice (n = 3), as well as from spleens (n = 3) and tumors
(n = 4) of Lewis lung carcinoma (LLC) TB mice. In total, 66,854
single cells expressing at least 400 genes (each gene with at least
one count) were considered for further analysis. The scran (Lun
et al., 2016) and scater (McCarthy et al., 2017) packages were used
to normalize the raw counts to control cell-specific biases. These
normalized counts were then supplied to Seurat package (v3.1.1;
Stuart et al., 2019) to perform batch correction, clustering, and
marker identification for the predicted cell clusters.

To determine cell identity, we matched our dataset with two
separate public mouse datasets (Heng et al., 2008; Benayoun
et al., 2019) using singleR package (v1.0.0; Aran et al., 2019).
Based on transcriptomic results, we projected them into two
dimensions with Uniform Manifold Approximation and Projec-
tion (UMAP; Becht et al., 2018). A PMN-specific signature was
identified in 92.29% of all cells analyzed. A macrophage signa-
ture was found in 1.29%, monocytes in 1.96%, and B cells in 3.18%
of all cells. The remaining cell types were either undetectable or
<0.3%. Cells with PMN signature were selected for further
analysis. Unbiased, graph-based clustering identified three main
clusters of PMNs with different representation in naive and TB
mice, referenced as PMN1, PMN2, and PMN3. Spleen PMNs
from control and TB mice contained only two clusters (PMN1
and PMN2), whereas tumor-infiltrating PMNs had all three
clusters (Fig. 1 B). Almost all (95%) of control spleen PMNs were
represented by the PMN1 cluster. In contrast, 30% of PMNs in
spleen from TB mice were PMN2 cells. In tumors, the PMN1
cluster represented <30% of PMNs, with the majority of PMNs
belonging to the PMN3 cluster (Fig. 1 C). When compared with
PMN1, the PMN2 cluster demonstrated enrichment for genes
associated with immature neutrophils and PMN-MDSC–
associated genes (Ngp, Ltf, Cd177, Anxa1, Mmp8, S100a8, S100a9,
Cebpe, Ltb4r1, and Cybb; Fig. 1 D), suggesting that PMN2 repre-
sents the population of PMN-MDSCs. PMN3 also had higher
expression of those genes than in PMN1; however, surprisingly,
their expression was lower than in PMN2 (Fig. 1 D). Instead, the
PMN3 cluster was enriched for transcripts of chemokines and
chemokine receptors as well as genes associated with cell ac-
tivation, inflammation, and ER stress (Ccl4, Ccl3, Cxcl2, Cxcl3,
Spp1, Il1b, Nfkbia, Socs3, Mif, Klf6, Atf3, Ptgs2, and Xbp1; Fig. 1 E).
In ingenuity pathway analysis (IPA) of differentially expressed
genes, the PMN3 cluster demonstrated upregulation of multiple
pathways associated with IL-6, HMGB1, TNFR1, IL-1, TLR sig-
naling, nitric oxide (NO), and ROS production, confirming the
activated state of these cells (Fig. S1). Thus, it appears that the
PMN1 cluster may represent classical PMNs; PMN2, PMN-
MDSCs; and PMN3, “activated” PMN-MDSCs.

We hypothesized that PMN2may be a transient stage tomore
potently activated PMN3 cells. Using computational trajectory
analysis, we assessed the relationship between the three pop-
ulations of PMNs. Scran normalized data were input into
Monocle3 (Cao et al., 2019), and batch correction, scaling, clus-
tering, trajectory prediction, and gene identification were per-
formed. PMN1was used as the initial stage (starting cells) for the
trajectory, assuming that the pseudotime reflects a direction of
possible transition from PMN1 classical cells to PMN2 and PMN3
types. Trajectory analysis revealed that PMN1 cells can trans-
form to either PMN2 or PMN3 by taking different paths, and
PMN2 are not transformed to PMN3 (Fig. 2). Thus, PMN2 is not
a transient state between PMN1 and PMN3 but may reflect
different pathways of PMN-MDSC activation in different
microenvironments.

CD14 is a marker of different populations of PMNs in TB mice
To better characterize the PMN3 population, we evaluated
the expression of transmembrane receptors. PMN3 cells had
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increased expression of several transcripts that encoded
proteins with known association with PMNs (Fig. S2 A). In-
terestingly, the PMN2 and PMN3 populations had increased
expression of Cd14, which is a marker of monocytic cells and is
expressed at much lower levels in granulocytes. To indepen-
dently test the hypothesis of the coexistence of different
populations of PMNs, we employed flow cytometry and flow
self-organizing maps (FlowSOM). FlowSOM is an algorithm
that allows for processing and analysis of high-dimensional
single-cell data for the identification of novel subpopulations
having specific combinations of markers. We designed a flu-
orescence antibody panel that included markers needed for
identification of neutrophils (LY6G, LY6C, CD11B, CD45, SI-
GLEC-F, and CD177), functional intracellular proteins

associated with PMN-MDSCs (induced NO synthase [iNOS],
S100A9, sXBPS1, and CD36), and surface markers identified by
scRNA-seq as associated with PMN2 and PMN3 clusters
(CD14, TREM1, and CD49d). By combining flow cytometry and
FlowSOM, we found that spleens of control mice had just one
main cluster of PMNs, whereas PMNs from spleens of TB mice
had two clusters, and tumor PMNs had three clusters (Fig. 3
A), which were similar to the clusters identified by scRNA-
seq. In tumors, expression of several proteins associated with
PMN-MDSCs was higher in the putative PMN3 population
than in the two others (Fig. 3 A). When evaluated separately,
no differences were observed in the expression of TREM1,
SIGLEC-F, CD49D, PD-L1, and CD84 between PMNs from naive
and TB mice (Fig. S2 B).

Figure 1. PMN clusters in TBmice. (A) Example of gating of PMNs. (B) Unsupervised clustering of PMNs. (C) Distribution of three PMN populations in spleen
and tumors. (D) Expression of genes associated with immune suppression in different clusters of PMNs. (E) Expression of genes associated with cell activation
and inflammation in different PMN clusters. Experiments were performed three times with spleen PMNs, three times with spleen PMNs from TBmice, and four
times with tumor PMNs.
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Expression of CD14 demonstrated a different pattern. It was
barely detectable in PMNs from spleens of tumor-free mice and
was almost exclusively expressed in PMNs from TB mice (Fig. 3
B). The expression of CD14 was much higher in tumor-
infiltrating PMNs than in spleen PMNs. Based on the expres-
sion of CD14, we defined three subsets of PMNs in spleen and
tumor tissues of TB mice: negative (CD14−), intermediately
positive (CD14int), and highly positive (CD14high; Fig. 3 B).
t-Distributed stochastic neighbor embedding (t-SNE) analysis
based on the expression of CD14 revealed segregation of PMNs
on three populations based on CD14 expression (Fig. 3 C). In
control spleens, CD14− PMNs represented >95% of all PMNs. By 4
wk after tumor injections, in spleens of LLC and EL4 TB mice,

the CD14int population increasedmarkedly to almost 40% of total
PMNs. In tumor tissues, CD14int and CD14high PMNs were the
dominant populations, representing >75% of all PMNs. CD14high

cells represented >30% of all PMNs (Fig. 3 D). Similar analysis
was performed in an orthotopic model of brain cancer
(GL261FL). Accumulation of CD14int PMNs was observed in
spleens ofmice on day 24 after tumor inoculation. In brain tissue
of TB mice, there was marked increase of both CD14int and
CD14high PMNs (Fig. 2 E). Using transplantable s.c. tumor models
(LLC, EL4, and CT26), we found that, among PMNs, CD14− cells
were gradually replaced with CD14int cells during tumor pro-
gression. A very small population of CD14high cells became vis-
ible in spleens by day 21, when tumors became bulky with 1.5 cm

Figure 2. Clustering of PMN cells and their tra-
jectory by Monocle3. Classical PMN cells (PMN1)
were used as initial stage for the trajectory. The forked
pseudotime trajectory suggests that transformation of
PMN1 into PMN3 does not involve a transient
PMN2 state.

