
ARTICLE

Acetate coordinates neutrophil and ILC3 responses
against C. difficile through FFAR2
José Lúıs Fachi1,2, Cristiane Sécca2, Patŕıcia Brito Rodrigues1, Felipe Cézar Pinheiro de Mato1, Blanda Di Luccia2, Jaqueline de Souza Felipe1,
Láıs Passariello Pral1, Marcella Rungue3, Victor de Melo Rocha3, Fabio Takeo Sato1, Ulliana Sampaio4, Maria Teresa Pedrosa Silva Clerici4,
Hosana Gomes Rodrigues5, Niels Olsen Saraiva Câmara6, Śılvio Roberto Consonni7, Angélica Thomaz Vieira3, Sergio Costa Oliveira3,
Charles Reay Mackay8, Brian T. Layden9,10, Karina Ramalho Bortoluci11, Marco Colonna2, and Marco Aurélio Ramirez Vinolo1,12

Antibiotic-induced dysbiosis is a key predisposing factor for Clostridium difficile infections (CDIs), which cause intestinal
disease ranging from mild diarrhea to pseudomembranous colitis. Here, we examined the impact of a microbiota-derived
metabolite, short-chain fatty acid acetate, on an acute mouse model of CDI. We found that administration of acetate is
remarkably beneficial in ameliorating disease. Mechanistically, we show that acetate enhances innate immune responses by
acting on both neutrophils and ILC3s through its cognate receptor free fatty acid receptor 2 (FFAR2). In neutrophils, acetate-
FFAR2 signaling accelerates their recruitment to the inflammatory sites, facilitates inflammasome activation, and promotes
the release of IL-1β; in ILC3s, acetate-FFAR2 augments expression of the IL-1 receptor, which boosts IL-22 secretion in
response to IL-1β. We conclude that microbiota-derived acetate promotes host innate responses to C. difficile through
coordinate action on neutrophils and ILC3s.

Introduction
The intestinal microbiota plays a crucial role in the maintenance of
host homeostasis by shaping and supporting multiple physiological
functions, such as nutrient absorption, metabolism, and the devel-
opment of the immune system (Ding et al., 2019; Richard and Sokol,
2019; Sonnenburg and Sonnenburg, 2019; Sovran et al., 2019; Zmora
et al., 2019). Themicrobiota also outcompetes intestinal colonization
by microbial pathogens and thus provides an exogenous defense
mechanism against infections (Rodriguez et al., 2015; Stecher and
Hardt, 2008). Indeed, quantitative and/or qualitative changes in the
composition of the microbiota, known as dysbiosis, are associated
with expansion of pathobionts, damage to the intestinal epithelium,
bacterial translocation into deeper organs, and ultimately develop-
ment of numerous pathologies (Ferreira et al., 2014; Johanesen et al.,
2015; Theriot et al., 2014).

Clostridium difficile is an anaerobic bacterium that forms
spores, which can be found in the intestines of up to 17% of
healthy adult individuals. C. difficile is resistant to several anti-
microbial agents, including clindamycin, ampicillin, and third-

generation cephalosporins, and hence acquires a selective
advantage over other microorganisms during antibiotic therapy
(Johanesen et al., 2015; Rea et al., 2011; Theriot et al., 2014). Thus,
antibiotic-induced dysbiosis can lead to C. difficile infections
(CDIs) that cause intestinal disease ranging from mild diarrhea to
pseudomembranous colitis (Chen et al., 2008; Rea et al., 2011;
Theriot et al., 2014). C. difficile exerts pathogenicity through spore
germination and production of toxins, particularly toxins A (en-
terotoxin) and B (cytotoxin), which cause irreversible damage to
the colonic epithelium (Bibbò et al., 2014; Voth and Ballard, 2005).
Loss of epithelial integrity results in increased intestinal perme-
ability and translocation of bacteria from the gut lumen into
deeper tissues (Hasegawa et al., 2012; Naaber et al., 1998). Em-
phasizing the importance of healthy microbiota in preventing
CDI, several studies have demonstrated that patients with recur-
rent CDI benefit more from transplantation of fecal microbiota
derived from healthy donors than from conventional antimicro-
bial therapies (Lawley et al., 2012; van Nood et al., 2013).
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Innate immune responses are essential for host resistance
against CDI. Neutrophils provide an early line of defense: once
recruited into the intestinal mucosa, neutrophils carry out several
protective functions, such as producing reactive oxygen species
(El-Zaatari et al., 2014) and secreting IL-1β (Hasegawa et al., 2012).
Depletion of neutrophils in mice results in acute mortality fol-
lowing infection (Jarchum et al., 2012). Two subsets of innate
lymphoid cells (ILCs) have also been shown to contribute to early
host defense against C. difficile (Abt et al., 2015). ILC1s secrete IFNγ,
which activatesmacrophage defense functions; ILC3s secrete IL-22,
which induces the production of antimicrobial peptides in the gut
(Sadighi Akha et al., 2015) and activates the complement pathway
in the lung and liver to clear translocated bacteria (Hasegawa et al.,
2014). The importance of ILCs in CDI is underscored by the ob-
servation that Rag1−/− mice, which lack T and B cells, can recover
from acute infection as well as WTmice, whereas Rag1−/− × Il2rg−/−

mice, which lack ILCs as well as adaptive lymphocytes, succumb to
infection (Abt et al., 2015; Hasegawa et al., 2014).

Production of short-chain fatty acids (SCFAs) through the
fermentation of dietary fibers is a major mechanism through
which the microbiota promotes intestinal immunity (Corrêa-
Oliveira et al., 2016). SCFAs include acetate, propionate, and bu-
tyrate; these molecules can act through disparate mechanisms,
such as activating specific G protein–coupled receptors, inhibiting
histone deacetylases, stimulating histone acetyltransferase, and
stabilizing hypoxia inducible factor 1 (Donohoe and Bultman,
2012; Fellows et al., 2018; Kelly et al., 2015; Kim et al., 2013;
Vinolo et al., 2011). Through these pathways, SCFAs influence
multiple immune cell functions, including chemotaxis, energy
production, gene expression, cell differentiation, and cell prolif-
eration (Donohoe and Bultman, 2012; Fellows et al., 2018; Kelly
et al., 2015; Kim et al., 2013; Tan et al., 2014; Vinolo et al., 2011).
While the role of SCFAs has been studied in various proin-
flammatory and antiinflammatory intestinal immune responses
(Donohoe and Bultman, 2012; Fujiwara et al., 2018; Furusawa
et al., 2013; Kaiko et al., 2016; Kim et al., 2013; Maslowski et al.,
2009), only the impact of butyrate was recently demonstrated
during CDI (Fachi et al., 2019). The influence of other SCFAs on
immune responses against C. difficile is presently unknown.

Here, we examined the impact of acetate on an acute mouse
model of CDI. We found that administration of acetate is remark-
ably beneficial in ameliorating disease. Mechanistically, we show
that acetate enhances innate immune responses by acting on both
neutrophils and ILC3s through its cognate receptor free fatty acid
receptor 2 (FFAR2). In neutrophils, acetate-FFAR2 signaling facili-
tates inflammasome activation and promotes the release of IL-1β; in
ILC3s, acetate-FFAR2 augments expression of the IL-1 receptor (IL-
1R), which boosts IL-22 secretion in response to IL-1β. We conclude
that microbiota-derived acetate promotes host innate responses to
C. difficile through coordinate action on neutrophils and ILC3s.

