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The blood-brain barrier in health and disease:
Important unanswered questions

Caterina P. Profaci*?@®, Roeben N. Munji*?@®, Robert S. Pulido*?, and Richard Daneman'?@®

The blood vessels vascularizing the central nervous system exhibit a series of distinct properties that tightly control the
movement of ions, molecules, and cells between the blood and the parenchyma. This “blood-brain barrier” is initiated during
angiogenesis via signals from the surrounding neural environment, and its integrity remains vital for homeostasis and neural
protection throughout life. Blood-brain barrier dysfunction contributes to pathology in a range of neurological conditions
including multiple sclerosis, stroke, and epilepsy, and has also been implicated in neurodegenerative diseases such as
Alzheimer’s disease. This review will discuss current knowledge and key unanswered questions regarding the blood-brain

barrier in health and disease.

Blood vessels provide the vital infrastructure for delivery of
oxygen and essential nutrients throughout the body, and the
term “blood-brain barrier” (BBB) is used to describe the unique
characteristics of the blood vessels that vascularize the central
nervous system (CNS; Saunders et al., 2008; Zlokovic, 2008;
Obermeier et al., 2013). The BBB is not a single physical entity
but rather the combined function of a series of physiological
properties possessed by endothelial cells (ECs) that limit vessel
permeability. The BBB tightly regulates the movement of ions,
molecules, and cells between the blood and the parenchyma and
is thus critical for neuronal function and protection. The inter-
action of ECs with different neural and immune cells is com-
monly referred to as the neurovascular unit (NVU; Fig. 1 A). The
complex properties that define the BBB are often altered in
disease states, and BBB dysfunction has been identified as a
critical component in several neurological conditions. This re-
view will discuss BBB development, regulation, and dysfunction,
emphasizing important unanswered questions.

The NVU

ECs

A cross-section of an artery or vein might contain dozens of
ECs, while in the smallest capillaries, a single EC forms the vessel
circumference (Aird, 2007). In all tissues, adherens junctions,
composed of vascular endothelial cadherin and catenins, com-
prise the basic cellular adhesions between ECs, supporting
the integrity of the vascular tube and regulating tensile forces.
PECAML is a critical regulator of EC adhesion, promoting ad-
herens junction formation (Biswas et al., 2006; Privratsky and
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Newman, 2014). CNS ECs are further specialized to restrict
paracellular and transcellular movement of solutes.

Tight junctions (TJs). TJs are cell adhesions consisting of
multiple transmembrane proteins that directly interact via their
extracellular components, linking two cells’ membranes to-
gether (Furuse, 2010; Fig. 1 B). CNS TJs are specialized in their
molecular and structural P-face composition to form a high-
resistance electrical barrier, and the specific combination of TJ
proteins at the BBB determines its paracellular permeability.

The composition of claudins, a family of 27 four-pass trans-
membrane proteins, within a TJ is thought to determine the size
and charge selectivity of paracellular permeability (Amasheh
et al., 2005; Hou et al., 2006; Furuse et al., 1999). Claudin 5
(CLDNS) is the most abundant claudin at the BBB, and Cldn5
knockout mice exhibit size-selective leakage of the BBB and die
at birth (Morita et al., 1999; Nitta et al., 2003). ECs in peripheral
vascular beds also express CLDN5, and thus its expression alone
is not sufficient for barrier formation. Other key components of
TJs include claudin 12, occludin, and junctional adhesion mole-
cules. Cytoplasmic proteins including Z0-1, ZO-2, ZO-3, cingu-
lin, JACOP, MAG], and MUPPI aid TJ formation, binding TJs to
the cytoskeleton, adherens junctions, and polarity complexes
(Umeda et al., 2004; Tietz and Engelhardt, 2015; Sawada, 2013).
It is still unknown why CLDN5 and ZO-1 expression does not
confer the same low paracellular permeability in peripheral
vessels as in the CNS. Expression data suggest that the answer
might lie in the CNS-specific enrichment of certain cytoplasmic
adaptors (e.g., JACOP, MPP7) and tricellular TJ molecules such as
LSR and MARVELD2 (Daneman et al., 2010a; Sohet et al., 2015).
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Figure 1. Cellular and molecular properties of the BBB. (A) A schematic comparison of the BBB capillaries with the continuous nonfenestrated, continuous
fenestrated, and discontinuous capillaries found in peripheral organs. (B-F) Schematics of the molecular composition of junctional complexes of BBB ECs (B)
and of ECs in peripheral organs (C), peripheral endothelial fenestra (D), and transport mechanisms in CNS ECs (E) and peripheral ECs (F). (G and H) Electron
micrographs of a mouse brain EC (G) and a mouse muscle EC, which is densely packed with vesicles (arrows; H). BCRP, breast cancer resistance protein; GLUTL,
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glucose transporter 1; ICAM, intercellular adhesion molecule; JAM, junctional adhesion molecule; LATL, L-type amino acid transporter 1; MRP, multidrug
resistance-associated protein; PECAM-1, platelet and EC adhesion molecule 1; P-GP, p-glycoprotein; VE-cadherin, vascular endothelial cadherin; P-sel,

P-selectin; E-sel, E-selectin.