Veglia et al. Journal of Experimental Medicine 4 of 20

Neutrophil heterogeneity in cancer https://doi.org/10.1084/jem.20201803

D
ow

nloaded from
 http://rupress.org/jem

/article-pdf/218/4/e20201803/1791787/jem
_20201803.pdf by guest on 02 D

ecem
ber 2025

https://doi.org/10.1084/jem.20201803


Figure 3. CD14 expression delineates three populations of PMNs in TB mice. (A) FlowSOM clusters overlaid on a viSNE plot of PMN (left). Five samples
(five mice) per group from five independent experiments were concatenated before applying viSNE and FlowSOM. Heatmap generated using raw median
value of each marker expressed in each cluster identified (right). Spl, spleen; Tum, tumor. (B) Flow cytometric analysis of the expression of CD14 on
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in diameter (Fig. 3 F). In contrast, in tumor tissues, CD14int and
CD14high populations of PMNs represented >50% of PMNs from
the very early stages of tumor development, and their propor-
tion was not substantially increased with tumor progression.
Almost half of PMNs in tumors were CD14high cells (Fig. 3 F). In
the spleens of mice with brain tumors (GL261FL), we observed
the presence of a very small population of CD14high PMNs only at
a late time point (day 24). CD14int PMNs were present at early
time points (days 12 and 17) and were significantly increased at a
late stage (day 24). In brain tumors, CD14int and CD14high PMNs
were present at early time points, representing 60% of all PMNs
(Fig. 3 F).

The association of different populations of PMNs with
tumor stage was evaluated in a genetically engineered model
of spontaneous pancreatic cancer (KPC). This model allows
for distinction of relatively early stages of pancreatic cancer,
pancreatic intraepithelial neoplasia (PanIN), and fully devel-
oped pancreatic ductal adenocarcinoma (PDAC; Hingorani et al.,
2005; Kaplan-Lefko et al., 2003). Similar to the data from
transplantable tumor models, there was a stage-dependent re-
placement of CD14− PMNs with CD14int and CD14high PMNs in
spleen. In tumors, CD14int and CD14high PMNs represented vast
majority of PMNs, even at PanIN stage. With progression of
tumors to PDAC stage, CD14high PMNs became predominant
population of PMNs (Fig. 2 G). When the absolute number of
PMNs was evaluated, it was evident that tumor progression
was associated with expansion of all three populations of PMNs
in spleens, including CD14− cells. In contrast, in tumor tissues of
LLC TB mice, the increase in CD14− PMNs during tumor pro-
gression was very small, and it was undetectable in EL4 and
KPC tumors (Fig. S2, C and D).

Since CD14 is a recognized marker of monocytic cells, we
tested the hypothesis that PMN-MDSCs may acquire phenotype
of monocytic cells. PMNs and PMN-MDSCs were isolated from
bone marrow (BM) of tumor-free and GL261FL TB mice and
cultured with GM-CSF for 24 h. We found no presence of
monocytic cells after the culture (Fig. 4, A and B). Next, we as-
sessed the possible presence ofM-MDSCswithin the populations
of tumor CD14−, CD14int, and CD14high PMNs (Fig. 4 C). No
presence of Ly6ChighLy6G−CCR2+ M-MDSCs was found in any
PMN population (Fig. 4 D).

Three populations of tumor PMNs (CD14−, CD14int, and
CD14high) were sorted, and bulk RNA-seq analysis was per-
formed. We compared expression profiles of these three PMN
populations with three clusters obtained by scRNA-seq analysis
(PMN1–3). We found that CD14− PMNs were the most similar to
the PMN1 group, and CD14high were the most similar to the

PMN3 group (Fig. 4 E). There was a significant overlap of genes
that were different between PMN3 versus PMN1 and genes
different between cells with high versus low CD14 (P < 10−10 by
Fisher’s exact test; Fig. 4 F); the top 50 such genes are shown in
Fig. 4 G. Thus, tumor progression is associated with accumula-
tion of a CD14high population of PMNs in spleens. Inside the
tumors, these cells were dominant from the early stages of tu-
mor growth.

Functional characterization of the populations of PMNs
Next, we sought to identify functional characteristics of pop-
ulations of PMNs in TB mice. PMNs were sorted based on the
expression of CD14 marker. No clear morphological differences
between populations of PMNs were evident (Fig. S3 A). Argi-
nase1 (encoded by Arg1) and NO (produced by inducible NO
synthase, Nos2) are major contributors to MDSC immune sup-
pressive activity (Veglia et al., 2018). We observed markedly
higher expression of Arg1 in tumor PMNs as compared to spleen
PMNs. CD14high tumor PMNs had substantially higher expres-
sion than other populations of tumor PMNs. High Nos2 expres-
sion was associated exclusively with the CD14high population of
tumor PMNs (Fig. 5 A). Expression of Arg1 and Nos2 in spleen
PMNs was substantially lower than in tumor PMNs; however, it
was also associated primarily with CD14high PMNs (Fig. 5 A).
PGE2 production is another major mechanism of PMN-MDSC
activity (He et al., 2018; Veglia et al., 2019). PGE2 synthesis is
controlled by two enzymes, COX2 (encoded by Ptgs2) and PTGES
(encoded by Ptges). We found substantially higher expression of
Ptgs2 in tumor CD14high PMNs than in any other PMN popula-
tion. Tumor CD14int PMNs but not CD14− had higher expression
of Ptgs2 than control CD14− PMNs. High Ptges expression was
associated with all three populations of tumor PMNs (Fig. 5 B).
We have previously identified fatty acid transport protein
2 (FATP2) encoded by Slc27a2 as selectively upregulated in PMN-
MDSCs and involved in their suppressive activity (Veglia et al.,
2019). We found that the expression of Slc27a2 was higher in
CD14int PMNs than in CD14− PMNs. Expression of this gene in
CD14high PMNs in spleens and tumors was markedly higher than
in CD14− and CD14int PMNs (Fig. 5 C). Expression of Cd274 that
encodes PD-L1 was dramatically higher in tumor CD14high PMNs
than in other populations of PMNs. No differences in the ex-
pression of S100a9 were seen between the populations of spleen
PMNs. In contrast, tumor CD14high PMNs expressed substan-
tially higher S100a9 than tumor CD14− PMNs (Fig. 5 C). We also
assessed the expression of some surface proteins associated with
PMN-MDSC. In EL4 TB mice, spleen CD14int PMNs expressed
markedly higher CD49D, SIGLEC-F, PD-L1, and TREM1 proteins

tumor-associated PMNs. Typical result of five experiments is shown. (C) Expression of CD14 in FlowSOM clusters overlaid on viSNE plot. Typical example of
five experiments is shown. (D) Frequency of CD14−, CD14int, CD14high PMNs in spleens of control mice and spleens and tumors of LLC and EL4 TBmice (n = 5–8
mice per group, from three independent experiments). Data are presented as mean ± SD. For comparisons between groups, ANOVA with correction for
multiple comparisons was used. *, P < 0.05; **, P < 0.01; ****, P < 0.0001. (E) GL261FL cells or vehicle were injected intracranially into mice. Frequency of PMN
subsets in control and TB mice, analyzed by flow cytometry. Mean and SD are shown (n = 3). Experiments were reproduced twice. **; P < 0.01; ***, P < 0.001;
****, P < 0.0001 in two-sided Student’s t test. (F) Kinetics of expansion of PMNs in spleen and tumors of indicated tumor models (n = 5 mice per group, from
five independent experiments). *, P < 0.05; **, P < 0.01; ***, P < 0.001. (G) Expansion of PMNs in spleen and pancreatic tumors of KPC mice (n = 5 mice per
group from three experiments). Data are presented as mean ± SD. For comparisons between groups, ANOVA with correction for multiple comparisons was
used. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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than CD14− PMNs. The expression of these proteins was even
higher in CD14high PMNs (Fig. 5 D). Similar results were ob-
tained in LLC TB mice (Fig. S3 B).