Results
A fiber-rich diet and oral administration of acetate protect
mice against CDI
We tested the clinical course of CDI in WT mice fed a soluble
fiber-rich diet (10% pectin) in comparison to mice fed

control diet (AIN93M; Fig. 1 A). Mice fed the pectin-rich diet
had improved clinical scores and lost less weight than mice
fed the control diet (Fig. 1, B and C). The protective effect of
the fiber-rich diet was associated with an increase in in-
testinal bacteria content (Fig. S1 A), as well as higher con-
centrations of acetate in serum (Fig. 1 D). Because acetate is
a metabolite produced by intestinal bacteria through soluble
fiber fermentation, this suggests that bacterial-derived ac-
etate may be protective during CDI. Corroborating this hy-
pothesis, addition of 150 mM acetate to the drinking water
before and throughout the infection was sufficient to pro-
tect mice against CDI, resulting in improved clinical scores
and less-severe weight loss (Fig. 1, E–G) without impacting
intestinal bacterial content (Fig. S1 B). Histologically, we ob-
served increased inflammatory infiltrate in acetate-treated
mice 2 d postinfection (p.i.) as well as attenuated histopa-
thology and mucosal hyperplasia 4 d p.i. (Fig. 1 H). Since ac-
etate did not inhibit C. difficile growth (Fig. S1 C) or toxin
production in vitro or in vivo (not depicted) and had rapid
course of action by improving clinical scores and weight loss
even when it was administered at the time of infection (Fig.
S1, D–F), we conclude that acetate improves host resistance to
C. difficile rather than directly interfering with bacterial
replication.

Acetate enhances neutrophil accumulation and prevents
bacterial translocation
We next examined the impact of acetate on the host response
to CDI. Neutrophils have been shown to be crucial early
during the host response to C. difficile (Jarchum et al., 2012). In
accordance with the histological observations, as early as 1 d
p.i., mice treated with acetate had more neutrophils infil-
trating the colon, but not inflammatory monocytes, than un-
treated controls (Figs. 1 H and 2, A and B). This initial effect of
acetate treatment was associated with more colonic content of
CXCL1, a neutrophil chemoattractant produced by intestinal
epithelia and neutrophils themselves (Fig. 2 C). The colons of
acetate-treated mice also contained more IL-1β (Fig. 2 C), a
cytokine produced by intestinal epithelia and neutrophils that
has a prominent role in impeding the translocation of gut
bacteria and their systemic dissemination (Hasegawa et al.,
2012). The content of proinflammatory TNFα was slightly
reduced (Fig. 2 C). Consistent with the increase in neutrophil
infiltration and IL-1β production, acetate-treated mice showed
a detectable reduction of bacteria translocation into mesen-
teric lymph nodes (mLNs) on day 1 p.i., which became obvious
in several organs on day 2 p.i. (Fig. 2, D and E). Further sub-
stantiating a role in protecting the intestinal mucosa from
CDI-induced damage, acetate also curtailed systemic perme-
ability of FITC-dextran after oral administration in infected
mice (Fig. 2 F). In vitro, acetate did not prevent intestinal
epithelial cell death by C. difficile toxins, as measured by
propidium iodide and calcein-AM staining (Fig. 2, G and H).
Together, these data suggest that acetate bolsters host resis-
tance to C. difficile–mediated intestinal damage by enhancing
early intestinal immune responses, such as neutrophil accu-
mulation and production of IL-1β.
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Figure 1. High-fiber diet (HFD) and acetate administration protect against CDI. (A) WT mice were fed a HFD or low-fiber diet (LFD) before and
throughout the experiment. Mice were treated with a mix of antibiotics for 4 d and then received a single i.p. dose of clindamycin. 1 d later, mice were infected
with 108 CFU of C. difficile (day 0). (B and C)Mice were monitored for clinical score (B) and weight change (C) until day 5 p.i. (D) Serum SCFA concentrations
were measured on day 0 before infection (n = 5). (E)Mice received 150 mM acetate in the drinking water from 1 d before antibiotic treatment until the end of
the infection. (F and G)Mice were monitored for clinical score (F) and weight change (G; n = 10). (H) Representative histological sections of colons stained with
hematoxylin and eosin and blinded histopathological scoring of mice on day 2 and 4 p.i. that were either treated (Ac) or not (Ct) with acetate (n = 4). Scale bars
= 200 µm. Results are representative of two independent experiments with four to five mice in each experimental group (A–C and H) or pooled results from
two experiments with four to five mice in each experimental group (D–G). Results are presented as mean ± SEM. *, P < 0.05.
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Figure 2. Acetate increases colonic neutrophil recruitment and IL-1β content during CDI. (A and B) Representative plots (A) and absolute number of
neutrophils and inflammatory monocytes in the colonic lamina propria (B) of naive and C. difficile–infected mice on day 1 p.i. (n = 4). (C) Quantification of
cytokines in colon samples on day 1 p.i. Mice were treated (Ac) or not (Ct) with acetate in the drinking water. Results are normalized according to the tissue
weight (n = 8). (D and E) Bacterial translocation into the mLNs, spleen, and liver assessed by qPCR on day 1 (D) or 2 (E) p.i. (n = 5–7). (F) Analysis of intestinal
permeability using FITC-dextran. Mice received FITC-dextran by gavage on day 1 p.i. Serum samples were collected 4 h later (n = 4). (G and H) Effect of acetate
on the intestinal epithelial cell line HCT-116 exposed to supernatant containing C. difficile toxins. (G) Percentage of live cells after 48 h of incubation with C.
difficile supernatant ± acetate at 25, 50, and 100 µM (n = 10–13). Cells lysed with Triton X-100 were included as control. (H) Images of HCT-116 monolayer
stained with Hoechst (blue, nucleus), calcein-AM (green, viable cells), and propidium iodide (red, dead cells) after 48 h of incubation with C. difficile supernatant
± acetate (C. diff sup ± Ac) at 25 µM. Scale bars = 100 µm. Results are representative of at least two independent experiments with three to four mice in each
experimental group (A and E), pooled results from two independent experiments with two to four mice in each experimental group (B–D), and three ex-
periments with three to five replicates in each group (F and G). Results are presented as mean ± SEM. *, P < 0.05.
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The protective effect of acetate depends on
inflammasome activation
It has been shown that C. difficile toxins trigger IL-1β production
through inflammasome activation. C. difficile toxins glucosylate
RhoA-GTPase, activating the Pyrin inflammasome (Xu et al.,
2014). In addition, they trigger the NLRP3 inflammasome
through an as-yet-undefined mechanism, perhaps by inducing
reactive oxygen species (Ng et al., 2010). To determine whether
acetate enhances inflammasome activation, we examined the
impact of acetate on CDI in mice lacking either the effector
caspase-1 or one of various inflammasomes implicated in
caspase-1 activation. The beneficial effect of acetate on clinical
score, weight change, and intestinal permeability during CDI
was abrogated in Casp1/11−/−mice (Fig. 3, A–C), as well asNlrp3−/−

mice, which lack one of the inflammasomes that sense C. difficile
toxins (Fig. S1, G–I). In contrast, acetate maintained its protec-
tive effect in Nlrc4−/− mice and in large part, in Nlrp6−/− mice
(Fig. S1, J–P). Acetate also failed to prevent translocation of
bacteria into the liver, spleen, or mLNs of Casp1/11−/− mice
(Fig. 3 D). Additionally, acetate did not enhance the content of
IL-1β, CXCL1 (Fig. 3 E), or neutrophil infiltration (Fig. 3 F) in the
colons of Casp1/11−/−mice. Since caspase-1 activation also triggers
IL-18 production, we examined the impact of acetate on IL-18
during CDI. Increased amounts of IL-18 were detected in the
colons of WT mice on day 1 p.i. (Fig. S2 A). However, acetate did
not enhance colonic IL-18 content in Casp1/11−/− mice, providing
further evidence that acetate acts by promoting inflammasome-
regulated cytokine production during CDI.

