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Targeting interleukin-17 in chronic inflammatory
disease: A clinical perspective
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Chronic inflammatory diseases like psoriasis, Crohn’s disease (CD), multiple sclerosis (MS), rheumatoid arthritis (RA), and
others are increasingly recognized as disease entities, where dysregulated cytokines contribute substantially to tissue-specific
inflammation. A dysregulation in the IL-23/IL-17 axis can lead to inflammation of barrier tissues, whereas its role in internal
organ inflammation remains less clear. Here we discuss the most recent developments in targeting IL-17 for the treatment of
chronic inflammation in preclinical models and in patients afflicted with chronic inflammatory diseases.

The IL-17 family

IL-17A, the founding member of the IL-17 family, was first dis-
covered in mice in 1993 (Rouvier et al., 1993) and 2 yr later in
humans (Yao et al., 1995b). The IL-17 family is evolutionary
conserved within vertebrates and composes six structurally
related members in mammals, IL-17A, IL-17B, IL-17C, IL-17D, IL-
17E, and IL-17F (Malagoli, 2016). All cytokines bind to their re-
ceptors as disulfide-linked homodimers, with the exception of
IL-17A and IL-17F, which can also form heterodimers (Wright
et al., 2007; Fig. 1).

Five IL-17 receptor subunits have been identified (IL-17RA,
IL-17RB, IL-17RC, IL-17RD, and IL-17RE). All are single-pass
transmembrane receptors with two extracellular fibronectin
I1-like domains and a cytoplasmatic “SEFIR” motif for activation
of downstream signaling pathways (McGeachy et al., 2019). The
receptor for IL-17A and IL-17F homodimers and IL-17A/F heter-
odimers consists of a heterodimeric receptor complex composed
of IL-17RA and IL-17RC subunits. IL-17RA can also pair with IL-
17RE or IL-17RB, which then bind IL-17C and IL-17E, respectively.
IL-17B has been shown to engage with IL-17RB, but a coreceptor
is still missing, as well as the cognate receptors for IL-17D and a
cytokine that binds to IL-17RD.

IL-17R signal transduction has been best studied for IL-17RA/
IL-17RC complexes after IL-17A ligation (Gu et al., 2013). Re-
ceptor engagement leads to a conformational change, which al-
lows the adaptor protein Actl to form a homotypic interaction
between the receptor’s “SEFIR” domain and its own. The E3
ligase activity of Actl initiates the canonical pathway via ubig-
uitylation of TNF receptor-associated factor 6 (TRAF6),

recruitment of TAK1 and subsequent activation of the canonical
NF-«B and MAPK pathways including ERK, p38, and JNK, as
well as the CCAAT-enhancer-binding proteins pathway (Monin
and Gaffen, 2018). An alternative pathway depends on the
phosphorylation of Actl by inducible IxB kinase, which leads to
the assembly of TRAF2 and TRAF5 with mRNA stabilizing
factor human antigen R, thereby increasing stability of multiple
mRNAs (Amatya et al., 2017). IL-17A and F lie in close proximity
in the genome on chromosome 1 in mice and chromosome 6 in
humans, share the highest structural identity among all IL-17
family members, and have been shown to have largely over-
lapping biological activities (Akimzhanov et al., 2007; Monin
and Gaffen, 2018). Hereafter, we focus on IL-17A/F and their
role in chronic inflammatory disorders and use IL-17 as
shorthand.

T helper (Th) 17 cell polarization and other sources of IL-17

Mosmann et al. (1986) were the first to propose a bifurcation in
CD4* Th cells. Thi cells were defined as mediators of “cellular
immunity” directed against intracellular pathogens and were
characterized mainly by their production of IL-2 and IFN-y, but
also other cytokines such as GM-CSF and TNF. Th2 cells were
described as IL-4, IL-5, IL-13, and IL-10-secreting cells involved
in “humoral immunity” directed against extracellular pathogens
(reviewed in Raphael et al., 2015). The discovery of IL-17 initially
did not influence the Th1/Th2 paradigm prevailing in the field at
this time even though numerous reports indicated that it could
be involved in several inflammatory disorders (Kotake et al.,
1999; Kostulas et al., 1999; Antonysamy et al., 1999; Chabaud
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Figure 1. IL-17 cytokine and receptor family. Schematic overview of the known heterodimeric IL-17 receptor complexes with their respective IL-17 cy-
tokines. Unknown coreceptors and ligands are displayed with dashed lines. IL-17 receptors share a common structure with two extracellular fibronectin II-like
(FN) domains and an intracellular SEFIR domain. Downstream signaling events depend on the adaptor Actl. In the canonical pathway Actl ubiquitinates TRAF6,
leading to recruitment of TAK1 and triggering of NF-kB, MAPK pathways, and the CCAAT-enhancer-binding proteins (C/EBP) pathway. The noncanonical
pathway is initiated by phosphorylation of Actl by inducible IkB kinase (IKKi) and the subsequent formation of a complex with TRAF2, TRAF5, and mRNA
stabilizing factor human antigen R (HuR), which increases the half-life of several mRNAs. Ub, ubiquitin; P, phosphoryl group.

etal., 1998, 1999). Langrish et al. (2005) found that among many
other mediators, IL-17A is produced by Th cells upon engage-
ment of their IL-23R. In vitro, IL-17 secretion could be elicited
from naive CD4 T cells upon polarization with TGF-$ and IL-6
(Veldhoen et al., 2006). In humans, IL-6 and IL-1B and IL-21 were
later also identified as promoters of the IL-17 expression in Th
cells (reviewed in Sallusto et al., 2012). IL-17 expression is driven
by the transcription factor RORyt (via a STAT3-dependent
mechanism; Ivanov et al., 2006). The term Thl7 cell was
coined, and for some time Th17 polarization and their role in
immunity became the core interest of the immunology com-
munity. The discovery and characterization of Th17 cells are
reviewed in more detail elsewhere (Korn et al., 2009; McGeachy
and Cua, 2008). Over the years, it crystallized that the com-
monly called “IL-23/IL-17 axis” is critically involved in the reg-
ulation of tissue inflammation, in the context of both host
defense and chronic inflammatory disorders.