Our data demonstrated markedly higher presence of CD14high

PMNs in tumors than in spleens. If CD14high PMNs represented
more potent PMN-MDSCs, then tumor PMNs would have more
suppressive activity than spleen PMN-MDSCs. We tested this
concept in side-by-side experiments using pull-down with

magnetic beads of Ly6G+ PMNs from spleens and tumors and
determined that on a per-cell basis, tumor PMNs were much
more suppressive than spleen PMNs in LLC TB mice (Fig. 6 A).
Next, we assessed the ability of different populations of PMNs in
tumors to suppress T cell function. FACS sorting of PMN-MDSCs
impaired their functional activity because of the high sensitivity
of these cells to sorting. However, it was unavoidable due to the
requirements to use several surface markers on the same cell.

Figure 4. Characteristics of PMNs with different expression of CD14. PMNs were sorted from BM obtained from control and GL261FL TB mice and
cultured for 24 h in the presence of GM-CSF. (A) Representative gating strategy used for sorting. (B) Frequency of monocytic cells differentiated from PMNs
isolated from tumor-free or TB mice. Experiments were performed twice with the same results. (C and D)Myeloid cells were isolated from GL26FL tumors on
day 24 after tumor injections. (C) Gating strategy used for the identification of PMNs and their subsets in brain tumor tissue. (D) M-MDSC
(Ly6ChighLy6G−CCR2+) present in different populations of PMNs. Ly6Chigh M-MDSC were used as positive controls of staining. Experiments were performed
three times with the same results. (E) Correlation between three main single-cell clusters and three CD14 level groups from bulk RNA-seq. Correlation was
done on 185 genes that passed FDR <5% threshold in both single-cell and bulk RNA-seq. (F) Overlap between single-cell PMN3/1 clusters and bulk RNA-seq
high/negative CD14 cells. (G) Top 50 genes overlapped between single-cell and bulk RNA-seq in comparison between PMN3 versus PMN1 and high versus low
CD14.
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PMNs were sorted from tumors and assessed in antigen-specific
suppression assays. CD14− PMNs had no detectable suppressive
activity. CD14int PMNs were weakly suppressive, whereas
CD14high PMNs demonstrated more potent suppression (Fig. 6, B
and C). In another tumor model (EL4 lymphoma), we compared
side-by-side the suppressive activity of different populations of
PMNs in spleens and tumors. Tumor CD14high PMNs had more
potent activity than spleen CD14high PMNs. However, in both,
spleen and tumor CD14high PMNs showed substantially higher
suppressive activity than CD14int PMNs. CD14int PMNs were

more suppressive than CD14− cells, which had little suppressive
activity (Fig. 6 D). Together with the gene expression data, these
functional data indicated that CD14high cells are potently sup-
pressive cells and probably major contributors to the suppres-
sive activity associated with PMN-MDSCs.

We recently identified monocyte-like precursors of PMN-
MDSCs (MLPGs) responsible for the generation of a substantial
proportion of PMN-MDSCs in TB mice (Mastio et al., 2019).
Since CD14 is a monocytic differentiation marker, we asked
whether there is a specific differentiation pathway of CD14int/high

Figure 5. Expression of genes related to PMN-MDSC activity in different populations of PMNs. (A–C) Expression of indicated genes by qPCR in different
populations of PMNs isolated from spleen and tumors of LLC TB mice. Four experiments were performed. (D) Expression of selected markers by flow cy-
tometry in the populations of PMNs from tumors of LLC TB mice (n = 4 per group). All data are presented as mean ± SD. P values were calculated in ANOVA
with correction for multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Figure 6. Suppressive activity of PMN in TB mice. (A) Antigen-specific suppressive activity of PMN-MDSCs isolated from spleens and tumors of LLC TB
mice (n = 8 mice per group). Changes from T cell proliferation in the absence of PMNs (100%) are shown. (B) Representative flow cytometric analysis of
proliferation of CD8+ T cells upon stimulation with cognate antigen with or without PMNs isolated from tumors of LLC TB mice. (C) Proliferation of antigen-
specific T cells in the presence of different populations of PMNs isolated from tumors of LLC TBmice. Changes from T cell proliferation in the absence of PMNs
(100%) are shown. n = 9 mice per group. (D) Suppressive activity of PMNs isolated from spleen and tumors of EL-4 TB mice. PMNs were sorted from spleens
and tumors of EL-4 TB mice 3 wk after tumor inoculation. PMNs were added to splenocytes from PMEL mice at a 1:1 ratio in the presence of cognate peptide.
Proliferation of T cells was measured as dilution of Cell Trace by flow cytometry (n = 9). (E) Frequency of PMN populations in BM of naive (n = 4) and TB (n = 4)
mice. (F) Frequency of PMN populations after stimulation of BM-derived PMNs with TES in normal and hypoxic conditions (n = 6). (G) PMNs were isolated
using magnetic beads from BM of naive mice and were cultured with different concentrations of GM-CSF or 20% TES, with or without GM-CSF neutralizing
antibody. Frequency of PMNs was analyzed after 24 h by flow cytometry (n = 4). (H) Frequency of populations of PMNs in spleen and tumors of LLC TB WT,
S100A9Tg, or S100A9KOmice (n = 3). All data in the figure are presented as mean ± SD. For comparisons between groups, one-way ANOVA with correction for
multiple comparisons was used. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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PMN-MDSCs from MLPGs. MLPGs (CD11b+Ly6G−Ly6ChighCD117+)
were isolated from BM of LLC-bearing CD45.2+ mice and trans-
ferred into sublethally irradiated naive CD45.1 mice. After 3 d,
splenic PMNs (CD11b+Ly6CintLy6G+) were analyzed. Consistent
with previous observations (Mastio et al., 2019), >90% of MLPG-
derived cells were PMNs. Most of PMNs were CD14−, with only a
small proportion of cells expressing CD14 marker. No differences
between MLPG-derived and host PMNs was observed (Fig. S3 C).
PMNs in BM contained very few CD14+ PMNs, and no differences
were observed between naive and TB mice (Fig. 6 E). Taken to-
gether, these results strongly suggest that the expression of CD14
on tumor PMN-MDSCs was not the result of specific pathways of
differentiation in BM, but probably the effect of local factors in the
microenvironment. To test this hypothesis, we isolated PMNs
from BM of naive mice and cultured them for 24 h in the presence
of tumor explant supernatants (TESs) and (or) hypoxia (0.5% O2).
GM-CSF and TESs caused a very prominent increase in the pro-
portions of CD14int and CD14high PMNs. TESs caused a stronger
increase of CD14high PMNs than GM-CSF. Hypoxia alone caused an
increase in the presence of CD14int and CD14high PMNs (Fig. 6 F).
To assess the role of GM-CSF in induction of CD14high PMNs by
TESs, we isolated PMNs from BM of naive mice using magnetic
beads and cultured them for 24 h with GM-CSF or TESs in the
presence of GM-CSF blocking antibody. As expected, neutralizing
GM-CSF antibody completely abrogated the effect of GM-CSF on
accumulation of CD14high PMNs. GM-CSF antibody reduced the
effect of TESs on CD14high accumulation (Fig. 6 G). However, it did
not abrogate this effect. These data indicate that TES-derived GM-
CSF contributes to regulation of CD14 expression on PMNs, but
other tumor-derived factors also contribute to this phenomenon.

Upregulation of S100A8/A9 protein is one of the hallmarks of
PMN-MDSCs (Bronte et al., 2016). Our data showed association
of S100a9 expression with CD14high PMN-MDSC in tumors (Fig. 5
C). We asked whether S100A8/A9 could influence the expres-
sion of CD14 on PMNs. To test this hypothesis, we evaluated
PMNs in S100A9 transgenic (Tg) mice that overexpress S100a9
and in S100A9 knockout (KO) mice (Cheng et al., 2008; Manitz
et al., 2003; Ortiz et al., 2015). LLC was established s.c., and
spleens and tumors were evaluated 3 wk after tumor inocula-
tion. PMNs from S100A9Tg LLC TB mice had a markedly higher
presence of CD14high PMNs in both spleens and tumors than WT
mice (Fig. 6 H). The proportion of CD14int and CD14high PMNs in
S100A9KO mice was the same as in WT mice. These results
suggest that S100A9 might contribute to upregulation of CD14
expression on the surface of PMNs.