Transcellular permeability. Peripheral ECs possess properties
that confer transcellular permeability, including high rates of
caveolin-mediated transcytosis, diaphragm-containing pores
termed fenestrae, or large discontinuities or gaps in the endo-
thelial layer (Aird, 2007; Fig. 1 A). In contrast, CNS ECs form a
continuous lining that lacks fenestrations and has low levels of
transcytosis, properties that greatly limit transcellular per-
meability (Fig. 1, A-H). MFSD2A, enriched in CNS ECs, limits
caveolin-dependent transcytosis by regulating EC lipid com-
position (Ben-Zvi et al., 2014; Nguyen et al., 2014; Andreone
etal., 2017). Plasmalemma vesicle-associated protein (PLVAP)
is important both for vesicle formation and fenestrations. Its
down-regulation in CNS ECs, along with up-regulation of
MFSD2A, coincides with BBB formation during embryogene-
sis (Hallmann et al., 1995; Hnasko et al., 2002; Chow and Gu,
2017).

Transporters. Numerous transporters are enriched in brain
ECs, which generally fall into two categories: efflux and solute
transporters (Miller, 2015; Natecz, 2017; Strazielle and Ghersi-
Egea, 2015; Fig. 1 E).

Efflux transporters, concentrated on the luminal side of the
membrane, use ATP hydrolysis to transport a wide range of
small molecules up their concentration gradients back into the
blood (Shen and Zhang, 2010). MDR1/P-glycoprotein (PGP) and
breast cancer resistance protein are the most abundant BBB
efflux proteins and limit entry of many xenobiotics and en-
dogenous molecules, including steroids such as aldosterone
(Hindle et al., 2017).

Solute transporters carry specific substrates down their
concentration gradients, ensuring barrier passage to specific
nutrients, such as glucose, that are vital for energy and ho-
meostasis (Simpson et al., 2007). Transport of glucose, lactate,
amino acids, and fatty acids occurs via GLUT1 (Slc2a1), MCTI1
(Slci6al), LATI (Slc7a5), and MFSD2A, respectively (Boado et al.,
1999; Cornford et al., 1994; Kido et al., 2000; Nguyen et al., 2014).
Other transporters provide receptor-mediated vesicular trans-
port, including the transferrin receptor (TFR1) and low-density
lipoprotein receptors (Jefferies et al., 1984; Méresse et al., 1989).
Substrate-specific solute transporters can also be important for
removing molecules from the CNS; lipoprotein receptor-related
protein-1 (LRP1) is a critical transporter for eliminating B-amyloid
(Shibata et al., 2000; Storck et al., 2016).

Leukocyte adhesion molecules. Leukocyte adhesion molecules
on EC surfaces initiate binding of leukocytes, the first step of
their entrance into tissues (Bevilacqua, 1993). Healthy CNS ECs
exhibit lower leukocyte adhesion molecule expression compared
with peripheral ECs (Daneman et al., 2010a), and thus there is
minimal leukocyte crossing of the BBB in health (Fig. 1,Eand F;
and Fig. 2 A). Instead, CNS immune surveillance by lymphocytes
in health occurs primarily at the blood-CSF interfaces of the
meninges and choroid plexus (Ransohoff and Engelhardt, 2012;
Kipnis et al., 2012; Shechter et al., 2013; Box 1).
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The NVU

The luminal surface of the capillary endothelium is covered by
the EC glycocalyx (Ausprunk et al., 1981a, b; Pillinger and Kam,
2017). Brain ECs have a denser glycocalyx than peripheral vas-
culature; average glycocalyx coverage is 40.1% in brain vessels
compared with 15.1% and 3.2% in cardiac and pulmonary vessels,
respectively (Ando et al., 2018). This dense network of luminal
glycoproteins prevents larger molecules from interacting with
the EC. While small dyes such as fluorescein (376 daltons) and
Alexa Fluor (643 daltons) permeate the glycocalyx, dextrans
(40-150 kD) penetrate <60% of its volume (Kutuzov et al., 2018).
In disease, glycocalyx degradation is associated with more se-
vere BBB leakage in models of multiple sclerosis (MS) and car-
diac arrest (DellaValle et al., 2018; Zhu et al., 2018).

The abluminal surface of the EC is covered by the basal
lamina (Fig. 1 A), a structural matrix of laminins, fibronectin,
collagens, tenascin, and proteoglycans. This basement mem-
brane (BM) surrounds ECs and pericytes, acting as an interface
for the binding of molecules and migration of cells, while also
limiting passage of macromolecules (Del Zoppo et al., 2006). The
BM consists of two layers: the inner vascular BM secreted by ECs
and pericytes, and the outer glial BM secreted by astrocytes
(Sorokin, 2010). These BMs are merged surrounding capillaries
but separate at post-capillary venules, creating a CSF-drained
perivascular space for immune surveillance (Engelhardt and
Ransohoff, 2012).

Mural cells—vascular smooth muscle cells (VSMCs) and
pericytes—are found on the abluminal side of blood vessels in all
tissues. VSMCs line all larger vessels but are more abundant on
arteries and arterioles, forming a complete layer around them
(Smyth et al., 2018; Vanlandewijck et al., 2018; Armulik et al.,
2011). VSMC myosin fibers regulate blood flow via vasocon-
striction and vasodilation (Aird, 2007). Pericytes are embedded
in the BM and form an incomplete layer on the surface of CNS
micro-vessels (Fig. 1 A). Pericytes play a key role in the regu-
lation of angiogenesis, vascular remodeling, vascular tone, and
BBB formation (Daneman et al., 2010a; Armulik et al., 2005,
2010; Winkler et al., 2011). Perivascular fibroblasts are found in
the walls of large vessels (Vanlandewijck et al., 2018); however,
their role in cerebrovascular function remains unexplored.