Acetate augments inflammasome activation and IL-1β
secretion in neutrophils
Given the major role of neutrophils in IL-1β secretion and in
controlling bacterial translocation during CDI (Hasegawa et al.,
2012; Fig. 2), we wanted to examine the effects of acetate on
inflammasome activation by C. difficile in neutrophils. Stimula-
tion of neutrophils purified from the bone marrow of WT mice
with acetate markedly potentiated the production of IL-1β in
response to C. difficile or its supernatant containing a defined
amount of toxins (Fig. 3 G), without affecting neutrophil via-
bility (Fig. S2 B). The enhancing effect of acetate on IL-1β se-
cretion was evident whether or not neutrophils were primed
with LPS (Fig. 3 G). Moreover, acetate effect was blocked by an
inhibitor of caspase-1, whereas it was unaffected by an inhibitor
of neutrophil elastase (Fig. 3 H). We conclude that acetate aug-
ments inflammasome-regulated IL-1β secretion by neutrophils
in response to C. difficile toxins.

The protective effect of acetate during CDI is
FFAR2 dependent
Among various mechanisms, acetate can modulate cell functions
through activation of FFAR2 (also known as GPR43) in epithelial
cells and neutrophils (Corrêa-Oliveira et al., 2016). Given that
acetate generates faster outcomes through FFAR2 signaling than
through other mechanisms requiring chromatin remodeling,
and that acetate acts rapidly during CDI (Fig. S1, D–F), we sought
to examine the impact of FFAR2 in acetate-mediated protection
against CDI. We found that the beneficial effects of acetate on

clinical score, weight change, systemic translocation of bacteria,
and intestinal permeability during CDI were abrogated in
Ffar2−/− mice (Fig. 4, A–D). Additionally, the increased colonic
content of CXCL1, IL-1β, and IL-18; the enhanced infiltration of
neutrophils in the colon; and the reduced systemic bacterial
translocation mediated by acetate in WT mice were not evident
in Ffar2−/− mice (Fig. 4, E–G; and Fig. S2 C). Together, these
findings suggest that the effects of acetate on host resistance to
CDI depend on FFAR2.

FFAR2 enhances neutrophil secretion of IL-1β in an
inflammasome-dependent fashion
We sought to determine whether acetate enhances neutrophil
production of IL-1β through FFAR2. We prepared neutrophils by
density gradient centrifugation from the bone marrow of WT
and Ffar2−/−mice, primed them in vitro with LPS in the presence
or absence of acetate, stimulated themwith C. difficile toxins, and
then measured IL-1β production. The ability of acetate to aug-
ment IL-1β production by neutrophils was entirely dependent on
FFAR2 (Fig. 4 H). Similar results were obtained using neu-
trophils highly purified from bone marrow by cell sorting (Fig.
S2 D). We also tested whether acetate could enhance IL-1β pro-
duction by neutrophils that are stimulated with a known in-
flammasome activator, the potassium (K+) ionophore nigericin.
Indeed, acetate enhanced the K+ efflux–induced IL-1β produc-
tion, and this effect was dependent on FFAR2 (Fig. 4 I). Thus,
acetate enhances inflammasome activation and IL-1β secretion
in neutrophils through FFAR2.

We further corroborated that acetate-FFAR2 signaling enhances
IL-1β production in neutrophils through inflammasome activation.
Treatment of neutrophils with BAPTA-AM (1,2-bis(o-aminophe-
noxy)ethane-N,N,N9,N9-tetraacetic acid acetyloxymethyl ester),
which inhibits NLRP3 by blocking Ca2+ influx, abrogated the ability
of acetate to potentiate IL-1β production through FFAR2 signaling
in response to LPS and C. difficile toxins or nigericin (Figs. 4 J and S2
E). A similar result was obtained by treating neutrophils with ex-
tracellular KCl, which inhibits NLRP3 by blocking K+ efflux (Figs.
4 K and S2 E). In contrast, incubation of neutrophils with NaCl,
which boosts inflammasome activation by promoting K+ efflux,
facilitated acetate enhancement of IL-1β production through FFAR2
(Fig. 4 K). Taken together, these results suggest that the ability of
acetate–FFAR2 axis to potentiate the production of IL-1β in re-
sponse to C. difficile toxins depends on inflammasome activation.

Acetate-mediated protection during CDI depends on IL-22
producing ILC3
It has been shown that ILC3s protect from CDI through IL-22
production (Abt et al., 2015; Hasegawa et al., 2014). Moreover,
ILC3s express high amounts of FFAR2 (Fig. S3 A and http://
www.immgen.org). Therefore, we asked whether acetate also
impacts this protective mechanism. We found that acetate
treatment increased the expression of Rorc and Il22 in the colon
of WT mice 2 d p.i. (Fig. 5 A), as well as IL-22 target genes (Bcl2,
Ccnd1, Reg3g, Muc1, and Muc4) 5 d p.i. (Fig. S3 B). Increased
amounts of IL-22 protein were detected in the colons ofWTmice
but not Ffar2−/− mice on day 5 p.i. (Fig. 5 B), suggesting that
acetate may promote IL-22 production through FFAR2. Although
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IL-22 was previously shown to be primarily produced by ILC3s
during CDI (Abt et al., 2015), whether acetate enhances IL-22
secretion by ILC3s and/or T cells was not clear. To address this
question, we examined the impact of acetate in Rag2−/− and
Rag2/Il2rg−/− mice with CDI. The protective effect of acetate was
evident in Rag2−/− mice, which lack T and B lymphocytes but
retain ILCs, whereas it was undetectable in Rag2/Il2rg−/− mice,
which lack both innate and adaptive lymphocytes (Fig. 5, C–F).

Reduction of intestinal permeability by acetate was also main-
tained in Rag2−/− but not Rag2/Il2rg−/− mice (Fig. 5, G and H).
Thus, acetate-mediated protection of infected mice depends
on ILCs.

We next examined the impact of acetate on the abundance of
ILC subsets on day 5 p.i. Acetate-treated mice showed a mod-
erate increase in the number of ILC3s, but not of other ILCs, in
the colon (Fig. 5 I) and small intestine (Fig. S3 C). To validate that

Figure 3. Acetate augments caspase-1 activation and IL-1β secretion in response to C. difficile toxins. (A–C) Clinical score (A), body weight changes (B),
and intestinal permeability (C) in Casp1/11−/− and WTmice that were treated (Ac) or not (Ct) with acetate and infected with C. difficile (n = 5–6). Casp1/11−/− and
WT were bred in the same animal facility, matched for sex and age, and infected at the same time to avoid batch effects. (D) Bacterial translocation into the
peripheral organs in Casp1/11−/− and WT mice on day 1 p.i. (n = 6). (E) Quantification of IL-1β and CXCL1 in colon samples of Casp1/11−/− and WT mice on day
1 p.i. Results were normalized according to sample weight (n = 6). (F) Absolute numbers of CD11b+Ly6G+ neutrophils in the colonic lamina propria of Casp1/
11−/− mice and WT mice on day 1 p.i. (n = 6). (G) Quantification of IL-1β production by neutrophils in vitro. Neutrophils were incubated with or without LPS ±
acetate, followed by stimulation in vitro with supernatant containing whole C. difficile (C.diff), toxin-containing supernatant (sup), or medium as indicated (n =
8). (H) IL-1β production by neutrophils after incubation in vitro with LPS, C. difficile supernatant, and either caspase-1 inhibitor (Q-VD-OPh), elastase inhibitor
(Sivelestat; n = 6), or DMSO (control). Results are representative of two independent experiments with three to six mice in each experimental group (A, B, E,
and F), one experiment with six mice in each group (C and D), or pooled results from two independent experiments with three to four mice in each group (G and
H). Results are presented as mean ± SEM. *, P < 0.05.
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acetate-mediated protection is dependent on ILC3s, we infected
AhRf/f Rorc-Cre mice, which have a strong reduction of ILC3s
(Song et al., 2015). We found that the beneficial effects of acetate
on clinical score, weight change, colon length, intestinal per-
meability, and systemic translocation of bacteria during CDI
were strongly reduced in the absence of ILC3s (Fig. 6, A–F).
These mice also did not show clinical recovery and mucosal
hyperplasia on day 5, in contrast to what normally occurs in WT
mice (Fig. 6, A and B; and Fig. S3 D), indicating that ILC3s are
important not only tomitigate the disease but also for a complete
resolution.