We investigated whether CD14 expression can also define
populations of PMNs in a model of acute infection. To this end,
we used acute lymphocytic choriomeningitis virus (LCMV)
infection (Armstrong). Spleens were collected on day 7 after
infection. Infection was associated with the expansion of PMNs
in spleens and an increase in the presence of CD14int PMNs but
not CD14high cells (Fig. S3 D). CD14int PMNs in LCMV-infected
mice did not have upregulation of the major genes associated
with PMN-MDSC activity (Fig. S3 E) and lacked suppressive
activity (Fig. S3 F). Thus, our data indicated that during tumor
progression, two distinct populations of PMN-MDSCs gradually
replaced classical PMNs in peripheral lymphoid organs. In

tumor sites, potently suppressive CD14high PMN-MDSCs were
present at very early stages of tumor growth.

PMN-MDSC gene signature in tumors is associated with
negative clinical outcome in cancer patients
We compared the gene expression profile (GEP) of the total
population of PMNs (CD45+CD14−CD15+CD66b+) sorted from
tumors of cancer patients and compared it with peripheral blood
PMNs with the same phenotype from heathy donors and the
same cancer patients. Consistent with previous observations
(Condamine et al., 2016), peripheral blood PMNs from healthy
donors and cancer patients demonstrated a similar GEP, which
probably reflects the relatively small proportion of PMN-MDSCs
among the total PMN population. Only 33 genes were differen-
tially expressed (false discovery rate [FDR] <5%). In contrast, the
GEP of tumor PMNs was quite distinct, with >1,400 genes dif-
ferentially expressed (Fig. 7 A). The top 50 changed genes are
shown in Fig. S4 A. There was a substantial overlap in genes
overexpressed in tumor PMNs with the previously identified
signature of blood PMN-MDSCs (Condamine et al., 2016). In tu-
mor PMNs, IPA revealed enrichment of pathways associated with
inflammatory response, iNOS signaling, fatty acid β oxidation, and
ER stress response (Fig. S4 B). This was confirmed by the analysis
of gene regulators. Among increased regulators were NF-κB
complex, IL1, IFNγ, IL6,HGF, STAT1, ATF4, CEBPB, and thapsigargin
(Fig. 7 B). We also compared the expression of transmembrane
receptors in PMNs from tumor and peripheral blood of cancer
patients. TLR3, 7, 4, CD14, TREM1, and CD40 were among those
upregulated in tumor PMNs (Fig. S4 C). Mouse and human genes
associated with PMN-MDSCs are presented in Table 1.

We asked whether the gene signature of tumor PMN-MDSCs
was associated with clinical outcome across different types
of cancer. A gene expression fingerprint developed based on
all PMN-associated genes has been projected into two large
cohorts of GEPs from human tumor samples (The Cancer
Genome Atlas [TCGA] and Moffitt datasets) and analyzed for
coherence and consistency. The average coexpression of the
genes in the fingerprint was found to be 0.6 in TCGA and
0.65 in Moffitt, indicating highly coherent expression. A
metaprofile corresponding to the average of the genes in the
fingerprint was then used for further analysis. 50 genes were
found to be coexpressed with tumor PMN-MDSC signature, with
a correlation coefficient >0.6 (Fig. 7, C and D). Patients with high
level of expression of PMN-MDSC signature had substantially
shorter survival than patients with lower expression of that
signature in both Moffitt and TCGA databases. The hazard ratio
(HR) for the Moffitt dataset was 1.54, and for the TCGA dataset,
1.7 (Fig. 7 E). We further explored the prognostic value of PMN-
MDSCs in tumor types with GEP of T cell–infiltrated tumors as it
has been defined previously (Ayers et al., 2018). This GEP was
shown to be associated with better clinical outcome (Ayers et al.,
2017). In patients with GEP of T cell–infiltrated tumors, high level
of PMN-MDSC signature was associated with markedly shorter
survival than low PMN-MDSC signature (Fig. 7 F). These data
suggest that tumor PMN-MDSCs are associated with negative
clinical outcome, even in patients with strong T cell infiltration
(based on GEP).We asked if the signature of classical PMNswould
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also be associated with negative clinical outcome. We used the
gene signature of LOX-1− PMNs identified in the peripheral blood
of cancer patients (Condamine et al., 2016). In the Moffitt dataset,
PMN signature was not associated with negative clinical outcome
(HR = 1.17), whereas in the TCGA dataset, this association of
markedly lower than in PMN-MDSCs (HR = 1.55; Fig. 7 G). In
the Moffitt dataset, PMN signature was not associated with
shorter survival in patients with strong T cell infiltration. In the
TCGA dataset, this association was markedly smaller than in the

PMN-MDSC signature (Fig. 7 H). Thus, tumor PMN-MDSCs, but
not PMNs, are strongly associated with negative clinical out-
come, even in patients with tumors infiltrated by T cells.

Identification of distinct populations of PMNs in
cancer patients
To evaluate the heterogeneity of PMNs in cancer patients, we
sorted CD45+CD14−CD15+CD66b+ PMNs from the peripheral
blood of healthy donors and cancer patients and performed

Figure 7. GEP of human tumor PMNs. (A) The number of differentially expressed genes (FDR <5%) between PMNs isolated from peripheral blood and
tumors. (B) Gene regulators enriched in tumor PMNs in comparison with peripheral blood PMNs from the same patients. (C and D) Genes found to be
coexpressed with PMN-MDSC signature, with correlation coefficient >0.6 after analysis of TCGA and Moffitt datasets. (E) Association of PMN-MDSC signature
with survival of patients in Moffitt and TCGA databases. (F) Association of PMN-MDSC signature with survival of patients with GEP of T cell infiltrated tumors.
(G) Association of PMN signature with survival of patients. (H) Association of PMN signature with survival of patients with GEP of T cell infiltrated tumors.
Number of samples analyzed, P values, and HRs are shown on graphs or presented as *, P < 0.05; ***, P < 0.001; ****, P < 0.0001.
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scRNA-seq. 10 distinct clusters could be defined in PMNs (Fig. 8
A). However, only four of them represented >5% of cells. Cluster
1 included 50% of all PMNs in healthy donors, but <5% in cancer
patients (Fig. 8 A). Pathway analysis revealed that this cluster
had markedly lower expression of genes associated with HMGB1
and HIF1α signaling, TREM1 signaling, MAPK signaling, IL-6, ER
stress, JAK/STAT signaling inflammation, and NO and ROS
production than other clusters (Fig. S5). Thus, this cluster of
PMNs had a GEP similar to that of classical nonactivated PMNs.
Cluster 2 represented 20–25% of PMNs in both healthy donors
and cancer patients. Pathway analysis did not reveal significant

differences between these two clusters, which may suggest that
clusters 1 and 2 could represent classical nonactivated PMNs. In
contrast, cluster 0 represented <8% of PMNs in healthy in-
dividuals and 40% of PMNs in cancer patients (Fig. 8 B). When
individual genes were compared between PMNs from healthy
donors and cancer patients, several genes associated with PMN-
MDSC signature (LDLRAP1, PRDM15, TIMP2, NPNT, DLG5, and
BAG1) were upregulated in patient PMNs (Fig. 8 C).

These results suggested the existence of at least two major
populations of PMNs in blood of cancer patients. However, de-
tailed characterization of these populations based on scRNA-seq
was very difficult due to low representation of the transcripts in
these cells. Therefore, we used cytometry by time of flight
(CyTOF). We assembled a cocktail of antibodies that allowed for
identification of different functional and phenotypical markers
known to be associated with PMNs in healthy donors and PMN-
MDSCs in cancer patients (Table S1). Samples were collected
from tumor tissues and peripheral blood of cancer patients and
healthy donors. PMNs were gated based on the expression of
CD15 and CD66b markers (Fig. 9 A). Two distinct populations of
PMNs were identified in tumors (Fig. 9, A and B). One popula-
tion (PMN1) with phenotype CD11b+CD15+CD16+CD66bhigh

Arg1+/−Lox1−pSTAT3−S100A9+, resembled classical PMNs, and
the other one (PMN2) had phenotype CD11bhighCD15high

CD66bhighCD33highArg1highNos2highS100A9highLox1high pSTA-
T3highp38+pSTAT1+, typical for PMN-MDSCs (Fig. 9 B). The
PMN2 population represented a substantial majority of PMNs in
tumors (70%; Fig. 9 C). In peripheral blood of cancer patients, the
same two populations of PMNs were evident (Fig. 9, D and E).
The proportions of PMN1 and PMN2 were equally represented
among PMNs in peripheral blood (Fig. 9 F). In contrast, in pe-
ripheral blood of healthy donors, the population of PMN1 rep-
resented most PMNs (>80%; Fig. 9 G). Because mouse data
demonstrated a specific role of CD14 in defining populations of
PMNs, we evaluated the expression of CD14 on human PMNs.
However, no detectable expression was observed in PMNs from
healthy donors or cancer patients.