Astrocytes extend cellular processes terminating in endfeet
that ensheath synapses, nodes of Ranvier, and ECs, contacting
the BM around parenchymal vessels (Fig. 1 A). This astrocyte-
endothelial interaction is critical in regulating blood flow
(Mishra et al., 2016). Several groups have shown that CSF flows
between the BM and astrocyte endfeet of arteries and capillaries,
with arteriole pulsations driving bulk fluid flow through the
parenchyma, although others have argued about the extent of
bulk flow (Abbott et al., 2018; Hladky and Barrand, 2019). This
“glymphatic” system helps to clear interstitial solutes such as
amyloid via paravenous drainage pathways (Iliff et al., 2012; Xie
etal., 2013; Mestre et al., 2018) and has been visualized in human
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Figure 2. Dysfunction of the BBB in disease. (A and B) Schematic representation of the NVU in health and disease. (A) In health, CNS ECs exhibit T}s, low
rates of transcytosis, and low expression of leukocyte adhesion molecules. Pericytes embedded in the BM help to maintain the barrier, and astrocyte endfeet
contact the BM. (B) In disease, TJs are internalized or down-regulated, rates of transcytosis increase, increased leukocyte adhesion molecule expression leads
to increased leukocyte extravasation, the BM degrades, and pericytes and astrocytes less tightly cover the ECs. Made with BioRender. (C-F) BBB disruption in
models of MS, traumatic brain injury, and stroke. Sections showing BBB leakage to a sulfo-N-hydroxysulfosuccinimide-biotin tracer (green) in three disease
models. (C and D) A section of spinal cord from a healthy mouse (C) and from the EAE model of MS (D). (E and F) The contralateral (E) and ipsilateral (F)
hemispheres in a coronal section of the middle-cerebral artery occlusion model of ischemic stroke. (G-1) BBB leakage and edema in human cases of MS, stroke,
and epilepsy. T1 weighted MRI images with gadolinium enhancement to show BBB leakage in (G) MS lesions and (H) stroke infarct. (1) T1 weighted and fluid
attenuation inversion recovery (FLAIR) MRI images showing edema in epilepsy. Images courtesy of Dr. John Hesselink, University of California, San Diego, San
Diego, CA.
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There are small regions of the brain that lack an endothelial BBB and are instead vascularized by permeable fenestrated capillaries. In these regions, a
specialized glial barrier takes on the role of the endothelial BBB. (A) Among these regions is the choroid plexus, the structure that generates most of the cer-
ebrospinal fluid. The specialized ependymal epithelial cells of the choroid plexus surround its fenestrated capillaries and filter the fluid that enters through fe-
nestrae to generate the cerebrospinal fluid. The choroid plexus epithelial cells possess similar properties as the ECs of the BBB. (B and C) These properties include
(compare panel B to C): (1) a dense formation of junctional complexes that restrict paracellular diffusion of hydrophilic solutes; (2) expression of efflux transporters
and low rates of transcytosis that limit transcellular movement of molecules; and (3) expression of selective transporters that import necessary nutrients or export
wastes (Marques et al., 2017). CVOs are vascularized by fenestrated capillaries and allow a small subset of neurons and glia to sense blood-derived signals or
secrete hormones into the blood to regulate peripheral processes such as fluid homeostasis, osmoregulation, body temperature, energy balance, and inflammation.
The subfornical organ, area postrema, and organum vasculosum of the lamina terminalis are the sensory CVOs, while the median eminence and neurohypophysis
are the secretory CVOs. Each of these CVOs possess a glia-derived, cellular barrier generated by tanycytes or tanycyte-like cells that limit further diffusion of blood-
derived solutes into neighboring regions or the cerebrospinal fluid (Ganong, 2000; Miyata, 2015). (D) In the median eminence, B1 tanycytes limit diffusion of solutes
originating from the ventrally localized fenestrated capillaries into the arcuate nucleus while B2 tanycytes restrict chemical exchange between the median

eminence and CSF (Miyata, 2015; Langlet et al., 2013).

patients via magnetic resonance imaging (MRI; Meng et al., 2019;
Fultz et al., 2019). Expression of water channel aquaporin-4 in
astrocyte endfeet has been reported to play a critical role in the
movement of CSF into the parenchyma (Haj-Yasein et al., 201;
Iliff et al., 2012; Mestre et al., 2018).

CNS-associated macrophages, which express a gene signa-
ture of Mrcl (CD206), Pf4, Cbr2, Ms4a7, and Stabl, include choroid
plexus, dural, leptomeningeal, and perivascular macrophages
(Kierdorf et al., 2019; Jorddo et al., 2019). Perivascular macro-
phages are elongated cells residing between the astrocytic end-
feet and parenchymal vessels (primarily arteries and veins).
While nonmotile, they extend processes along the perivascular
space, providing the first line of defense by collecting debris
(Hickey and Kimura, 1988; Prinz et al., 2017). Microglia, derived
from yolk-sac progenitor cells (Takahashi et al., 1989; Alliot
et al,, 1999), reside within the CNS parenchyma. They possess
a highly ramified morphology and perform immune surveil-
lance, phagocytosing infectious agents that evade the barrier
(Streit et al., 2005; Prinz et al., 2011). Microglia have also been
shown to regulate BBB resealing following vascular injury and
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disease (Fernandez-Lépez et al., 2016; Lou et al., 2016). In disease
states, leukocytes such as neutrophils and T cells can interact
with the BBB, increasing permeability via release of cytokines,
reactive oxygen species, and other mediators of barrier dys-
function (Hudson et al., 2005; Persidsky et al., 1999).