Since ILC3s produce IL-22, which promotes epithelial cell
defense mechanisms and mucus production, we asked whether
acetate-mediated protection against CDI depends on IL-22 pro-
duction. To test this, acetate-treated and untreated mice re-
ceived an i.p. dose of anti–IL-22 neutralizing antibody or isotype
control on day 1 and 3 after CDI (Fig. 6 G). Neutralization of IL-22
entirely reduced the protective effect of acetate, raising the
clinical score and body weight loss of acetate-treated mice to
levels comparable to those seen in untreated mice that also re-
ceived anti-IL-22 (Fig. 6, H and I). Similarly, beneficial effects of
acetate on clinical score, body weight, bacterial translocation,

Figure 4. Acetate acts through FFAR2. (A and B) Clinical score (A) and weight changes (B) of Ffar2−/− and WT mice infected with C. difficile and treated (Ac)
or not (Ct) with acetate (n = 3–6). Ffar2−/− and WT littermates were infected at the same time. (C) Bacterial translocation into peripheral organs 2 d p.i. in
Ffar2−/− treated or not with acetate (n = 3). (D) Intestinal permeability in Ffar2−/− mice treated or not with acetate (n = 4). (E–G) Cytokine content (E),
neutrophil percentage (F), and bacterial load translocated into the peripheral organs (G) on day 1 p.i. in WT or Ffar2−/− mice treated with acetate (n = 5). (H) IL-
1β production by WT and Ffar2−/− neutrophils after priming in vitro with LPS ± acetate followed by stimulation with C. difficile supernatant (C. diff sup; n = 8).
(I) IL-1β production by WT and Ffar2−/− neutrophils after incubation in vitro with LPS ± acetate followed by stimulation with Nigericin or no stimulation (n = 8).
(J and K) IL-1β production by neutrophils fromWT and Ffar2−/−mice. Cells were preincubated with LPS ± acetate for 2 h as indicated, and then stimulated with
C. difficile supernatant ± BAPTA-AM (J); C. difficile supernatant ± KCl (K); or C. difficile supernatant ± NaCl (L; n = 6). Results are representative of at least two
independent experiments with three to five mice in each experimental group (A–G) or pooled results from two independent experiments with three to four
mice in each group (H–K). Results are presented as mean ± SEM. *, P < 0.05.
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Figure 5. The protective effect of acetate against CDI depends on ILC3s. (A) Rorc, Il22, and Il17mRNA expression in the colon ofWTmice on day 2 p.i. Mice
were treated (Ac) or not (Ct) with acetate and infected with C. difficile (n = 5). (B) IL-22 content in the colon of WT and Ffar2−/− mice on day 5 p.i. Mice were
treated or not with acetate and infected with C. difficile (n = 5–6). (C–F) Clinical score and weight changes of Rag2−/− mice (C and D) and Rag2/Il2rg−/− mice
(E and F) that were treated or not with acetate and infected with C. difficile (n = 4). (G and H) Intestinal permeability of Rag2−/− (G) and Rag2/Il2rg−/− (H) mice
treated or not with acetate on day 2 p.i. (n = 4). (I) Percentages of total lymphocytes, natural killer (NK) cells, ILC1s, ILC2s, and ILC3s in the colon of mice 5 d p.i.
(n = 7–8). A representative flow cytometry plot depicting the strategy for identifying NK-ILC subsets is presented at the top. Results are pooled results from
two independent experiments with three to six mice in each group (A, B, and I). Results are presented as mean ± SEM. *, P < 0.05.
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Figure 6. IL-22–producing ILC3s are essential for acetate-mediated protection during CDI. (A–D) Clinical score (A), body weight changes (B), colon length
(C), and intestinal permeability (D) in ILC3-sufficient (AhRfl/fl) and -deficient (AhRfl/fl × Rorc-Cre) mice that were treated (Ac) or not (Ct) with acetate and infected
with C. difficile (n = 5–8). AhRfl/fl × Rorc-Cre and AhRfl/fl littermates were infected at the same time. (E and F) Bacterial translocation into the liver (E) and spleen
(F) in ILC3-sufficient and -deficient mice treated or not with acetate and infected with C. difficile. Samples were collected 5 d p.i., plated in blood agar, and
incubated for 4 d at 37°C in aerobic or anaerobic conditions (n = 5–8). (G) Infected mice were treated with or without acetate and received an i.p. dose of
anti–IL-22 neutralizing antibody or isotype (iso) control IgG2a on days 1 and 3 p.i. (H and I) Mice were monitored for clinical score (H) and weight change (I)
until day 5 p.i. (n = 5). (J and K) Clinical score (J) and weight changes (K) of IL22−/− and WT mice infected with 108 CFU of C. difficile that were either treated or
not with acetate (n = 5–6). IL22−/− and WT mice were bred in the same animal facility, matched for sex and age, and infected at the same time to avoid batch
effects. (L) Bacterial translocation into peripheral organs on day 2 p.i. in IL22−/−mice treated or not with acetate (n = 5–6). (M) Intestinal permeability of IL22−/−
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and epithelial permeability during CDI were strongly reduced in
Il22−/−mice (Fig. 6, J–M). Conversely, newly generatedmice with
genetic disruption of IL-22 binding protein (Il22ra2), which acts
as an IL-22 decoy (Huber et al., 2012), were as resistant to CDI as
acetate-treated WT mice. Acetate treatment did not further
improve CDI resistance of Il22ra2−/− mice (Fig. S4 A). Together,
these data highlight the importance of IL-22 production by ILC3s
in the protective effect of acetate.

Acetate did not increase IFNγ expression in the colon or IFNγ
production by primary ILC3 ex vivo (Fig. S4, B–D), suggesting no
obvious impact on ILC1s. We conclude that ILC3s production of
IL-22 has a major role in acetate-induced protection against CDI.