Discussion
In this study, we identified three distinct populations of PMNs in
mice. PMN1 represented almost all PMNs in spleens of tumor-
free mice. During tumor progression, it was gradually replaced
by the PMN2 population, which had a GEP similar to that de-
scribed for PMN-MDSCs (Youn et al., 2012). It appears that
PMN1 is likely a population of nonactivated classical PMNs, as
opposed to PMN2, which had a GEP of PMN-MDSCs. In tumors,
a third population of PMNs was most prominent. These cells
appeared at the very early stages of tumor development and
remained the most abundant population of PMNs in tumors.
Although PMN3 cells had a gene profile similar to PMN-MDSCs,
they had high expression of genes associated with chemotaxis,
typically expressed by more mature PMNs. These cells also
showed activation of pathways of inflammation, NO, ROS,
mechanistic target of rapamycin, TREM1, and HMGB1 signaling.
All these pathways have been associated with suppressive
properties of MDSCs (Condamine et al., 2015a; Gabrilovich,

Table 1. Genes associated with mouse and human PMN-MDSC

Mouse Human

PMN-MDSC Activated PMN-MDSC PMN-MDSC

Ngp Ccl4 AQP9 LILRA5

Camp Ccl3 BCL2A1 LILRA6

Ltf Cxcl3 C19orf59 LIRRB2

Chil3 Jun C5AR1 LILRB3

Lcn2 Ccrl2 CCL18 LYN

Iftm6 Saa3 CCL20 MEFV

Lyz2 Spp1 CD300E MMP12

Cybb Gad45b CTSC NCF2

Serpinb1a Il1b CXCL1 OSM

Cd177 Ninj1 CXCL2 PLAUR

Anxa1 Clec4n CXCL3 PTAFR

Aldh2 Hcar2 CXCL5 S100A12

Mmp8 Basp1 CXCL6 S100A8

Adpgk Nfkbia CXCR1 S100A9

Dstn Btg1 CXCR2 SERPINB8

Arhgdib Il1rn EMR2 SLC11A1

S100a8 Ifrd1 EMR3 SOD2

AA467197 Txnip FCGR3B TREM1

Tkt Ccl9 FGR

Wfdc21 Ier3 FPR1

Capg Ier5 FPR2

Cebpe Rs1 GPR97

S100a9 Thbs1 HCK

Syn1 Cxcl1 HK3

Pglyrp1 Hilpda ICAM1

Ltb4r1 Hist1h1c IL15RA

Lgals3 Srgn IL1B

Tmsb10 Hspa5 IL1R2

Olfm4 Csf1 IL2RA

Hmgn2 Pgts2 IL6

Ceacam10 Xbp1 IL8

H2afz LILRA3

Genes shared between human and mouse PMN-MDSCs are shown in red.
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2017). These results indicate that in TME, PMN-MDSCs are
represented by the distinct group of cells with much stronger
activation and potentially more suppressive features than PMN-
MDSCs in peripheral lymphoid organs. This population coexists
not only with the small group of classical PMNs, but also with
less activated and less suppressive PMN-MDSCs. Contrary to our
initial expectations, computational trajectory prediction analysis
demonstrated that these two populations of PMNs had distinct
trajectories, suggesting that they were not directly linked.

scRNA-seq cannot address the question of functional diver-
sity of these cells. Therefore, we attempted to identify surface
molecules that could be associated with these populations. A
number of surface molecules were differentially expressed on
PMNs and PMN-MDSCs. However, only one, CD14, showed a
pattern of expression remarkably similar to three populations of
PMNs defined by RNA-seq: CD14−, CD14int, and CD14high. CD14 is
strongly positive in monocytes and most tissue macrophages.
Myeloblasts and other granulocytic precursors do not express
CD14, but neutrophils may be weakly positive. CD14 is a

glycosylphosphatidylinositol-anchored receptor, which together
with TLR4 and MD-2 forms the multireceptor complex that
recognizes LPS on the cell membrane (Jerala, 2007; Lloyd and
Kubes, 2006; McAvoy et al., 2011; Yoshino et al., 2000). Down-
stream signaling from that complex involves NF-κB, src family
kinase, and PLCγ 2 activation. The latter hydrolyzes membrane
phosphatidylinositol bisphosphate, resulting in generation of
inositol-triphosphate and diacylglycerol. This leads to activation
of NFAT transcription factors (Zanoni et al., 2009). Activation of
the NFAT pathway in dendritic cells can result in upregulation
of PGE2 (Zanoni et al., 2012) via the transcription of Ptges
(Zanoni and Granucci, 2012). Remarkably, PMN3 showed up-
regulation of LPS-mediated MAPK signaling, dendritic cell
maturation signaling, TLR signaling, and NFAT signaling. These
pathways were not upregulated in the PMN2 population. This
confirmed that CD14 expression is associatedmostly with PMN3.

CD14− PMNs represented almost 95% of PMNs in spleens of
tumor-free mice, suggesting that CD14− PMNs may represent
classical PMNs. Analysis of the expression of genes directly

Figure 8. Clustering of peripheral blood human PMNs. (A) t-SNE plots of cells clustering (n = 10 clusters) of PMNs from healthy donors and cancer
patients. (B) Percentage distribution of PMN cells among different clusters. (C) Dot plot of PMN-MDSC–associated genes that are upregulated in PMN from
cancer patients. The red and blue colors indicate up- and downregulated expression, respectively. BH, PMN from healthy donors; BTB, PMN from cancer
patient.
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Figure 9. Analysis of populations of PMNs in cancer patients by CyTOF. (A) Representative viSNE analysis of PMNs from tumors. CD66b+CD15+ PMNs
were gated and the analysis of markers was performed within total population of PMNs. (B) Heatmap generated using raw median values of selected markers
and proportion of PMN1 and PMN2 among all PMNs (n = 4). (C) The proportion of PMN1 and PMN2 populations among PMNs from tumors (n = 4).
(D) Representative viSNE analysis of PMNs from peripheral blood of cancer patients. Analysis was performed as described in Fig. 9 A. (E) Heatmap generated
using raw median values of selected markers and proportion of PMN1 and PMN2 among all PMNs (n = 4). (F) The proportion of PMN1 and PMN2 populations
among PMNs from peripheral blood of cancer patients (n = 4). (G) The proportion of PMN1 and PMN2 populations among PMNs from peripheral blood of
healthy donors (n = 4).
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implicated in suppressive activity of PMN-MDSCs (arg1, nos2,
ptgs2, and slc27a2) demonstrated that CD14− PMNs from TB mice
had either the same or only slightly elevated expression of these
genes as compared with CD14− PMNs from tumor-free mice.
These cells in tumors lacked T cell suppressive activity. CD14int

PMNs had modest upregulation of immune-suppressive genes
and suppressive activity. In contrast, CD14high PMNs had strong
upregulation of immune suppressive genes and potent sup-
pressive activity. CD14high PMNs also expressed higher levels of
cd274 (encoding PDL1), PDL1, and SIGLEC F that recently was
found to be associated with PMN-MDSCs (Engblom et al., 2017).
Increased expression of slc27a2 and cd36 suggest that CD14high

PMNsmay have a dysregulated lipidmetabolism. Previous study
implicated slc27a2 and its protein FATP2 in regulation of sup-
pressive activity of PMN-MDSCs via production of PGE2 (Veglia
et al., 2019). Moreover, CD36 has also been involved in the
regulation of functions of MDSC in cancer (Al-Khami et al.,
2017).