Thus, the BBB is a series of structural, transport, and meta-
bolic barriers that together limit CNS entry of nonspecific
molecules while ensuring the delivery of specific nutrients,
thereby controlling the extracellular environment. Several im-
portant questions remain. What exactly gets through the bar-
rier, how much, and by which route(s)? The barrier is not
absolute. Small, nonpolar molecules enter unrestricted through
passive diffusion unless they are substrates of efflux trans-
porters. In contrast, large or polar molecules are greatly re-
stricted in access unless they are substrates of specific nutrient
transporters. However, even large molecules enter the CNS
parenchyma at 0.1% of their blood concentration through an
unsaturable mechanism (Yu and Watts, 2013; Poduslo et al.,
1994), likely via nonspecific transcytosis, which occurs at low
rates. Future work fully characterizing the substrate specificity
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of BBB transporters and their dynamic response to various
stimuli may enable manipulation of these transporters for CNS
drug delivery.

There is heterogeneity of gene expression among different
branches of the vascular tree (Macdonald et al., 2010;
Vanlandewijck et al., 2018; Murugesan et al., 2011). It is thought
that this heterogeneity enables capillaries, arterioles, and ven-
ules to be specialized for regulation of solute transport, blood
flow, and inflammation, respectively. But what is the relevance
of this arteriovenous zonation in terms of barrier function?
How is this phenotypic continuum programmed during
development?

It is also currently unknown whether there is regional het-
erogeneity of the BBB. Several regions of the CNS termed cir-
cumventricular organs (CVOs)—the area postrema, subfornical
organ, pineal gland, and median eminence of the hypothalamus—
have fenestrated capillaries that lack BBB properties (Box 1;
Gross, 1992). This vascular permeability allows for the ex-
change of sensory or secretory signaling molecules between
the brain and blood, enabling CVO-mediated regulation of
body homeostasis. Much less is known about whether there
are region-specific differences among areas with a functional
BBB, including the cortex, hippocampus, cerebellum, and white
matter tracks, and whether BBB heterogeneity might contribute
to the specialized function of a particular brain region or render
that region more vulnerable to disease.

BBB formation and regulation

How BBB properties are regulated in development and main-
tained in adulthood remains a fundamental field of study
(Blanchette and Daneman, 2015). Transplanted CNS tissue is
sufficient to induce BBB-like properties in the gut endothelium
in vivo (Stewart and Wiley, 1981), suggesting a role for the
neural microenvironment in BBB formation. Transplantation of
astrocytes into nonneural tissues of adult rats induces barrier
properties in local ECs (Janzer and Raff, 1987), and several
astrocyte-secreted proteins are sufficient to induce EC barrier
properties in vitro and in vivo, including Sonic hedgehog, an-
giotensin, and basic fibroblast growth factor (Alvarez et al., 2011;
Sobue et al., 1999; Wosik et al., 2007). However, barrier prop-
erties arise during development before astrogliogenesis takes
place (Ben-Zvi et al., 2014; Daneman et al., 2010a; Sohet et al.,
2015; Sauvageot and Stiles, 2002), delaying astrocytic contact
with ECs does not affect barrier formation (Saunders et al.,
2016), and laser ablation of astrocyte endfeet in adult mice
does not induce BBB leakage (Kubotera et al., 2019). These data
suggest that astrocytes are not necessary for BBB formation, but
perhaps provide dynamic BBB regulation in response to specific
stimuli. For instance, reactive astrocytes have been shown to be
critical for BBB repair following neurological disease (Bush et al.,
1999).

Neural progenitor-derived Wnt signaling induces BBB prop-
erties during the angiogenic program (Daneman et al., 2009;
Liebner et al., 2008; Stenman et al., 2008; Ye et al., 2009; Wang
etal., 2012; Zhou and Nathans, 2014; Cho et al., 2017). Loss of Wnt
signaling disrupts angiogenesis specifically in the CNS, reducing
the expression of TJ proteins and solute transporters while
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increasing PLVAP (Daneman et al., 2009; Liebner et al., 2008;
Stenman et al., 2008). Interestingly, B-catenin activation in the
more permeable CVO vessels is sufficient to induce BBB prop-
erties (Benz et al., 2019; Wang et al., 2019). These data suggest
that the same signal that drives angiogenic invasion of the CNS
also induces initial BBB properties within the endothelium.

Pericytes are also essential in BBB development, and EC re-
cruitment of pericytes is concomitant with development of
barrier properties. The BBB fails to completely seal in mice
lacking CNS pericytes, as they inhibit nonspecific transcytosis
and leukocyte adhesion molecule expression (Daneman et al.,
2010b; Armulik et al., 2010).

Thus, the BBB is regulated by a series of different cellular
interactions: BBB “tight” properties are induced during the an-
giogenic program by Wnt signaling, “leaky” properties are in-
hibited by pericytes, and the overall phenotype of the BBB can
be influenced by astrocytes, pericytes, and other cell types
throughout life.

Important questions still remain. How is the induction of
different BBB properties coordinated? Interestingly, Wnt sig-
naling induces endothelial secretion of platelet-derived growth
factor B, the key ligand for pericyte recruitment (Reis et al.,
2012), suggesting that induction of different BBB properties is
tightly coordinated via Wnt-mediated pericyte recruitment. Are
the same signals required for induction also responsible for
regulating BBB maintenance in adulthood? Although Wnt sig-
naling decreases in ECs after angiogenesis, this pathway is
critical for BBB maintenance; disruption of Wnt signaling in
adulthood leads to cell-autonomous loss of TJ integrity and an
increase in PLVAP in the retina and cerebellum (Wang et al.,
2012). Additionally, pericytes are important for BBB function
throughout life (Armulik et al., 2010), suggesting that similar
signals are required for BBB formation and maintenance. Do
region-specific differences in signaling influence BBB hetero-
geneity? Different Wnt ligands and receptor complexes have
been shown to promote BBB formation in different regions of
the CNS (Daneman et al., 2009; Wang et al., 2012, 2018; Zhou
et al., 2014); however, it is not clear whether this induces re-
gional heterogeneity or is merely a remnant of dorsal-ventral
and rostral-caudal axis specification.