Acetate-FFAR2 signaling augments IL-22 production by
increasing ILC3 responsiveness to neutrophil-derived IL-1β
Since ILC3s express FFAR2, and acetate protection was de-
pendent on these cells and FFAR2, we decided to test the direct
effect of acetate on the production of IL-22. We incubated
primary ILC3s in vitro with acetate, C. difficile supernatant,
and IL-23 and measured the percentage of IL-22–producing
cells by intracellular staining. Acetate had no impact on IL-
22 production in these cultures (Fig. 7 A). Similar results were
obtained using the ILC3 line MNK3 (Allan et al., 2015; Fig. 7 B).
However, the percentage of IL-22–producing ILC3s was in-
creased in acetate-treated mice 5 d p.i. (Fig. 7 C). Similarly,
acetate treatment increased the expression of IL-22 mRNA in
ILC3s FACS sorted from antibiotic-treated mice (Fig. 7 D). It is
known that ILC3s secrete IL-22 in response to IL-1β and IL-23
(Takatori et al., 2009; Vivier et al., 2018). We sought to de-
termine whether acetate stimulated ILC3s indirectly through
enhanced expression of IL-23 receptor or IL-1R. We found that
acetate increased the expression of IL-1R in (a) MNK3 cells
(Fig. 7, E and F); (b) primary ILC3s isolated from C. difficile–
infected mice 5 d p.i. (Fig. 7 G); (c) primary ILC3s isolated from
antibiotic-treated mice (Fig. 7 H); and (d) primary ILC3s
treated with acetate in vitro (Fig. 7 I). These results suggested
that acetate may increase ILC3 responsiveness to IL-1β. To
confirm that IL-1R expression is induced by acetate via FFAR2,
we assessed the impact of synthetic FFAR2 agonist and an-
tagonist on the stimulatory activity in primary ILC3s. FFAR2
agonist increased the percentages of IL-1R–expressing pri-
mary ILC3s, as did acetate, while FFAR2 antagonist inhibited
such effect (Fig. 7 I). To corroborate that acetate increases the
responsiveness of ILC3s to IL-1β, we examined IL-22 produc-
tion of FACS sorted-ILC3s (Fig. 7 J) and MNK3 cells (Fig. S4 E)
stimulated in vitro with different combinations of acetate and
IL-1β. Acetate-FFAR2 signaling clearly enhanced the per-
centage of IL-22–producing cells induced by IL-1β (Fig. 7 J).
Further, we also found that acetate does not change the ex-
pression of Ffar2 and Ffar3 in the colon of mice 5 d p.i. (Fig. S4
F), as well as both MNK3 (Fig. S4 G) and ILC3s FACS-sorted
from antibiotic-treated mice (Fig. S4 H).

Acetate promotes neutrophil-ILC3 cross-talk through IL-1β
We sought to directly demonstrate that acetate activates pri-
mary ILC3s through IL-1β produced by neutrophils. We isolated
ILC3s from the intestinal lamina propria of Rag1−/− mice, which
lack T and B cells, and incubated them ex vivo with IL-23 to-
gether with culture supernatants from neutrophils that had
been stimulated with LPS and C. difficile toxins, with or without
acetate, or with synthetic FFAR2 agonist (Fig. 8 A). ILC3s stim-
ulated with supernatant of neutrophils treated with acetate or
FFAR2 agonist produced more IL-22 than did ILC3s cultured
with supernatant of neutrophils treated with LPS and C. difficile
toxins only. This effect could be blocked with a neutralizing
anti-IL-1β antibody, but not by a FFAR2 antagonist (Fig. 8 A),
demonstrating that ILC3 production of IL-22 is induced by
neutrophil-derived IL-1β and not FFAR2 activation of ILC3s. In
contrast to the stimulating effect on cytokine secretion, the su-
pernatant of neutrophils had no impact on the abundance of
total ILC3s or any of the CCR6+NKp46−, CCR6−NKp46−, or
CCR6−NKp46+ subsets included in the ILC3 population purified
from the intestine using a standard cell sorting protocol (Fig. S4,
I and J).

Finally, examination of mice with a deletion of the Ffar2
gene in neutrophils (Ffar2ΔS100) provided in vivo demonstra-
tion that acetate-mediated protection against CDI depends on
neutrophils. The beneficial effect of acetate treatment on
clinical score and weight change in CDI was reduced in
Ffar2ΔS100 mice compared with Ffar2f/f mice (Fig. 8 B). Notably,
Ffar2ΔS100 mice exhibited no clinical recovery on day 5 in
contrast to Ffar2f/f mice. Moreover, acetate-treated Ffar2ΔS100

mice showed decreased expression of Il22, Rorc, and Il1b in the
colon compared with acetate-treated Ffar2f/f mice 5 d p.i.
(Fig. 8 C), as well as reduced expression of IL-22 target genes
(Bcl2, Ccnd1, Reg3g, and Muc1) in the colon (Fig. 8 D), demon-
strating that ILC3-mediated protection during CDI is at least in
part due to acetate-FFAR2 mediated activation of neutrophils.
Altogether, these data corroborate that acetate protects from
CDI by promoting neutrophil-ILC3 cross-talk through IL-1β.

Discussion
The presence of commensal gut microbiota is essential to sup-
press C. difficile expansion and pathogenicity (Carroll and
Bartlett, 2011; Koenigsknecht and Young, 2013; Lewis and
Pamer, 2017). Our study demonstrates that the protective im-
pact of the microbiota depends at least in part on the production
of acetate through fiber fermentation, which activates the
FFAR2 signaling pathway in both neutrophils and ILC3s coor-
dinating their protective functions. Acetate-FFAR2 signaling in
neutrophils enhances inflammasome-mediated secretion of ac-
tive IL-1β, which provides a first line of defense against C. difficile
toxins. Acetate-FFAR2 signaling in ILC3s augments expression
of IL-1R, and the elevated levels of IL-1R boost IL-1β–induced

mice treated or not with acetate and infected with C. difficile (n = 5–6). Infected WT mice not treated with acetate are shown as controls. Results are rep-
resentative of at least two independent experiments with four to six mice in each experimental group (G–I) or pooled results from two independent ex-
periments with three to four mice in each group (A–F). Results are presented as mean ± SEM. *, P < 0.05.
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production of IL-22, which elicits antimicrobial and repair
mechanisms in intestinal epithelial cells. Thus, microbiota-
derived acetate promotes coordinate activation of neutrophils
and ILC3s through FFAR2, which bolsters host innate inflam-
matory and repair responses to C. difficile.

By using newly generated Ffar2ΔS100 mice, we conclusively
demonstrated that acetate provides protection against CDI by

activating neutrophil FFAR2. Since FFAR2 acts as a chemotactic
receptor (Schulenberg andMaslowsky, 2009; Vinolo et al., 2011),
its engagement by acetate may be important to increase the
initial recruitment of neutrophils after CDI and/or their survival
at C. difficile–damaged sites. Moreover, we found that acetate-
FFAR2 signaling augmented IL-1β production by neutrophils
in response to C. difficile toxin–mediated activation of the

Figure 7. Acetate enhances ILC3 production of IL-22 by increasing their responsiveness to neutrophil IL-1β. (A) Percentages of IL-22–producing primary
ILC3s incubated ex vivo with C. difficile supernatant, IL-23, and acetate as indicated (n = 5). (B) Percentages of IL-22–producing MNK3 cells incubated with C.
difficile supernatant and/or IL-23, ± acetate, as indicated (n = 5). (C) Percentages of IL-22–producing ILC3s from C. difficile–infected mice on day 5 p.i. (n = 8).
Cells were stimulated with Golgi plug and IL-23 (10 ng/ml) ± IL-1β (1 ng/ml) for 3 h. (D) Il22mRNA expression of ILC3s FACS sorted from antibiotic-treated mice
(day 0, before CDI). Mice were either treated (Ac) or not (Ct) with acetate in the drinking water (n = 4). (E and F) Percentages of IL-1R–expressing MNK3 cells
(E) and Il1r mRNA expression (F) after incubation with C. difficile supernatant and/or IL-23 ± acetate (n = 5–6). Representative plots are presented on the left.
Blank, control antibody; SSC, side scatter. (G) Percentages of IL-1R–expressing ILC3s from C. difficile–infected mice on day 5 p.i. (n = 8). (H) Il1r mRNA ex-
pression by FACS-sorted ILC3s from antibiotic (abx)-treated mice. Mice were either treated or not with acetate (n = 4). (I) Percentages of IL-1R–expressing
primary ILC3s after ex vivo treatment with acetate, Ffar2-agonist, and Ffar2-antagonist, as indicated (n = 5). (J) IL-22–producing cells within sorted ILC3s
treated with different combinations of acetate, IL-1β, Ffar2-agonist, or Ffar2-antagonist, as indicated (n = 5). Results are representative of at least two in-
dependent experiments with three to four mice/replicates in each group (A and I–K) or pooled results from two independent experiments with two to five
mice/replicates in each one (B–H). All mice used were littermates. Results are presented as mean ± SEM. *, P < 0.05.
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inflammasome. Indeed, the impact of acetate on IL-1β was
negligible in Ffar2−/− as well as Casp1/11−/− and Nlrp3−/− mice.
How acetate-FFAR2 signaling enhances C. difficile toxin–induced
inflammasome activation remains to be investigated. It is pos-
sible that acetate-FFAR2 signaling facilitates K+ efflux and/or
Ca2+ influx that trigger NLRP3 activation. Consistent with this,
engagement of FFAR2 on colonic epithelial cells by acetate was
shown to stimulate NLRP3 through Ca2+ influx and cell hyper-
polarization (Macia et al., 2015). Acetate-FFAR2 signaling may
also activate other downstream mediators that interact with
inflammasomes, such as microfilaments, tubulin, and protein
kinase C μ–dependent integrin-linked kinase, as shown for other
G protein–coupled receptors that impact inflammasome activa-
tion (Boro and Balaji, 2017). Although not tested in our study,
acetate may also enhance pyrin inflammasome activation in
response to C. difficile toxins. While inflammasome activation
was mainly detected in neutrophils, we do not exclude that
intestinal macrophages may contribute to caspase-1–mediated
IL-1β production. We also noticed that acetate can enhance
caspase-1–mediated production of IL-18. This effect may be rel-
evant in other models of colitis, such as dextran sulfate
sodium–induced colitis, in which IL-18 has a prominent role in
promoting epithelial repair (Macia et al., 2015).