CD14high PMNs were almost exclusively present in TME. Our
data indicate that these cells did not differentiate from dedicated
precursors in BM but activated in situ in the response to dif-
ferent soluble factors present in TESs (including GM-CSF) and
hypoxia. Interestingly, the hypoxia-associated pathway was
upregulated in the PMN3 population, further supporting the
hypothesis that CD14high and PMN3 represent the same popu-
lation of PMNs. To our surprise, the population of CD14high

PMNs was present in tumors at early stages and did not change
with time, suggesting that regulation of immune responses by
activated PMN-MDSCs may take place very early in tumor
development.

Several years ago, CD14 was implicated as a TLR4 coreceptor
in the S100A8/A9-induced cytokine response (He et al., 2016).
S100A8/A9 is one of the hallmarks of PMN-MDSC (Bronte et al.,
2016). Our data show that PMN2 and PMN3 populations had
higher expression of s100a8 and s100a9 than in PMN1. It has been
described that S100A9-deficient PMNs lose suppressive activity
(He et al., 2018; Ortiz et al., 2015). Since S100A9 released by
PMNs binds to CD14/TLR4 complex, high expression of CD14 on
PMN-MDSCs may facilitate their suppressive activity. Recently,
CD84 has been identified as marker of MDSCs in spleens of TB
mice (Alshetaiwi et al., 2020) We did not find differences in
CD84 expression in PMNs from spleen and tumors. Apparently,
in our tumor models, TME did not impact CD84 expression.

In humans, substantial differences between tumor and pe-
ripheral blood PMNs were identified in bulk RNA-seq. PMNs
from peripheral blood of healthy donors and cancer patients
demonstrated very similar transcriptomes, with only a few
genes differentially expressed. This was consistent with a pre-
vious report (Condamine et al., 2016). However, PMNs in tu-
mors were markedly different and expressed profiles with
increased expression of chemokine receptors, S100A8, A9,
TREM1, and other genes associated with PMN-MDSCs, as well as
upregulation of ER stress, mammalian target of rapamycin, and
inflammatory pathways. Interestingly, tumor PMNs also had
upregulation of NFAT pathway downstream of CD14. Thus, tu-
mor PMNs in cancer patients had similar transcriptomic features
with mouse PMN3 population. Similar to mouse PMN-MDSCs,

human tumor PMNs had upregulation of CD14. Gene signatures
based on tumor PMNs had very strong negative predictive values
in patients with activated T cell response, underscoring the
important role of these cells in regulation of tumor progression
and possible response to immunotherapy.

The concept of coexistence of classical PMNs and PMN-
MDSCs in peripheral blood was confirmed in cancer patients
using scRNA-seq. We identified several major clusters of PMNs.
Two clusters representing >70% of all PMNs in healthy donors
and only 20–25% in cancer patients had a transcriptome of
classical PMNs, whereas one cluster with <8% representation
among PMNs from healthy donors and 40% in cancer patients
had some features of PMN-MDSC.We confirmed this concept by
using multiparameter CyTOF analysis, where we used multiple
surface and intracellular molecules identified previously or
during this study as associated with PMN-MDSCs, to better
define the populations of PMNs in peripheral blood and tumors.
We observed two distinct populations of PMNs. One population
had typical features of PMN-MDSCs, with high expression of
ARG1, iNOS, pSTAT3, LOX-1, and S100A9, whereas the other
could be characterized as classical PMNs. Since CD14 expression
was associated with tumor PMNs, we expected to identify a
specific role of CD14 in human PMNs. Expression of CD14 was
associated with hybrid PMNs that were found in tissue of early-
stage lung cancer patients (Singhal et al., 2016). However, unlike
mouse PMNs, CD14 was not expressed on human PMNs.

Thus, this study demonstrated coexistence of the populations
of classical PMNs and immune suppressive PMN-MDSC in mice
and humans and identified the marker of PMN-MDSC in mice,
CD14. Although in spleens, CD14int PMN-MDSCs only gradually
replace classical PMNs, in tumors, activated and potently sup-
pressive CD14high PMN-MDSCs appear very early in tumor de-
velopment. In humans, the gene signature of tumor PMNs is
strongly associated with negative clinical outcome in patients
with signature of T cell infiltration and suggests novel targeting
opportunities.

Materials and methods
Human samples
Samples of peripheral blood and tumor tissues were collected
from patients at the Helen F. Graham Cancer Center and the
University of Pennsylvania. The study was approved by the
Institutional Review Board (IRB) of the Christiana Care Health
System at the Helen F. Graham Cancer Center and the Wistar
IRB. All patients signed IRB-approved consent forms. Samples
were collected at Helen F. Graham Cancer Center from six pa-
tients with previously untreated stage II–IV non–small cell lung
cancer. Blood from healthy volunteers was collected at the
Wistar Institute. All patients and donors signed IRB-approved
consent forms.

Mouse models
Animal experiments were approved by the Wistar Institute
Animal Care and Use Committee and the H. Lee Moffitt Cancer
Center Animal Care and Use Committee. C57BL/6 and C57BL/6-
Ly5.1 mice (female, 6–8 wk old) were obtained from Charles
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River; OT-I TCR-Tg mice (C57Bl/6-Tg(TCRaTCRb)1100mjb; fe-
male, 6–8 wk old) were purchased from The Jackson Laboratory.
KrasLSL.G12D/+; p53R172H/+; PdxCretg/+ (or KPC) mice were
obtained from Robert H. Vonderheide at University of Penn-
sylvania. S100A9Tg and S100A9 KO mice were described pre-
viously (Cheng et al., 2008; Kato et al., 1998; Manitz et al., 2003;
Meyer et al., 2011; Ortiz et al., 2015).

Tumor cell lines
EL4 (lymphoma) and LLC were from ATCC. All cells were
maintained in DMEM supplemented with 10% FBS (Sigma-Aldrich)
at 37°C, 5% CO2. Tumor cells were injected s.c. at 5 × 105 cells per
mouse and formed tumors with a 1.5-cm diameter within 2–3 wk of
injection. Tumor cell lines were tested for mycoplasma contami-
nation by using the Universal Mycoplasma detection kit (ATCC)
every 3 mo. GL261 cells were obtained from Dr. Rintaro Hashizume
(Northwestern University, Chicago, IL).

Orthotopic glioma cell injection
Mice were intracranially injected with 40,000 GL261 cells ex-
pressing luciferase into the right frontal cortex (1 mm caudal,
1.5 mm lateral from bregma, and 2mm deep) using a stereotactic
apparatus. Mice were monitored daily for neurological symp-
toms, lethargy, and hunched posture that would qualify as signs
of tumor burden.

RNA-seq
RNA-seq data were aligned using bowtie229 against mm10
version of the mouse genome, and RSEM v1.2.12 software was
used to estimate raw read counts using Ensemble v84 gene in-
formation. DESeq231 was used to estimate the significance of
differential expression between sample groups. Overall gene
expression changes were considered significant if they passed
the FDR <5% threshold. Significant genes affected at least two-
fold were analyzed for enrichment of upstream regulators using
Qiagen’s Ingenuity Pathway Analysis software (upstream
analysis option). Only regulators with significantly enriched P <
0.005 targets (at least 20) with significantly predicted activation
states (activation z-score, |Z| > 2) were considered.

Single-cell library preparation and scRNA-seq data processing
Single-cell libraries were prepared with isolated PBMCs using
Chromium Single Cell 39 v2 Reagent Kits. The Cell Ranger
Software Suite (v3.1.0) was used to process mouse and human
PMN scRNA-seq data with command cell ranger count. For mice
PMN samples, cellranger count was executed with refdata-
cellranger-mm10-3.0.0 transcriptome to map reads on the
mouse genome (mm10) using STAR (v2.5.2b; Dobin et al., 2013),
and unique molecular identifiers (UMIs) were counted. The
human PMN samples were processed in a similar fashion with
refdata-cellranger-GRCh38-3.0.0 transcriptome for mapping
reads on the human genome (GRCh38/hg38), and UMIs were
counted. The outputs of cellranger count were loaded in
R-statistical environment using the Read10X function. The low-
quality cells with few expressed genes (n < 400) were removed.
After filtering, a total of 66,854 cells expressing at least 400
genes were selected for the following analysis.