How dynamic is each BBB property in a healthy CNS? Are
properties modulated by neural activity or environmental
stimuli such as exercise and diet? Single-cell sequencing
has revealed vascular changes in response to neural activity
(Hrvatin et al., 2018), and neuronal activity has been shown to
modulate BBB insulin-like growth factor 1 (Nishijima et al.,
2010). However, whether neural activity dynamically regu-
lates specific properties of the BBB to modulate circuit function
remains unknown. While exercise might help to protect against
BBB dysfunction in aging or disease, solid evidence is still
forthcoming (Matkiewicz et al., 2019). A high-fat diet can in-
crease BBB permeability (de Aquino et al., 2019; Salameh et al.,
2019; Yamamoto et al., 2019), but the specific BBB properties
affected have not been thoroughly characterized. Not only can
diet affect the BBB, but the BBB can in turn dynamically regulate
nutrient availability; animals entering hibernation up-regulate
ketone transporters at the BBB to modulate energy utilization
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during inactivity (Andrews et al., 2009). How dynamic are BBB
properties over the course of 24 h, and how might these fluc-
tuations influence brain microenvironment and waste clear-
ance? PGP expression levels follow a diurnal pattern (Savolainen
et al,, 2016; Kervezee et al., 2014), and a circadian clock in glial
cells of the Drosophila melanogaster BBB regulates xenobiotic ef-
flux (Cuddapah et al., 2019; Zhang et al., 2018), but the extent and
functional implications of circadian oscillations at the BBB re-
main unclear.

Are there differences in the BBB across individuals? Are there
sex differences in BBB properties? There is evidence for varia-
tion in male and female patient CSF/serum albumin ratio
(Parrado-Ferndndez et al., 2018), and BBB sexual dimorphism
has been proposed to underlie differences in response to trau-
matic brain injury and infection and in proclivity to autoim-
mune disease (Cruz-Orengo et al., 2014; Jullienne et al., 2018;
Maggioli et al., 2016).

How do BBB properties change in age? Several studies have
reported age-related decline in BBB function (Mooradian, 1988;
Montagne et al., 2015; ErdS et al., 2017), and age-related pericyte
dysfunction contributes to BBB permeability (Bell et al., 2010).
VCAMI up-regulation at the BBB is a crucial step in age-related
cognitive deficits and increased inflammatory tone (Yousef
et al., 2019), highlighting VCAMI as a potential therapeutic
target for age-related neurodegeneration.

BBB dysfunction

BBB dysfunction occurs in a number of diseases, including MS,
epilepsy, and stroke. In these conditions, BBB dysfunction is a
central element of the pathology, whereas in others, such as
Alzheimer’s disease (AD), the incidence and extent of break-
down are more controversial and an area of burgeoning re-
search. BBB disruption causes ion dysregulation, edema, and
neuroinflammation, which can lead to neuronal dysfunction,
increased intracranial pressure, and neuronal degeneration.
However, the mechanisms underlying BBB dysfunction and its
role in the onset and progression of disease or recovery are not
fully understood.

The phrase “BBB breakdown” conjures images of the de-
struction of a physical wall, allowing an unabated flow of mol-
ecules from the blood into the brain. However, the BBB is not a
wall but a series of physiological properties, and a change in just
one property (transcytosis, transport) can significantly alter the
neural environment (Fig. 2). For instance, dysfunction of GLUT1
glucose transport, LAT1 amino acid transport, and MCT8 thyroid
hormone transport across the BBB leads to seizure, autism
spectrum, and psychomotor retardation syndromes, respec-
tively (Seidner et al., 1998; Tarlungeanu et al., 2016; Vatine et al.,
2017).

Importantly, leakage of nonspecific molecules is distinct from
leukocyte extravasation, which occurs via an active trafficking
process. Single-cell sequencing has identified many subsets of
immune cells with distinct roles in neuroinflammation that
likely interact with the BBB in disease (Mrdjen et al., 2018;
Jorddo et al., 2019; Kierdorf et al., 2019; Masuda et al., 2019;
Mundt et al., 2019). Parenchymal ECs up-regulate leukocyte
adhesion molecules, thus increasing leukocyte trafficking.
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P-selectin and E-selectin mediate the rolling of leukocytes along
the endothelium, ICAM1 and VCAMI1 mediate firm adhesion,
and proteins like PLVAP—also up-regulated in disease—aid in
transmigration across ECs (Engelhardt and Ransohoff, 2012;
Toannidou et al., 2006). Leukocyte extravasation across the BBB
can be either transcellular or paracellular (Carman et al., 2007;
Winger et al., 2014). Levels of ICAM1 and PECAMI can influence
T cell diapedesis route (Abadier et al., 2015; Wimmer et al.,
2019), and specific subsets of T cells prefer different routes
(Lutz et al., 2017).

Thus, the BBB is not an on-off switch, and it is critical to
understand the specificities and consequences underlying each
instance of dysfunction.

BBB dysfunction in CNS disorders

MS. BBB dysfunction is a central feature of MS, and the time
course of leakage has been studied with dynamic contrast-
enhanced MRI (Bastianello et al., 1990; Harris et al., 1991;
Guttmann et al., 2016; Gaitdn et al., 2011; Fig. 2 G). While barrier
leakage is almost always present in new lesions, it is rarely
observed in older lesions (Bastianello et al., 1990, Harris et al.,
1991). Interestingly, MRI evidence suggests that BBB permea-
bility is the initial event in the formation of a subset of lesions,
but in others, lesion formation occurs before barrier dysfunction
(Guttmann et al., 2016).