In addition to boosting the IL-1β response, acetate en-
hanced IL-22 response during CDI. IL-22 promotes antimi-
crobial and repair mechanisms in epithelial cells (Ouyang
and Valdez, 2008; Pickert et al., 2009), as well as systemic
immune responses via activation of the C3 complement
pathway (Hasegawa et al., 2014). IL-22 induction contributed
considerably to the overall protection mediated by acetate,
which indeed was markedly reduced in Il22−/− mice, as well
as WT mice treated with a neutralizing anti-IL-22 antibody.
We confirmed a previous report that ILC3s are a major source
of IL-22 during CDI (Abt et al., 2015) and demonstrated that
mice specifically lacking ILC3s have a defect in control of the
acute phase and in the resolution of CDI. We further exam-
ined how acetate induces IL-22 in ILC3s. Although ILC3s
express FFAR2, we found no direct effect of acetate-FFAR2
signaling on IL-22 production. However, the acetate-FFAR
axis enhanced ILC3 expression of IL-1R, thereby heighten-
ing ILC3 sensitivity to IL-1β, a known inducer of IL-22 that
is produced by neutrophils during CDI and perhaps by
other myeloid cells. Thus, acetate stimulates IL-22 through a
coordinate increase in IL-1β bioavailability and ILC3 re-
sponsiveness to IL-1β. These results complement the recent
observation that FFAR2 signaling promotes in situ

proliferation of colonic ILC3 (Chun et al., 2019). It was shown
that butyrate, but not acetate or propionate, suppresses ILC2
function and ameliorates ILC2-driven airway inflammation
through histone deacetylase inhibition and H3 acetylation,
independent of FFAR2 and FFAR3 (Thio et al., 2018). Whether
acetate impacts epigenetic regulation of ILC3s, neutrophils,
or other immune cells responding to C. difficile remains to be
explored.

Currently, the first line treatment for C. difficile–infected
patients includes vancomycin, fidaxomicin, and/or metronida-
zole (McDonald et al., 2018). However, patients suffer relapsing
disease refractory to standard antibiotic treatment benefit from
fecal transplant (McDonald et al., 2018). Our discovery of the
impact of acetate treatment on CDI in mice may further con-
tribute to innovate the treatment of C. difficile. Future studies
will be necessary to determine whether acetate is similarly ef-
fective in humans. In summary, our data demonstrate a marked
protective effect of microbial-derived acetate against CDI and
show that acetate activates FFAR on both neutrophils and ILC3s,
resulting in a coordinate increase of inflammasome-induced
production of IL-1β in neutrophils and responsiveness to IL-
1β in ILC3s. Overall, this study highlights the considerable
impact and the complex mechanisms of action of intestinal
microbiota metabolites in the control of dysbiosis and intes-
tinal infections.

Materials and methods
Mice
8-wk-old C57BL/6, Rag2/Il2rg-deficient, Rag1−/−, and S100-Cre
male mice were purchased from Jackson Laboratory or the
Multidisciplinary Centre for Biological Investigation. Caspase1/11,
Nlpr3, and Rag2-deficient mice were purchased from the Centre
for Development of Experimental Models for Medicine and
Biology of the Federal University of Sao Paulo. Nlrp6−/−, Nlrc4−/−,
Il22−/−, and Ffar2−/− mice were provided by our collaborators
from the Institute of Biological Science of the Federal University
of Minas Gerais. AhRfl/fl RorcCre mice were previously reported
(Song et al., 2015). Ffar2fl/fl mice were provided by our collabo-
rator from the University of Illinois at Chicago, IL. All strains
were maintained in a C57BL/6 background and were kept in
regular filter-top cages with free access to sterile water and food.
Animal procedures were approved by the Ethics Committee
on Animal Use of the Institute of Biology (protocol numbers
3230-1, 3742-1, and 4886-1) and by Washington University An-
imal Studies Committee.

Figure 8. Acetate promotes neutrophil–ILC3 cross-talk through IL-1β. (A) Percentages of IL-22–producing primary ILC3s that were isolated from Rag1−/−

mice and triggered in vitro with IL-23 and supernatant of neutrophils in the indicated combinations. Neutrophils were stimulated as follows: Nφ sup, LPS + C.
difficile supernatant; Nφ + Ac sup, LPS + C. difficile supernatant + acetate; Nφ + Ffar2 ag sup: LPS + C. difficile supernatant + Ffar2-agonist. Anti–IL-1β blocking
antibody or Ffar2-antagonist (antag.) was added, as indicated. Representative flow cytometry plots are presented on the left (n = 4). Top: Stimulations with IL-
23 or neutrophil supernatant only. Middle: Stimulations combining IL-23 and various neutrophil supernatants. Bottom: Addition of anti–IL-1β or Ffar2 an-
tagonist. SSC, side scatter. (B) Clinical score and body weight variation of Ffar2fl/fl and Ffar2ΔS100 (Ffar2fl/fl × S100-Cre) mice that were treated with acetate and
infected with C. difficile (n = 4–5). Ffar2ΔS100 and Ffar2fl/fl littermates were infected at the same time. (C and D) Il22, Rorc, Il1b (C), and IL-22 target genes mRNA
expression (D) in the colon of acetate-treated Ffar2fl/fl and Ffar2ΔS100 mice on day 5 p.i. (n = 4–5). Results are representative of at least two independent
experiments with three to four mice in each (A) or pooled results from two independent experiments with two to three mice in each group (B–D). All mice used
were littermates. Results are presented as mean ± SEM. *, P < 0.05.
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Generation of Il22ra2 (IL-22 binding protein) null LacZ and
floxed mice
To generate Il22ra2tm1b (null LacZ) and Il22ra2tm1c (flox)mice, two
Il22ra2tm2a(EUCOMM)Wtsi ES cell clones (ES line JM8A3.N1) were
obtained from European Conditional Mouse Mutagenesis Con-
sortium; one correctly targeted clone, confirmed by Southern blot
analysis, was introduced into B6-albino (C57BL/6J-Tyrc-2J/J) eight-
cell embryos by laser-assisted injection. Male chimeras were
initially bred to B6-albino mice to assess germline transmission;
those transmitting were bred to CMV-Cre transgenic mice (B6.C-
Tg(CMV-Cre)1Cgn/J; >99% C57BL/6) to delete exon 3 of Il22ra2
and the neomycin-resistance cassette. To delete lacZ as well as the
neomycin-resistance cassette and generate mice with loxP sites
flanking exon 3 of Il22ra2, chimeras were bred to CAG-FLPe
C57BL/6 mice. The CMV-Cre and FLPe transgenes were subse-
quently bred out of the lines.

