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Coronavirus disease 2019 (COVID-19) is a novel, viral-induced respiratory disease that in ∼10–15% of patients progresses to
acute respiratory distress syndrome (ARDS) triggered by a cytokine storm. In this Perspective, autopsy results and literature
are presented supporting the hypothesis that a little known yet powerful function of neutrophils—the ability to form
neutrophil extracellular traps (NETs)—may contribute to organ damage and mortality in COVID-19. We show lung infiltration
of neutrophils in an autopsy specimen from a patient who succumbed to COVID-19. We discuss prior reports linking aberrant
NET formation to pulmonary diseases, thrombosis, mucous secretions in the airways, and cytokine production. If our
hypothesis is correct, targeting NETs directly and/or indirectly with existing drugs may reduce the clinical severity of
COVID-19.

Patients with severe coronavirus disease 2019 (COVID-19)–
associated pneumonitis and/or acute respiratory distress syn-
drome (ARDS) have increased pulmonary inflammation, thick
mucous secretions in the airways, elevated levels of serum pro-
inflammatory cytokines, extensive lung damage, and micro-
thrombosis. This late stage of the disease is difficult to manage,
and a large number of patients die (Chen et al., 2020a Preprint;
Wang et al., 2020; Zhao et al., 2020 Preprint; Zheng et al., 2020).
The severity of COVID-19, combined with its pandemic spread,
has placed unprecedented pressure on our healthcare system,
and treatment strategies are urgently needed. Infection with
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
causes COVID-19, but it is an exacerbated and poorly understood
host response involving a cytokine storm that drives severe
COVID-19 (Mehta et al., 2020). It is unclear what initiates and
propagates the cytokine storm. We propose that the exacerbated
host response in patients with severe COVID-19 centers around
the aberrant activation of the most common leukocyte in

peripheral blood: the neutrophil. Neutrophilia predicts poor out-
comes in patients with COVID-19 (Wang et al., 2020), and the
neutrophil-to-lymphocyte ratio is an independent risk factor for
severe disease (Liu et al., 2020 Preprint). Furthermore, in autopsy
samples from the lungs of three COVID-19 patients at Weill Cor-
nell Medicine, we observed neutrophil infiltration in pulmonary
capillaries, acute capillaritis with fibrin deposition, extravasation
of neutrophils into the alveolar space, and neutrophilic mucositis
(Fig. 1). Neutrophil infiltration was also noted in two recent re-
ports on the pathological findings from autopsied COVID-19 pa-
tients (Fox et al., 2020 Preprint; Yao et al., 2020). Although
leukocytosis and neutrophilia are hallmarks of acute infection, in
the case of COVID-19, we propose that neutrophilia could also be a
source of excess neutrophil extracellular traps (NETs).

NETs and disease
Neutrophils are recruited early to sites of infection where they
kill pathogens (bacteria, fungi, and viruses) by oxidative burst
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and phagocytosis (Schönrich and Raftery, 2016). However,
neutrophils have another much less recognized means of killing
pathogens: the formation of NETs (Brinkmann et al., 2004).
NETs are web-like structures of DNA and proteins expelled from
the neutrophil that ensnare pathogens (Fig. 2). Expelling DNA to
the extracellular space is not widely recognized as a critical
immune function. Yet, even plants have specialized cells that kill
soil pathogens by this mechanism (Wen et al., 2009). NET for-
mation is a regulated process, although the signals involved are
incompletely understood. Key enzymes in the formation of NETs
are: neutrophil elastase (NE), which degrades intracellular
proteins and triggers nuclear disintegration; peptidyl arginine
deiminase type 4 (PAD4), which citrullinates histones to facili-
tate the decondensation and release of the chromosomal DNA;
and gasdermin D, which generates pores in the membrane of the