CNS immune infiltration is a critical step in MS pathophys-
iology, and the dynamics of this process have been primarily
studied in experimental autoimmune encephalomyelitis (EAE),
a rodent model of MS. The primary sites of CNS immune sur-
veillance in health are the blood-CSF barriers of the choroid
plexus and meninges, and both are important sites of initial
lymphocyte activation in EAE (Bartholomdus et al, 2009;
Schlédger et al., 2016; Mundt et al., 2019; Engelhardt et al., 2001,
2017; Carrithers et al., 2000; Reboldi et al., 2009). These immune
cells first enter the perivascular space surrounding post-
capillary venules (Greter et al., 2005) and gain parenchymal
access after breaking down the BM (Song et al., 2017; Wu et al.,
2009). Leukocyte-derived cytokines activate CNS ECs, inducing
expression of leukocyte adhesion molecules (Carrithers et al.,
2000; Barkalow et al., 1996; Lou et al., 1996), which leads to
massive parenchymal infiltration of immune cells. Limiting
immune cell trafficking across the BBB has proven effective in
treating MS. Natalizumab, which targets the a4 integrin on
immune cells, preventing their interaction with endothelial
VCAM], greatly reduces new lesion formation (Miller et al.,
2003).

It is critical to note that while leukocyte invasion is often
assumed to be detrimental, leukocyte trafficking is required at
low levels in order to limit infections. Of great interest is the
identification of leukocyte adhesion molecules that facilitate the
extravasation of only certain subsets of immune cells (Steinman,
2015). This could enable targeting pathological inflammation
without rendering patients more vulnerable to infection. In-
deed, ninjurinl (NINJI; monocytes), activated leukocyte cell
adhesion molecule (ALCAM; CD4* T cells, monocytes), junction
adhesion molecule-like (JAML; monocytes, CD8* T cells), and
melanoma cell adhesion molecule (MCAM; CDS8, T helper cell 17)

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20190062

920z Areniged 60 uo 1senb Aq jpd'z9006 102~ Wel/y0.29.1/2900610Z8/v/ .1 Z/spd-8joie/wal/bio ssaidny//:dpy woy papeojumoq

70f 16


https://doi.org/10.1084/jem.20190062

regulate the entry of specific immune cell populations into the
CNS (Alvarez et al.,, 2015; Cayrol et al., 2008; Flanagan et al.,
2012; Ifergan et al., 2011; Larochelle et al., 2015). It will be nec-
essary to ensure that targeting these molecules does not produce
secondary effects; Alcam knockout mice develop more severe
EAE as ALCAM also enforces TJ integrity (Lécuyer et al., 2017).

Many questions remain unanswered. How much of MS
pathophysiology directly results from BBB dysfunction? Is there
a subset of lesions caused by leakage while others have a dif-
ferent etiology? If these lesion subsets exist, do they vary with
respect to severity and repair processes? Does the BBB interact
with the lymphatic system to regulate leukocyte efflux during
remission?

Ischemia/stroke. BBB dysfunction during stroke follows a
biphasic time course. Leakage is evident within hours of the
primary insult, is subsequently reduced, and then reappears the
day after (Huang et al., 1999; Kuroiwa et al., 1985; Fig. 2, E, F, and
H). An increase in transcytosis of nonspecific molecules is the
first stage of dysfunction, followed by structural alteration of TJs
(Knowland et al., 2014). Questions still remain regarding the
importance of leukocyte infiltration in pathogenesis. Several
reports have shown that leukocyte adhesion molecule knockouts
or antibodies directed against leukocyte adhesion molecules
minimize infarct volume (Bowes et al., 1993; Connolly et al.,
1996; Mayadas et al., 1993), whereas others have not been able
to replicate this effect (Enzmann et al., 2018).

Much of the cell death that leads to neurological deficits oc-
curs in the days following a stroke; thus, the second phase of BBB
leakage may be an important therapeutic target. Major out-
standing questions in stroke research surround the relevance of
this biphasic BBB dysfunction. It is unknown whether the first
and second openings are mechanistically different; perhaps the
first opening is due to dynamic signaling while the second re-
sults from changes in BBB gene expression.

Epilepsy. There is a clear association between epilepsy and
BBB dysfunction. BBB leakage in epilepsy patients is visible with
contrast-enhanced MRI (Horowitz et al., 1992; Alvarez et al.,
2010; Riiber et al., 2018; Fig. 2 I), and analysis of brain tissue
from epileptic patients shows increased parenchymal albumin
(Cornford et al., 1998a; Mihaly and Bozéky, 1984), implicating
blood-to-brain extravasation of large molecules. Furthermore,
patient samples exhibit regional reduction in GLUT! (Cornford
et al., 1998b), and positron emission tomography scans demon-
strate decreased uptake and metabolism in seizure foci (Cornford
et al., 1998a; Janigro, 1999).

BBB dysfunction itself may be epileptogenic or may help
propagate seizures. Experimental disruption of the BBB with
osmotic shock leads to seizures in patients (Marchi et al., 2007),
and diseases in which the BBB is compromised such as infection,
inflammation, stroke, and traumatic brain injury can lead to
seizures and epilepsy (Oby and Janigro, 2006; van Vliet et al.,
2007). Furthermore, neuroinflammation has been hypothesized
to be involved in seizure etiology; blockage of leukocyte-
vascular interactions either pharmacologically or by genetic
knockout inhibits both induction and recurrence of seizures
(Fabene et al., 2008). Interestingly, patients with a BBB-GLUTI
deficiency develop epilepsy (De Vivo et al., 1991; De Vivo et al.,
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2002), demonstrating a critical role for BBB transport in normal
brain function.