Bacteria
Toxigenic C. difficile VPI 10463 strain was cultivated in brain-heart
infusion (BHI) blood agar supplemented with hemin (5 µg/ml) and
menadione (1 µg/ml) at 37°C in anaerobic atmosphere (AnaeroGen,
Oxoid; Thermo Fisher Scientific) in jars.

Cells
Human colon carcinoma cells (HCT116) were cultivated in
DMEM supplemented with 10% FBS, 2 mM L-glutamine, 100 U
ml−1 penicillin, and 100 µg/ml streptomycin (Vitrocell Em-
briolife) until the 10th passage. The MNK3 cell line was previ-
ously described and provides an attractive in vitro system to
study the function of ILC3/LTi cells (Allan et al., 2015). MNK3
cells were cultured in DMEM with 10% FBS, 2 mM GlutaMAX,
1 mM sodium pyruvate, 55 µM 2-mercaptoethanol, 50 µg/ml
gentamicin, and 10 mM Hepes, from HyClone with 4% IL-7 and
2% IL-2.

Model of infection
Mice infections were performed as previously described (Chen
et al., 2008). Mice were pretreated with antibiotic mixture
(0.4 mg/ml kanamycin, 0.035 mg/ml gentamicin, 0.035 mg/ml
colistin, 0.215 mg/ml metronidazole, and 0.045 mg/ml vanco-
mycin; Sigma-Aldrich) added to drinking water for 4 d. Next,
mice received clindamycin (10mg/kg, i.p.; Sigma-Aldrich). After
1 d, mice were infected with 108 CFU of C. difficile by gavage.
Mice were weighed and monitored daily during the entire
protocol with a clinical severity score that varied from 0 (nor-
mal) to 15, as described (Li et al., 2012; Table S1).

Diets and acetate treatment
Animals received oral pretreatment with acetate at 150 mM
or placebo in the drinking water, as reported in other studies
(Vieira et al., 2017). Acetate treatment started 1 d before
addition of antibiotics and continued throughout the proto-
col. Acetate solution was prepared using acetic acid (Sigma-
Aldrich) at a concentration of 1.5 M in water (stock solution
10×, pH adjusted to 7.2–7.4, filtered at 0.22 µm). Mice had ad
libitum access to water and food during the entire protocol.
In dietary experiments, mice were maintained in diets with

different amounts of fiber: a control diet, based on American
Institute of Nutrition (AIN93) recommendations containing
5% cellulose; and a diet that in addition to 5% cellulose was
supplemented with 10% of soluble fiber pectin from citrus
(Vieira et al., 2017). Mice were prefed with the different diets
for 21 d (Fig. 1 A).

Measurement of SCFAs
Blood samples were harvested from mice, and the serum was
used for measurement of SCFA concentration. Samples were
prepared as previously described (Fellows et al., 2018). Chro-
matographic analyses were performed using a GCMS-QP2010
Ultra mass spectrometer (Shimadzu; Thermo Fisher Scientific)
and a 30 m × 0.25 mm fused-silica capillary Stabilwax column
(Restek Corp.) coatedwith 0.25 µm polyethylene glycol. Samples
(100 µl) were injected at 250°C using a 25:1 split ratio. High-
grade pure heliumwas used as carrier gas at 1.0ml/min constant
flow. Mass conditions were as follows: ionization voltage, 70 eV;
ion source temperature, 200°C; full scanmode, 35–500m/z with
0.2-s scan velocity. The runtime was 11.95 min.

Determination of fecal bacterial load
Fecal samples (50 mg) were used for extraction of microbial
genomic DNA using the PureLink Microbiome DNA Purification
kit (Thermo Fisher Scientific). For bacterial load measurement,
DNA was quantified by quantitative PCR (qPCR) using primers
complementary to Eubacteria 16S rDNA conserved region
(E338F sense 59-ACTCCTACGGGAGGCAGCAGT-39 and U1407R
anti-sense 59-ATTACCGCGGCGGCTGCTGGC-39; Durand et al.,
2010). A standard curve was constructed with serial dilutions
of Escherichia coli genomic DNA. Results were normalized by
percentage of the control.

C. difficile in vitro assay
For the in vitro assay with C. difficile and acetate, bacteria
were cultured 3 d earlier on BHI blood agar supplemented
with hemin (5 µg/ml) and menadione (1 µg/ml) in anaerobic
chamber at 37°C. Initially, bacteria were resuspended and
washed twice with sterile PBS. After that, the bacterial con-
centration was adjusted and maintained at 0.5 × 107 CFU/ml in
a final volume of 5 ml BHI broth with or without acetate at
different concentrations. Cultures were incubated for 72 h in
anaerobiosis at 37°C and had the optical density of the medium
read at 600 nmwavelength. To verify possible contaminations
of the liquid culture, the medium was plated on BHI blood
agar, and bacterial growth and gram staining of the colonies
were observed.

Histological analysis
Mouse colons were harvested, opened longitudinally, and fixed
in 4% formalin/0.1% glutaraldehyde. Tissues were processed
into historesin, and 5-µm sections were prepared for staining
with hematoxylin and eosin or Giemsa/Rosenfeld solution.
Slides were analyzed using an Olympus microscope (model
U-LH100HG). Samples were analyzed blindly using histological
scores for each parameter (Table S2). Overall scores were the
sums of each component and varied from 0 to 30.
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Analysis of neutrophil population
The lamina propria of the colon was collected and processed for
neutrophil analysis. First, the colon was extracted and washed
twice with 1× HBSS supplemented with 5% FBS and 2 mM EDTA
in a 50-ml Falcon tube under horizontal shaking in an orbital
mixer at 250 rpm for 20 min at 37°C. Then, enzymatic digestion
was performed in solution containing 1× HBSS supplemented
with 2 mM EDTA and collagenase IV (40 U/ml) at 200 rpm for
15 min at 37°C. The obtained cells were then separated from the
tissue using a 70-µm filter (Cell Strainer; BD Bioscience). Sam-
ples were counted in Neubauer’s chamber, and 106 cells were
labeled with specific antibodies coupled to different fluo-
rochromes and analyzed by flow cytometry. Anti-Ly6G FITC
(Gr-1) clone 1A8-Ly6g, anti-Ly6C PE clone HK1.4, and anti-CD11b
APC clone M1/70 anti-mouse antibodies (eBioscience, Thermo
Fisher Scientific) were used for analysis of the neutrophil pop-
ulation on the lamina propria. Data were analyzed using FlowJo
software.

Measurement of cytokines in tissues
Colon samples (100 mg) were homogenized in PBS containing
protease inhibitors (Thermo Fisher Scientific). Samples were
centrifuged for 10 min at 2,000 g, and supernatants used for
measurement of IL-1β, TNF-α, CXCL1, CXCL2, IL-10, IL-22, and
IL-18 using the Duo Set ELISA kit (R&D Systems).

Bacterial translocation
Spleen, liver, and mLNs were harvested on day 1 or 2 of infec-
tion. Bacterial 16S rDNA were extracted using the PureLink
Microbiome DNA Purification kit (Thermo Fisher Scientific),
and gene levels were quantified by qPCR using primers com-
plementary to Eubacteria 16S rDNA conserved region (Table S3).
The bacterial load was determined by a standard curve with
serial dilutions of E. coli genomic DNA, and the CFU per gram of
tissue was determined by dividing gene levels by sample weight.