neutrophil, thereby facilitating cell membrane rupture and the
expulsion of DNA and the associated molecules (Chen et al., 2018;
Kaplan and Radic, 2012; Papayannopoulos, 2018; Papayannopoulos
et al., 2010; Rohrbach et al., 2012; Sollberger et al., 2018). Although
NETs are beneficial in the host defense against pathogens, collat-
eral damage from sustained NET formation also stimulates many
disease processes, including those that occur during viral infections
(Schönrich and Raftery, 2016). Indeed, excessive NET formation
can trigger a cascade of inflammatory reactions that promotes
cancer cell metastasis, destroys surrounding tissues, facilitates
microthrombosis, and results in permanent organ damage to the
pulmonary, cardiovascular, and renal systems (Jorch and Kubes,
2017; Kessenbrock et al., 2009; Papayannopoulos, 2018; Fig. 3).
Importantly, these are three commonly affected organ systems in
severe COVID-19 (Bonow et al., 2020; Chen et al., 2020b).

NETs and ARDS
Prior reports extensively link aberrant NET formation to pul-
monary diseases, particularly ARDS. Indeed, NET levels in
plasma are higher in patients with transfusion-associated ARDS
than in subjects without ARDS (Caudrillier et al., 2012). Fur-
thermore, neutrophils from patients with pneumonia-associated
ARDS appear “primed” to form NETs, and both the extent of
priming and the level of NETs in blood correlate with disease
severity and mortality (Adrover et al., 2020; Bendib et al., 2019;
Ebrahimi et al., 2018; Lefrançais et al., 2018; Mikacenic et al.,
2018). Extracellular histones, likely partly originating from
NETs, are elevated in the bronchoalveolar lavage fluid and
plasma of ARDS patients (Lv et al., 2017). Naked histones are
toxic to cells, and there is strong experimental evidence sup-
porting a role for histones in ARDS and sepsis (Wygrecka et al.,

Figure 1. Neutrophils in an autopsy specimen from the lungs of a pa-
tient who succumbed from COVID-19. (A) Extensive neutrophil infiltration
in pulmonary capillaries, with acute capillaritis with fibrin deposition, and
extravasation into the alveolar space. An image was chosen to emphasize the
capillary lesions. (B) Neutrophilic mucositis of the trachea. The entire airway
was affected (images by A. Borczuk, Weill Cornell Medical Center). Both
specimens originate from a 64-yr-old male of Hispanic decent with diabetes,
end-stage renal disease on hemodialysis, heart failure, and hepatitis C on
ledipasvir/sofosbuvir therapy. He declined medical intervention, was there-
fore not intubated, and died in the emergency room 5 h after presentation,
shortly after developing fever. There was no evidence of sepsis in this patient
clinically, premortem cultures were negative, and the autopsy was performed
within 5 h of death. Similar neutrophil distribution, but with less extensive
infiltration, was observed in the two additional autopsies analyzed to date.
These other two cases had longer duration of symptoms. Scale bars: 50 µm.

Figure 2. Neutrophils forming NETs in cell culture. Note the expelled
DNA strings (arrows). Scanning electron microscopy of neutrophils 3 h after
plating and coculturing with 4T1 breast cancer cells. Scale bar: 25 µm.

Figure 3. Excess NET formation can drive a variety of severe patholo-
gies. In the lungs, NETs drive the accumulation of mucus in CF patients’
airways. NETs also drive ARDS after a variety of inducers, including influenza.
In the vascular system, NETs drive atherosclerosis and aortic aneurysms, as
well as thrombosis (particularly microthrombosis), with devastating effects
on organ function.
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2017; Xu et al., 2015). It is therefore likely that NETs, as a source
of extracellular histones, contribute to ARDS and sepsis (Chaput
and Zychlinsky, 2009; Lefrançais and Looney, 2017; Xu et al.,
2009). In animal models of lung injury, NETs develop in re-
sponse to a variety of ARDS-inducing stimuli, and preventing or
dissolving NETs reduces lung injury and increases survival
(Caudrillier et al., 2012; Lefrançais et al., 2018; Liu et al., 2016;
Narasaraju et al., 2011).