The UMIs of 66,854 cells were supplied to scran package
(v1.14.5; 27122128) to group cells into clusters of similar ex-
pression using the quickCluster function. Normalization within
each cluster was performed to compute size factors of each cell,
and the factors were rescaled by normalization between clusters
using the computeSumFactors function. The logNormCounts
function from scater R package (28088763) was used to nor-
malize expression values, which controls cell-specific biases.
These normalized expression values were supplied to Seurat
package (v3.1.1; Stuart et al., 2019) to perform batch correction,
cell clustering, and marker identification. Briefly, the FindVar-
iableFeatures function was used to find highly variable genes
(n = 2,000), followed by anchor detection and sample integra-
tion using FindIntegrationAnchors and IntegrateData functions,
respectively, to control the batch effect among the PMN samples.
The scaling was performed on integrated assay data using Sca-
leData function. The principal components (PCs) were estimated
by RunPCA function. The first 30 PCs were used for cell clus-
tering using the FindNeighbors and FindClusters functions, with
resolution 0.6 and UMAP visualization (using RunUMAP func-
tion). Differentially expressed genes among cell clusters were
identified using the FindAllMarkers function with the following
criteria: only.pos = false, min.pct = 0.25, and thresh.use = 0.25.
Gene set enrichment analysis was accomplished using Qiagen’s
Ingenuity Pathway Analysis software using “Pathways,” “Net-
works,” “Regulator Effects,” and “Diseases & Functions” on the
genes found significant (FDR<5%) between PMN3 versus PMN1,
PMN3 versus PMN2, PMN3 versus PMN1 and PMN2, PMN2
versus PMN1, and PMN2 and PMN3 versus PMN1 comparisons.
Sequences were deposited to GEO, accession no. GSE163834.

Pseudotime analysis
Monocle 3 (v3.0.2.0; 30787437) was used to estimate a pseudo-
temporal path of three populations of PMNs cells. The normal-
ized counts of cells clustered in PMN1, PMN2, and PMN3 by
Seurat analysis were loaded to Monocle3 using the new_-
cell_data_set function to create a monocle object. This object was
preprocessed using preprocess_cds function (with 30 PCs and
0.6 resolution) and batch corrected by align_cds function. The
cells were ordered in pseudotime along a trajectory using re-
duce_Dimension with the UMAP method and order_cells func-
tions. PMN1 population was selected as the starting point (initial
stage). We identified genes that are differentially expressed in
different subsets of PMN cells using graph_test function. These
genes were then grouped into modules (PMN1-, PMN2-, PMN3-,
and other-coregulated genes) using find_gene_modules func-
tion. This function runs UMAP on the genes and then groups
them into modules using Louvain community analysis. The ag-
gregate expression values were used to draw a heatmap of genes
modules that are specific to PMN1, PMN2, PMN3, and others
using pheatmap function. As described above, gene set enrich-
ment analysis was done using IPA software on the significant
genes (FDR <0.05) that are specific to PMN1, PMN2, and PMN3.

Overlap bulk RNA-seq with scRNA-seq data
Bulk RNA-seq data were aligned using bowtie2 (Langmead and
Salzberg, 2012) algorithm against hg19 human genome version,
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and RSEM v1.2.12 software (Li and Dewey, 2011) was used to
estimate read counts and RPKM values using gene information
from Ensemble transcriptome version GRCh37.p13. Raw counts
were normalized and used to estimate significance of differen-
tial expression difference between two experimental groups
using DESeq2 (Love et al., 2014). Overall gene expression
changes were considered significant if they passed the FDR <5%
threshold.

Normalized bulk RNA-seq counts were z-score transformed,
and genes that passed FDR <5% in both experiments were taken
for analysis. Comparison between average z-scores of three bulk
RNA-seq groups and z-scores of three single-cell clusters was
performed using Pearson correlation, and nominal P values
were corrected for multiple testing using Bonferroni procedure.
Significance of overlap was estimated by hypergeometric test,
using the 2,000 most variable detected genes used for clustering
differential expression analysis in a single-cell experiment as a
reference set.

Data availability
Raw UMI counts for single-cell RNA-seq are publicly available at
GEO, accession no. GSE163834.

Isolation of mouse and human neutrophils
For mouse neutrophils (PMNs), single-cell suspensions were
prepared from BM and spleen, followed by red blood cell re-
moval using ammonium chloride lysis buffer. Single-cell sus-
pensions from tumor tissues were prepared using Mouse Tumor
Dissociation Kit according to the manufacturer’s recommenda-
tion (Miltenyi). Then cells were stained and sorted on BD FACS
Aria (BD Biosciences) using the following gate strategy:
CD45+CD11b+Ly6G+Ly6Clo. In some experiments, we also in-
cluded CD14 marker. Human PMNs were isolated, and whole
blood was enriched for PMNs using MACSxpress Neutrophil
Isolation Kit (Miltenyi) following the manufacturer’s in-
structions. PMNs form tumor tissue using amodifiedmethod for
disaggregation of fresh human lung tumors that preserves the
phenotype and function of the immune cells as described in
(Quatromoni et al., 2014). Briefly, tumor fragments were incu-
bated in a 50-ml centrifuge tube with Hyclone Leibovitz L-15
medium (25 ml/0.5 g tissue) supplemented with 2% FBS and
containing collagen I (170 mg/liter; 45–60 U/ml), collagen II
(56 mg/liter; 15–20 U/ml), collagen IV (170 mg/liter; 45–60 U/ml),
DNase I (25 mg/liter; 50 K U/ml; 0.002%), and elastase (25 mg/
liter; 0.075 U/ml; 0.002%). Cells were placed on a shaker and
incubated for 60 min at 37°C. After 30 min of incubation, tumor
particles were pipetted vigorously by use of a 10-ml pipette to
enhance disaggregation and incubated for further 30 min at 37°C.
Then cells were passed through a 70-µM nylon cell strainer. Cells
were stained and FACS sorted on BD FACS Aria using the fol-
lowing gate strategy: CD45+CD15+CD66b+CD14−. PMNs were used
for further analysis.

Flow cytometry
For surface staining, 0.5 × 106 cells were incubated with a
cocktail of surface antibodies, FC-block (BD Biosciences), and
Aqua Fixable viability dye at room temperature (RT) for 20 min.

The list of antibodies is provided in Table S2. After washing,
cells were fixed and permeabilized with Fixation and Per-
meabilization Buffers (BD Biosciences) for 15 min at RT, washed
twice with wash buffer (BD Biosciences), and incubated with a
cocktail of intracellular antibody at RT for 30 min. Cells were
run on either BD FACSymphony (BD Biosciences) or BD LSRII
(BD Biosciences), and data were analyzed by FlowJo (Tristar).

CyTOF antibody conjugation and staining
Antibodies were labeled using the X8 antibody labeling kit as per
the manufacturer’s protocol (Fluidigm). Single-cell suspensions
(1 × 106 cells) were incubated with monoisotopic cisplatin-194Pt
(Fluidigm) at RT for 5 min, washed with 1× PBS, incubated with
Fc receptor–blocking solution to each tube, and incubated for
10min at RT, without washing off Fc receptor–blocking solution.
The antibody was added in Maxpar Cell Staining Buffer (Fluid-
igm) at RT for 30 min. After washing with PBS, the cells were
fixed with 1× Maxpar Fix I Buffer (Fluidigm) for 30 min at RT,
washed twice with Perm-S Buffer (Fluidigm), and then incu-
bated with an intracellular antibody cocktail in Perm-S Buffer
for 30 min at RT. The cells were washed and incubated over-
night with Cell-ID Intercalator-Ir diluted in Maxpar Fix and
Perm Buffer (Fluidigm). After another wash with 0.5% BSA in
PBS, the cells were filtered, washed twice with 0.1% BSA, and
run in a Helios mass cytometer (Fluidigm) at the University of
Pennsylvania. The mass cytometry data were normalized to
Equation 4-element calibration bead signal (Fluidigm) in 100-
s-interval windows using normalization software version 2 (Flu-
idigm). Data were analyzed using Cytobank software. A list of
reagents is provided in Table S3.