Measurement of intestinal permeability with FITC-dextran
Mice received 200 µl FITC-dextran (70,000 D; Sigma-Aldrich)
suspension (250 mg/kg) by gavage on day 2 of infection. After 4
h, mice were anesthetized, blood was collected by caudal punc-
ture, and fluorescence readings were performed in aMulti-Mode
Microplate Reader (Synergy HT) at 485/528 nm (excitation/
emission). A standard curvewas preparedwith serial dilutions of
FITC-dextran in PBS.

Epithelial cell culture and live/dead assay
Human colon carcinoma cells (HCT116) were cultivated in 1:500
bacterial supernatant and 10, 25, or 50 µM of acetate in 96-well
plates (1.0 × 105 cells/well). After 48 h, cells were washed gently
using Dulbecco’s PBS (DPBS), and medium was replaced by 100
liters Calcein-AM and propidium iodide (2 µM) in DPBS and
incubated for 30 min at 37°C under 5% CO2. Images were ob-
tained using the Cytation 5 Cell Imaging Multi-Mode Reader,
and green fluorescence (485/530 nm, excitation/emission) of
viable cells and red fluorescence (530/645 nm) of dead cells were
quantified using Gen5 software (Biotek). As a positive control,
cells were preincubated with 0.1% Triton X-100 for 15 min. To

obtain C. difficile supernatants, the toxigenic strain VPI 10463
was cultured 24 h at 37°C in anaerobic conditions in BHImedium
supplemented with hemin and menadione. The culture was
centrifuged at 10,000 g for 5 min, and supernatant was used for
treatment of HCT116 culture (1:500 ratio).

Quantitative gene expression
Total RNAwas extracted from tissue using the PureLink RNA kit
(Ambion). RNA was converted to cDNA using the High-Capacity
cDNAReverse Transcription Kit (Applied Biosystems), and qPCR
was performed using Power SYBR Green PCR Master Mix (Ap-
plied Biosystems) and primers indicated in Table S3. Quantifi-
cation of gene expression was performed using the 2ΔΔ Ct

method, with β2-microglobulin as a reference gene.

Neutrophil culture
Bone marrow neutrophils were isolated using a Percoll (GE
Healthcare) gradient (55/65%). The purity of this preparation
was >70%. FACS-sorted Ly6G+CD11b+ cells were also used in
some analyses. Cells (4 × 106 cells/ml) were plated at 37°C in
RPMI (Vitrocell) containing 10% FBS and without antibiotics.
Initially, cells were incubated for 2 h with or without addition of
LPS (0.1 µg/ml, E. coli 0111:B4) and 25 mM acetate. C. difficile (1:1)
or its supernatant (1:500) was then added to the culture for 4 h.
Subsequently, IL-1β cytokine released in the culture was quan-
tified by ELISA. To elucidate the pathways of acetate on
inflammasome activation, after incubation in vitro with LPS ±
acetate, neutrophils were treated with a known inflammasome
activator, the potassium (K+) ionophore nigericin (1 µM), orwith
BAPTA-AM (25 µM), which inhibits NLRP3 by blocking Ca2+

influx, ± C. difficile culture supernatant (1:500). Similarly, neu-
trophils were followed by stimulation with extracellular KCl
(45 mM), which inhibits NLRP3 by blocking K+ efflux, or NaCl
(45 mM), which boosts inflammasome activation by promoting
K+ efflux. We also performed an experiment with either caspase-
1 (10 µM Q-VD-Oph) or neutrophil elastase (10 µM Sivelesat
sodium salt) inhibitors. To determine the cellular viability of
neutrophils, BioLegend’s FITC Annexin V Apoptosis Detection
Kit with 7-aminoactinomycin D (7-AAD) was used, and the
supplier’s instructions were followed.

IL-22 in vivo neutralization
C. difficile–infected mice, treated or not with acetate in the
drinking water, received an i.p. dose of 50 µl PBS with 150 g
anti-mouse IL-22 neutralizing antibody (clone 8E11; Genentech)
or an equivalent amount of isotype control IgG2a (BioXcell) on
days 1 and 3 p.i. Mice were clinically evaluated until the fifth day
of infection.

ILCs isolation, MNK3, and cytokine detection
Adult small intestine or colon samples were harvested from
C57BL/6 male mice, and mesenteric adipose tissue, Peyer’s
patches, and intraepithelial lymphocytes were first removed by
dissection and two EDTA extraction washes. Intestinal lamina
propria immune cells were isolated using Collagenase 4
(Sigma-Aldrich) digestion (40 min) and were enriched at the
interface between a gradient of 40% and 70% of Percoll (GE
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Healthcare) in HBSS. For functional experiments, small in-
testine lamina propria cells were cultured in a 96-well plate in
complete medium and stimulated ex vivo in the presence of
Golgi Plug (BD) for 3 h at 37°C. Following incubation,
Live+CD45+LIN– (CD3–CD5–CD19–B220–) CD45lowThy1.2high

ILC3s were stained for surface molecules, fixed, and stained
for intracellular IL-22 (clone Poly5164; BioLegend). For IL-1R
expression, cells were stained with anti-mouse CD121a (IL-1R,
clone JAMA-147; BioLegend). Data were analyzed using FlowJo
software. The MNK3 cell line was previously described (Allan
et al., 2015). MNK3 was stimulated and stained for intracel-
lular IL-22 as described for primary ILC3s.

Statistical analysis
Analyses were performed using GraphPad software 5.0. All data
are presented as means ± SEM, and n represents the number of
samples per group. The exact value of n in each experiment is
indicated in the corresponding figure legends. Differences were
considered significant for P < 0.05. Results were first analyzed
using D’Agostino/Shapiro–Wilk normality tests and compared
by Student’s t test or Mann–Whitney U test, as appropriate. For
more than two groups, differences were compared by one-way
analysis of variance followed by Tukey’s post hoc test.

Online supplemental material
Fig. S1 shows the relative bacterial load in the feces on days 0 and
2 d p.i., in vitro growth of C. difficile after treatment with acetate,
and clinical scores and body weight changes of mice treated with
acetate after infection and of infected Nlrp3−/−, Nlrc4−/−, and
Nlrp6−/− mice. Fig. S2 shows IL-18 content in the colon of WT
and Casp1/11−/− and Ffar2−/−mice, neutrophils viability before and
after in vitro incubation, and IL-1β production by neutrophils
isolated from the bone marrow and stimulated in vitro. Fig. S3
shows expression of SCFA receptors in ILC populations, IL-22
target genes expression in the colon 5 d p.i., ILC subsets in the
small intestine 5 d p.i., and representative histological sections of
colons of ILC3-deficientmice 5 d p.i. Fig. S4 shows clinical scores,
body weight changes, and intestinal permeability of IL-22
binding protein–deficient mice (Il22ra2−/−); effect of acetate on
IFNγ production; in vitro treatment of MNK3 cells with acetate
and IL-1β; effect of acetate on Ffar2 and Ffar3 expression; and
ILC3 subsets. Table S1 describes the clinical score criteria used to
evaluate infected mice. Table S2 lists all parameters used for
histopathological analyses. Table S3 includes a list of primers
used to analyze the gene expression by qPCR. Table S4 lists the
reagents used in our study.
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Rodrigues, N.O.S. Câmara, C.R. Mackay, B.T. Layden, K.R. Bor-
toluci, M. Colonna, M.A.R. Vinolo; Supervision: M. Colonna,
M.A.R. Vinolo.

Disclosures: The authors declare no competing interests exist.

Submitted: 18 March 2019
Revised: 29 April 2019
Accepted: 9 December 2019

References
Abt, M.C., B.B. Lewis, S. Caballero, H. Xiong, R.A. Carter, B. Sušac, L. Ling, I.
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