NETs and cystic fibrosis (CF)
The mucous secretions found in the airways of COVID-19 pa-
tients (Mao et al., 2020 Preprint) are reminiscent of those seen in
CF patients (Mart́ınez-Alemán et al., 2017). The cause and origin
of these secretions are unclear. However, in CF, mucous secre-
tions impair gas exchange and have been shown to contain ex-
tracellular DNA, in part originating from NETs released in
response to persistent lung infections. Furthermore, the exces-
sive formation of NETs with increased NE makes the mucus
thick and viscous (Manzenreiter et al., 2012), not only impairing
ventilation but also facilitating the colonization of bacteria. Such
colonization further promotes neutrophil recruitment and NET
formation, increasing mucus viscosity and consequently low-
ering the patient’s respiratory function. If the mucous secretions
in COVID-19 contain NETs, they may play similar roles as they
do in CF: impairing gas exchange and facilitating secondary
infections.

NETs and excessive thrombosis
Acute cardiac and kidney injuries are common in patients with
severe COVID-19 and contribute to the mortality of this disease
(Bonow et al., 2020). D-dimer (a fibrin degradation product
indicative of hyperactive coagulation) has emerged as a reliable
marker of severe COVID-19 (Zhou et al., 2020). High blood levels
of NETs may explain these findings: intravascular NETs have
been shown to play a vital role in initiating and accreting
thrombosis in arteries and veins (Fuchs et al., 2012). For ex-
ample, in severe coronary artery disease, complexes of NETs are
elevated, and NET levels positively associate with thrombin
levels, which predict adverse cardiac events (Borissoff et al.,
2013). In addition, autopsy samples collected from septic pa-
tients show that NETs infiltrate microthrombi (Jiménez-Alcázar
et al., 2017). Thus, when NETs circulate at high levels in blood,
they can trigger the occlusion of small vessels, leading to damage
in the lungs, heart, and kidneys (Cedervall et al., 2015; Fuchs
et al., 2010; Laridan et al., 2019; Martinod and Wagner, 2014). In
mouse models of septicemia, intravascular NETs form micro-
thrombi that obstruct blood vessels and cause damage to the
lungs, liver, and other organs (Jiménez-Alcázar et al., 2017).
Mechanistically, NETs activate the contact pathway of coagula-
tion (also called the plasma kallikrein–kinin system) via elec-
trostatic interactions between the NET histones and platelet
phospholipids (Oehmcke et al., 2009). Histones can also promote
platelet activation by acting as ligands for the Toll-like receptors
on platelets (Semeraro et al., 2011). At the same time, NE (which
is bound in its active form to NETs) likely also plays an impor-
tant role by digesting the major coagulation inhibitors anti-
thrombin III and tissue factor pathway inhibitor (Massberg

et al., 2010). Furthermore, there is almost surely a feedback
loop whereby pro-coagulant activity (e.g., that of thrombin)
leads to platelet activation, and activated platelets then further
enhance NET formation (Caudrillier et al., 2012; Clark et al.,
2007; Fuchs et al., 2010; Massberg et al., 2010; Sreeramkumar
et al., 2014; von Brühl et al., 2012). Dissolving NETs with DNase I
restores normal perfusion of the heart and kidney microvas-
culature in animal models (Cedervall et al., 2015; Jansen et al.,
2017; Nakazawa et al., 2017; Raup-Konsavage et al., 2018). Based
on the above findings, we argue that targeting intravascular
NETs may similarly reduce thrombosis in patients with severe
COVID-19.