AD. The extent of BBB dysfunction in AD and its role in
etiology are an important ongoing focus of research. Several
techniques have been used to examine BBB function in AD pa-
tients, including staining postmortem brain tissue for serum
components, measurement of blood/CSF albumin concen-
trations, and various imaging modalities. Histological analyses
have shown increased albumin and immunoglobulins in areas of
heavy plaque burden (Wisniewski et al., 1997) as well as in-
creased levels of fibrinogen (Ryu and McLarnon, 2009). A three-
dimensional in vitro AD model has shown evidence of BBB
dysfunction, phenocopying vascular changes reported in pa-
tients (Shin et al., 2019). Additionally, several imaging studies
have found evidence of a leakier BBB in AD patients and propose
BBB dysfunction as an early biomarker of AD (Starr et al., 2009;
Montagne et al., 2015; van de Haar et al., 2016; Nation et al.,
2019). While many older reports found no change in CSF albu-
min levels or contrast-enhanced imaging (Alafuzoff et al., 1987;
Frolich et al., 1991; Kay et al., 1987; Mecocci et al., 1991; Bronge
and Wahlund, 2000; Dysken et al., 1990; Schlageter et al., 1987),
several of these studies did find evidence of BBB leakage in pa-
tients with vascular disease, suggesting that even in the absence
of widespread leakage, there is a crucial vascular component to
pathology (Erickson and Banks, 2013; Farrall and Wardlaw,
2009; Mecocci et al., 1991; Alafuzoff et al., 1983). As new imag-
ing technology with greater resolution has gained wider use,
BBB dysfunction has been further implicated in the pathogenesis
of AD (Montagne et al., 2015; van de Haar et al., 2016; Nation
et al., 2019). With these new tools, it will be vital to perform a
more detailed analysis to determine at what stage and in which
brain regions BBB dysfunction occurs, whether leakage is
transient or chronic, and which cellular BBB properties are
affected.

Regardless of the extent of widespread BBB leakage, there are
several links between BBB dysfunction and AD pathology
(Petersen et al., 2018). Fibrin accumulates in amyloid-positive
vessels in AD patients and mouse models, and fibrin depletion
protects against cognitive deficits in mice (Paul et al.,, 2007;
Cortes-Canteli et al., 2010). Perhaps small amounts of BBB
leakage related to injury, infection, or aging increase fibrin de-
position, setting in motion an inflammatory cascade that plays
an important role in AD pathology (Petersen et al., 2018; Kumar
et al., 2016; Kinney et al., 2018).

In addition to nonspecific leakage, dysfunction of BBB Af
transport may drive AD pathology (Bell and Zlokovic, 2009;
Erickson and Banks, 2013). LRPI, a cell-surface receptor ex-
pressed on ECs, regulates AP clearance from the parenchyma
(Shibata et al., 2000). EC-specific Lrpl knockout increases levels
of soluble brain AB and the severity of learning and memory
deficits in an AD mouse model (Storck et al., 2016). A phos-
phatidylinositol binding clathrin assembly protein (PICALM)/
PGP-dependent mechanism also aids in the clearance of AB
across the BBB. PICALM regulates clathrin-dependent internal-
ization of AP, guiding receptor-mediated transcytosis and
clearance of A, potentially presenting AP to efflux transporters
(zhao et al., 2015). PGP deficiency in an AD mouse model cuts AB
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clearance rate in half and increases CNS AP deposition (Cirrito
et al.,, 2005), and AB40 triggers ubiquitination and internaliza-
tion of PGP (Hartz et al., 2016), suggesting a dangerous feedback
cycle. Conversely, receptor for advanced glycation endproducts
(RAGE) imports AB into the CNS (Deane et al., 2003), and al-
terations in LRP:RAGE activity are hypothesized to drive CNS
amyloid deposition in AD patients (Jeynes and Provias, 2008).

Another factor that might contribute to BBB dysfunction in
AD is apolipoprotein E (APOE) genotype. Transgenic mice ex-
pressing human APOE4, the AD risk allele, exhibit cerebral
vasculature with a thinner BM and BBB dysfunction due to cy-
clophillin/MMP9 signaling in pericytes (Bell et al., 2012; Alata
et al., 2015). Further, postmortem AD tissue has revealed de-
creased TJ proteins and MMP9 elevation along with pericyte
degeneration in APOE4 carriers (Bell et al., 2012; Halliday et al.,
2016; Nishitsuji et al., 2011). However, there are conflicting
reports; others show no changes in BBB function in Apoe4
knockout or APOE4 transgenic mice (Bien-Ly et al., 2015). One
possible explanation is that APOE4 might cause minor, highly
localized BBB leakage while not disrupting global BBB integrity
(Ulrich et al., 2015).

To address the outstanding questions in the field, a deeper
understanding of the association between vascular damage and
AD pathology is necessary. This will require a focus on finding
causal rather than correlational information linking BBB leak-
age, inflammation, and AD pathology. For instance, a recent
study found that BBB dysfunction is an early marker of cognitive
decline independent of AB or tau accumulation (Nation et al.,
2019), but more details are needed regarding the extent of BBB
dysfunction at various points during the AD time course. Fur-
thermore, it is critical to understand how the BBB, glymphatics,
and lymphatics cooperate to remove AB and other waste prod-
ucts from the CNS parenchyma, and what role this plays in AD
pathophysiology (Stower, 2018; Rasmussen et al., 2018; Sweeney
and Zlokovic, 2018; Da Mesquita et al., 2018).