Processing and analyzing high-dimensional single-cell data
For flow cytometry datasets, cell debris, doublets, and dead cells,
exclusion and biexponential transformation were run in FlowJo.
PMN (CD45+CD11b+LY6G+LY6Clo) from four to five different
mice were concatenated together and exported as a single FCS
file and uploaded to the Cytobank software. Data were trans-
formed by arcsinh, and dimension reduction visualization was
performed using the vi stochastic neighbors embedding (viSNE)
algorithm (Amir et al., 2013). The FlowSOM algorithm (Van
Gassen et al., 2015) was applied and overlaid on viSNE to auto-
matically and objectively identify cell populations based on the
expression of markers selected for the analysis. Metaclusters
with similar expression of these markers were combined, using
automatic gate cluster functionality in Cytobank. For marker
expression visualization in heatmaps, the raw median value of
each marker in each cluster was generated using Cytobank and
plotted using GraphPad Prism 8. For CyTOF human datasets, indi-
vidual samples were uploaded in Cytobank and manually gated
using Cytobank to eliminate cell debris, dead cells, and doublets, and
for the identification of CD45+ cisplatin-negative cells. Dimension
reduction visualization was performed using viSNE, viSNE plots
were generated for all CD45+ cells, and PMN subsets were analyzed.

Suppression assay
Single-cell suspensions from spleens and tumors were prepared as
described above. Cells were stained and sorted on BD FACS Aria
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(BD Biosciences). PMN-MDSCs (CD45+CD11b+Ly6G+Ly6CloCD14−/int/high)
were plated in U-bottom 96-well plates (three replicates) in RPMI
with 10% FBS and cocultured at different ratios with splenocytes
from Pmel Tg mice in the presence of cognate peptides: murine
gp100 peptide (EGSRNQDWL; 0.1 µg/ml). After 48 h, cells were
incubated with [3H]thymidine (PerkinElmer) for 16–18 h. Pro-
liferation was measured by using TopCount NXT instrument
(PerkinElmer). For the CellTrace assay, Pmel splenocytes were
labeled with CellTrace Far Red for 20 min at 37°C and cocultured
with PMN-MDSCs and mgp100 peptide.

Quantitative real-time PCR (qPCR)
RNA was extracted using a Total RNA Kit according to the
manufacturer’s instructions. DNase digestion was performed,
and cDNA was generated with a High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems). qPCR was performed
using Power SYBR Green PCR Master Mix (Applied Biosystems)
in 96- or 384-well plates. Plates were read with ABI 7900 (Ap-
plied Biosystems). A list of primers is provided in Table S4.

MLPG differentiation in vivo
MLPGs were isolated from BM of LLC-TB C57BL/6 mice. Cells
were incubated with Fc block followed by 20-min incubation with
Aqua Fixable viability dye and antibodies cocktail. MLPGs were
isolated through cell sorting using a MoFlo Astrios EQ (Beckman
Coulter) cell sorter as Aqua−CD11b+Ly6G−Ly6ChighCD117+ cells.
Isolated MLPGs were transferred by i.v. injection to sublethally
irradiated (450 rad) C57BL/6-Ly5.1. After 3 d, CD14 expressionwas
analyzed on endogenous splenic PMNs (CD45.1+) or MLPG-
derived PMNs (CD45.2+).

PMN in vitro treatment
PMNs were isolated from BM of naive mice using anti-Ly-6G
MicroBeads (Miltenyi Biotec), plated in 1 ml of completemedium
at 106/ml with 20 ng/ml GM-CSF (Peprotech) and 20% (vol/vol)
TES, and cultured for 24 h in normoxic or hypoxic (0.5% O2)
conditions using a hypoxic chamber (BioSpherix). Mouse TES
was generated as previously described (Mastio et al., 2019). After
24 h, CD14 expression was assessed by flow cytometry on live
PMNs (Aqua−Ly6G+). In some experiments, anti-mouse GM-CSF
neutralizing antibody (clone MP1-22E9; BioXcell) was added to
the culture for 18–24 h.

Statistical analyses
After testing for normal distribution of data, statistical analyses
were performed using two-tailed Student’s t test and Prism 5
software (GraphPad Software). All data are presented as mean ±
SD, and P values <0.05 were considered significant. One-way
ANOVA test with correction for multiple comparisons (Kruskal–
Wallis or Tukey test) was used in experimentswithmore than two
groups.

Online supplemental material
Fig. S1 shows pathways significantly changed in different pop-
ulations of PMN. Fig. S2 shows expression of cell surface
markers on PMN-MDSC from spleen and tumor. Fig. S3 presents
morphology and phenotype of the populations of PMNs and

CD14 expression and the function of the populations of PMNs in
an acute infection model. Fig. S4 shows gene expression in
cancer patient PMNs. Fig. S5 shows pathways changed in cluster
1 in patient PMNs. Table S1 lists antibodies used in CyTOF. Table
S2 lists antibodies used in flow cytometry. Table S3 lists reagents
used in the study. Table S4 shows primers used in qPCR.
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Supplemental material

Figure S1. Pathways significantly changed in different populations of PMNs.
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Figure S2. Expression of cell surface markers on PMN-MDSCs from spleen and tumor. (A) Fold change of cell surface marker expression in PMN3
compared with PMN1 or PMN2. (B) Flow cytometric analysis of the expression of Siglec-F, CD49D, PD-L1, TREM1, and CD84 on PMNs from spleen and tumor.
Dot plot representative of 5–8 mice analyzed. (C) Frequency in live cells and absolute number of the populations of PMNs from spleen and tumor of LLC- and
EL4-bearing mice on days 7, 14, and 21 (five mice per group). (D) Frequency in live cells and absolute number of CD14−, CD14int, CD14high PMNs from spleen and
pancreas of naive, Panin, and KPC mice (five mice per group). In C and D, mean and SD are shown. P values were calculated by ANOVA test with corrections for
multiple comparisons. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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Figure S3. Morphology and phenotype of the populations of PMNs and CD14 expression and the function of the populations of PMNs in an acute
infection model. (A) Giemsa staining of indicated populations of PMNs in LLC TB mice. Scale bars = 10 µm. (B) Expression of indicated molecules by flow
cytometry in the populations of from tumors of LLC TB mice; 6 mice per group were analyzed. Frequency of CD14−, CD14int, and CD14high PMN differentiated
from MLPG (n = 4). Mean and SD are shown. P values were calculated in unpaired two-sided Student’s t test. (D) Frequency of the populations of PMNs in
spleens of mice 7 d after infection with Armstrong strain of LCMV; n = 5 mice per group. (E) Expression of arg1, nos2, ptgs2, and ptges by qPCR in control spleen
CD14− PMNs, as well as CD14− and CD14int PMNs isolated from spleen of LCMV-infected mice; n = 5 mice per group. (F) T cell proliferation in the presence of
PMNs isolated from spleens of LCMV-infected mice (n = 3 mice per group). Mean and SEM are shown. *, P < 0.05; ****, P < 0.0001.
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Figure S4. Gene expression in cancer patient PMNs. (A) Top 50 changed genes in tumor PMNs compared with peripheral blood PMNs in the same patients.
(B) IPA of tumor PMNs compared with peripheral blood (PB) healthy donor (HD) or patient PMNs. (C) Changes in the expression of genes encoding trans-
membrane receptors in tumor PMNs compared with peripheral blood PMNs from the same patient.
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Provided online are four tables. Table S1 lists antibodies used in CyTOF. Table S2 lists antibodies used in flow cytometry. Table S3
lists reagents used in this study. Table S4 shows primers used in qPCR.

Figure S5. Pathways changed in cluster 1 in patient PMNs. AHR, aryl hydrocarbon receptor (AHR); AMPK, AMP-activated protein kinase; EGF, epidermal
growth factor; eNOS, endothelial NOS; FGF, fibrobalst growth factor; HGF, hepatocyte growth factor; mTOR, mechanistic target of rapamcyin; NGF, nerve
growth factor; PDGF, platelet derived growth factor; PPAR, peroxisome proliferator-activated receptors; VEGF, vascular endothelial growth factor.
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