NETs and the cytokine storm
Severe COVID-19 is associated with a cytokine storm charac-
terized by increased plasma concentrations of IL1β, IL2, IL6, IL7,
IL8, IL10, IL17, IFNγ, IFNγ-inducible protein 10, monocyte che-
moattractant protein 1 (MCP1), G-CSF, macrophage inflamma-
tory protein 1α, and TNFα (Huang et al., 2020; Mehta et al.,
2020; Ruan et al., 2020; Wu et al., 2020; Wu and Yang, 2020;
Zhang et al., 2020). These inflammatory mediators regulate
neutrophil activity and induce the expression of chemoattract-
ants (molecules that increase the trafficking of neutrophils to
sites of inflammation). Moreover, cytokine storms lead to acute
lung injury, ARDS, and death (Channappanavar and Perlman,
2017; Chousterman et al., 2017). It is especially noteworthy
that NETs can induce macrophages to secrete IL1β and that IL1β
enhances NET formation in various diseases, including aortic
aneurysms and atherosclerosis (Kahlenberg et al., 2013; Meher
et al., 2018; Sil et al., 2017; Warnatsch et al., 2015). Together,
these data suggest that under conditions in which the normal
signals to dampen inflammation are lost, such as during a cy-
tokine storm, a signaling loop between macrophages and neu-
trophils can lead to uncontrollable, progressive inflammation.
Indeed, a correlation between NETs and IL1β exists in severe
asthma (Lachowicz-Scroggins et al., 2019). If a NET–IL1β loop is
activated in severe COVID-19, the accelerated production of
NETs and IL1β could accelerate respiratory decompensation, the
formation of microthrombi, and aberrant immune responses.
Importantly, IL1β induces IL6 (Dinarello, 2009), and IL6 has
emerged as a promising target for COVID-19 treatment (Mehta
et al., 2020; Xu et al., 2020 Preprint). IL6 can signal via classic
and trans-signaling (Calabrese and Rose-John, 2014). In classic
signaling, IL6 binds to a complex of the transmembrane re-
ceptor IL6Rα with the common cytokine receptor gp130. In
trans-signaling, soluble IL6Rα (sIL6Rα) binds IL6 to initiate
signaling via gp130. Trans-signaling is strongly associated
with pro-inflammatory states (Calabrese and Rose-John,
2014), and lower levels of sIL6Rα are associated with better
lung function in, e.g., asthma (Ferreira et al., 2013; Hawkins
et al., 2012). Neutrophils can shed sIL6Rα in response to IL8
(Marin et al., 2002), which is abundant in the COVID-
19–associated cytokine storm (Wu and Yang, 2020; Zhang
et al., 2020). Together, these findings lead us to speculate
that antagonizing IL-6 trans-signaling and/or IL1β could be
effective indirect strategies for targeting neutrophils and
NETs in severe COVID-19.
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NET therapeutics
Due to the clear similarities between the clinical presenta-
tion of severe COVID-19 and known NETopathies—ARDS and
microthrombosis—we propose that excess NETs may play a
major role in the disease. Our understanding of NET formation
and function is incomplete, but drugs that target NETs exist or
are in development (Fig. 4). These drugs include inhibitors of
the molecules required for NET formation: NE, PAD4, and
gasdermin D. For example, endogenous inhibitors of NET for-
mation, which may function by inhibiting PAD4, have been
isolated from umbilical cord plasma (Yost et al., 2016), and
these are in development for the treatment of inflammatory
syndromes such as COVID-19. Clinical development of in-
hibitors against NE is the most advanced, and importantly, they
could inhibit both the formation of NETs, where NE activity is
part of the signaling mechanism, and the toxic activities of NE
on the NETs. The NE inhibitor sivelestat was approved to treat
ARDS in Japan and South Korea, but it did not increase survival
after ARDS in a meta-analysis of clinical trials (Tagami et al.,
2014). However, a new generation of potent NE inhibitors,
including lonodelestat (POL6014), alvelestat, CHF6333, and
elafin, have undergone Phase I testing. As a result, it may be
possible to expedite their development as treatments for
COVID-19. Gasdermin D inhibitors remain in preclinical de-
velopment, but an existing drug—disulfiram, used to treat
alcoholism—has been reported to inhibit gasdermin D and limit
lung injury in animal models (Hu et al., 2018 Preprint). Finally,
colchicine is another existing drug that could inhibit both
neutrophil recruitment to sites of inflammation and the secretion
of IL1β, and trials using colchicine in COVID-19 are underway
(ClinicalTrials.gov identifiers: NCT04326790, NCT04328480,
NCT04322565, NCT04322682).