Looking forward. Several important questions remain re-
garding the BBB in the context of disease. How is each BBB
property altered in neurological diseases, and how do these
changes affect the extracellular environment of the CNS? One
problem is that different studies in humans or mouse models
often use a single modality to detect BBB breakdown, whether
sampling postmortem tissue, measuring markers in the CSF or
blood, quantifying leakage of an exogenous tracer, or perform-
ing live imaging with a contrast agent. The BBB is not a single
entity that is “open” or “shut,” and moving forward, it is im-
perative to understand exactly how the complex physiology of
the BBB changes in each disease. It is especially important to
consider whether alterations are induced by the same or dif-
ferent signals across neurological conditions. If mechanistic
similarities exist, it might be possible to design a therapeutic
strategy applicable to a wide range of disorders (Munji et al.,
2019). Indeed, several molecular factors regulate BBB dysfunc-
tion in multiple diseases, including vascular endothelial growth
factor (Argaw et al., 2009, 2012), inflammatory cytokines (tu-
mor necrosis factor a [Nishioku et al., 2010], interleukins 1and 6
[Chiaretti et al., 2005; Paré et al., 2018; Wang et al., 2014]), re-
active oxygen species (Maier et al., 2006; Pun et al., 2009; Relton
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et al., 1997), and matrix metalloproteinases (Gidday et al., 2005;
Ugarte-Berzal et al., 2018). However, there is also evidence that
barrier dysfunction is due not only to “breakdown signals” but
also to disrupted maintenance signals. Disruption of Wnt sig-
naling can lead to vascular permeability and worse disease
outcomes (Wang et al., 2012; Chang et al., 2017); thus, increasing
CNS EC Wnt signaling might have therapeutic potential.

Can subtle changes in different BBB properties cause specific
neurological symptoms? Dysfunction in several BBB trans-
porters causes specific developmental disorders (Seidner et al.,
1998; Tarlungeanu et al., 2016; Vatine et al., 2017), and there may
be more undiscovered instances of this pattern. It is possible that
regional heterogeneity at the BBB renders particular brain re-
gions vulnerable to certain disease pathologies. For instance, if
the BBB is indeed specialized to cater to the distinct nutrient
and signaling needs of individual brain regions, loss of one of
those BBB specializations might lead to deficits in local circuit
function.

It is also important to also think beyond ECs. Disruption of
pericyte coverage leads to an increase in EC nonspecific trans-
cytosis and leukocyte adhesion molecules expression, and it is
unclear to what extent this drives neurological disease. Fur-
thermore, disruption of astrocyte endfeet at the NVU would
decrease glymphatic clearance, potentially contributing to
pathological accumulation of proteins including AB. Future work
analyzing how each cell type of the NVU, and the glycocalyx and
BMs, is altered will be critical to understand the pathophysiology
of different neurological diseases.

Another fundamental question is how the BBB is repaired.
While the BBB becomes less permeable to molecular tracers at
chronic phases of disease models, it is unclear whether there are
functional or structural compromises made in the process of
reversing leakiness. More work is needed to fully characterize
the repaired BBB at the levels of physical integrity and tran-
scriptomics. It is also unknown what endogenous signals induce
BBB repair, and whether repair occurs cell-autonomously within
ECs or with mediation from other cell types. Interestingly, both
microglia and reactive astrocytes regulate repair of the BBB in
response to injury, highlighting the importance of the interac-
tions of cells within the NVU (Lou et al., 2016, Bush et al., 1999,
Fernandez-Lépez et al., 2016).

Concluding remarks

The BBB is not a single entity, but rather a complex series of
physiological properties allowing CNS ECs to tightly regulate the
extracellular environment of the parenchyma. These properties
are vital for proper neural function, and dysfunction of the BBB
can lead to critical pathology in many neurological diseases.
However, more work is needed in order to understand exactly
what crosses the healthy BBB, the degree to which the BBB dy-
namically responds to environmental stimuli, the extent of its
regional heterogeneity, and the signaling mechanisms underly-
ing its maintenance, disruption, and repair (Box 2). As future
research answers these questions and further reveals the cel-
lular and molecular intricacies underlying the BBB, the clinical
advantages will be twofold: a deeper knowledge of the BBB
will provide therapeutic targets for BBB repair in a range of
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Box 2. Important unanswered questions

BBB function

» What endogenous and exogenous molecules permeate the barrier, how much, and by which

route(s)?

« Is there regional heterogeneity of the BBB? Do regional specifications of the BBB regulate circuit

function?

» What is the relevance of arteriovenous zonation in terms of barrier function?

« Are there sex differences in BBB function?

» How dynamic is each BBB property in a healthy CNS?
« Is the BBB modulated by neural activity, diet, or environmental stimuli?

BBB function

+ How is the induction of different BBB properties coordinated?

» How is the seamless phenotypic continuum of arteriovenous zonation programmed?

« Do differences in developmental signaling influence BBB heterogeneity?

+ Are the same signals required for induction also responsible for regulating BBB maintenance in

adulthood?

« To what extent are BBB properties regulated by a circadian clock?

» How do BBB properties change in age?

BBB dysfunction

» How is each BBB property altered in neurological diseases?

» How do these changes affect the CNS extracellular environment?

- Are these alterations induced by the same or different signals across neurological conditions?
+ Can subtle changes in different BBB properties cause specific neurologic symptoms?

» How does the BBB interact with the lymphatic and glymphatic clearance pathways?

» What endogenous signals induce repair?

+ Is BBB repair occurring cell-autonomously within ECs or with mediation from other cell types?

neurological conditions and will also enable more effective
strategies for delivering drugs to the CNS.
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