A recombinant DNase I (dornase alfa), delivered by inhala-
tion, is approved to dissolve NETs in the airways of patients with
CF to clear mucus and improve symptoms (Papayannopoulos
et al., 2011). Additionally, an actin-resistant DNase (PRX-110/

alidornase alfa) has been tested in CF patients in Phase I and II
trials with encouraging results (ClinicalTrials.gov identifiers:
NCT02605590, NCT02722122) and could potentially be more
potent than dornase alfa. Other engineered DNase proteins, such
as DNase 1–like 3, which is being developed to dissolve NETs
(Fuchs et al., 2019), could enter clinical development soon. We
propose that DNases may help dissolve the mucous secretions of
COVID-19 patients as they do in CF patients, improving venti-
lation and reducing the risk of secondary infections. Dornase
alfa is normally administered through nebulizers, but in many
medical centers, these are avoided in COVID-19 due to the risk of
aerosolizing SARS-CoV-2 and endangering healthcare workers.
However, approaches exist that deliver aerosols in closed cir-
cuits for mechanically ventilated patients (Dhand, 2017). For
nonintubated patients, therapies can be safely nebulized in
negative pressure rooms. In addition to their possible effects on
mucous secretions, DNase treatments may also prevent the
further progression to ARDS, as DNase I delivered through the
airways increases survival in relevant animal models (Lefrançais
et al., 2018; Thomas et al., 2012; Zou et al., 2018).

In addition to directly targeting NETs, the NET–IL1β loop
could be antagonized with approved drugs against IL1β, such
as anakinra, canakinumab, and rilonacept. Trials are now
being launched to test the efficacy of anakinra in COVID-19
(ClinicalTrials.gov identifiers: NCT04324021, NCT04330638,
NCT02735707). Dornase alfa, sivelestat, and anakinra have
excellent safety profiles. None of the drugs that currently are
available to target NETs are specific. Nevertheless, collectively,
there are multiple individual or combinatorial—and likely
safe—therapeutic strategies available to antagonize NETs in
COVID-19 patients today, and NETs themselves may be an ap-
propriate biomarker to follow studies to test their efficacy.

Opportunities to target NETs in COVID-19
NETs can be detected in tissues by immunohistochemistry
and in blood by sandwich ELISA (Caudrillier et al., 2012;

Figure 4. Approaches to targeting NETs.
NETs can be targeted by existing drugs through
several means. NE, PAD4, and gasdermin D in-
hibitors will prevent NET formation. DNase has
been used safely to digest NETs in the mucous
secretions of the airways of CF patients. Col-
chicine inhibits neutrophil migration and infiltra-
tion into sites of inflammation. IL1β blockers will
prevent an inflammatory loop between NETs and
IL1β. Of these approaches, trials to treat COVID-19
with colchicine and anakinra are already ongoing
or being launched (ClinicalTrials.gov identifiers:
NCT04324021, NCT04330638, NCT02735707,
NCT04326790, NCT04328480, NCT04322565,
NCT04322682).
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Jiménez-Alcázar et al., 2017; Lachowicz-Scroggins et al., 2019;
Park et al., 2016). As samples from patients become available, it
will therefore be possible to determine whether the presence of
NETs is associated with severe COVID-19. If it is, this result would
provide rationale for using the above-mentioned NET-targeting
approaches in the treatment for COVID-19. Though treatments
targeting NETs would not directly target the SARS-CoV-2 virus,
they could dampen the out-of-control host response, thereby re-
ducing the number of patients who need invasive mechanical
ventilation, and importantly, reducing mortality. NETs were
identified in 2004 (Brinkmann et al., 2004), and they are often
overlooked as drivers of severe pathogenic inflammation. Indeed,
we posit here that excess NETs may elicit the severe multi-organ
consequences of COVID-19 via their known effects on tissues and
the immune, vascular, and coagulation systems. Targeting NETs
in COVID-19 patients should therefore be considered by the bio-
medical community.
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