In addition to Th17 cells, innate cells located at epithelial and
mucosal barriers such as CD27~ y§ T cells, NK(T) cells, and in-
nate lymphoid cells (ILCs) emerged as potent IL-17 producers
(Happel et al., 2003; Ferretti et al., 2003; Zheng et al., 2008;
Fig. 2). Their constitutive IL-23R and RORyt expression allows
them to respond quickly (within hours) to injury or pathogenic
triggers (reviewed in Cua and Tato, 2010). Also, other leukocytes
such as CD8 T cells and B cells and even Paneth cells have been
reported as cellular sources of IL-17 (He et al., 2006; Schlegel
et al., 2013; Vazquez-Tello et al., 2012; Takahashi et al., 2008;
Fig. 2). Whether myeloid cells such as neutrophils or macro-
phages produce IL-17 is still controversially discussed (see
Fig. 2).

IL-17 is a pleiotropic cytokine that acts mainly on cells of
mesenchymal origin such as endothelial cells, epithelial cells,
and fibroblasts but has also effects on immune cells including
dendritic cells and macrophages (reviewed in Xu and Cao, 2010;
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Fig. 2). IL-17 executes key functions to prevent pathogen inva-
sion by the secretion of proinflammatory cytokines, chemokines,
matrix metalloproteinases, growth factors, and antimicrobial
peptides (reviewed in Onishi and Gaffen, 2010). Hereby IL-17
often acts in synergy with other mediators such as TNF and IL-
22 (Shen et al., 2005; Albanesi et al., 1999). Conversely, ex-
cessive IL-17 production contributes via similar mechanisms to
pathogenic inflammation.

IL-17 in chronic inflammation

Most of our understanding of IL-17 and its role in inflammatory
disorders was gained through various preclinical models of
disease and has prompted the development of new drugs tar-
geting IL-17. Several drugs were designed to block the IL-17
pathway either selectively or in combination with other in-
flammatory cytokines, or cytokines involved in the maintenance
of IL-17 producing cells such as IL-23. Table 1 summarizes the
therapeutic agents that are already approved or in clinical de-
velopment. In the following section, we will discuss preclinical
experimental findings about the role of IL-17 in prototypic
chronic inflammatory disorders and compare the results to data
from clinical trials.

Targeting IL-17 in inflammatory disorders affecting skin and
mucosal barriers

Psoriasis

Psoriasis is a chronic immune-mediated skin disease, charac-
terized by the proliferation of keratinocytes and infiltration of
T cells (Nikaein et al., 1991). In xenograft models of psoriasis,
nonlesional skin from psoriasis patients is transplanted onto
immunocompromised mice (Boehncke et al., 1994; Boyman et al.,
2004). The model uncovered a pathogenic role of IL-23 (Tonel
etal., 2010), IFN-a (Nestle et al., 2005), and TNF (Boyman et al.,
2004) in psoriasis and paved the path for the successful
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Figure 2. Cellular sources and targets of IL-17A/F. Overview of described cellular sources (top row) and targets (bottom row) of IL-17A/F. IL-23 induces
IL-17 production in CD4 T cells (Aggarwal et al,, 2003), y§ T cells (Sutton et al,, 2009), NK(T) cells (Michel et al., 2007; Passos et al,, 2010), ILCs (Buonocore
et al, 2010), and CD8 T cells (Happel et al., 2003). The dependence of IL-23 on other IL-17-producing cells as Paneth cells (Takahashi et al.,, 2008), mast cells
(Lin et al, 2011; Mashiko et al., 2015), and B cells (Schlegel et al.,, 2013) has to be determined. Whether myeloid cells (depicted in gray) produce IL-17 is still
controversially discussed (Ferretti et al, 2003; Song et al., 2008; Li et al., 2010; Tamassia et al., 2018). IL-17RA is ubiquitously expressed, but the main targets of
IL-17 include endothelial cells, epithelial cells, fibroblasts (Fossiez et al., 1996), osteoblasts (Kotake et al., 1999), and chondrocytes (Shalom-Barak et al., 1998).

Less-studied potential cellular targets of IL-17 (depicted in gray) are myeloid cells and B and T cells.

introduction of TNF inhibitors as therapeutic options for pso-
riasis vulgaris (Leonardi et al., 2003). In 2009, van der Fits et al.
(2009) introduced the Aldara (5% Imiquimod)-model of psori-
asis, which very closely mimics human psoriasiform lesions. We
and others then found that psoriasiform inflammation greatly
depends on the IL-23/IL-17 axis (Pantelyushin et al., 2012; Cai
et al., 2011). Skin of Aldara-treated mice expressed high levels of
IL-17A/F (Pantelyushin et al., 2012; Cai et al., 2011) and IL-22
(Pantelyushin et al., 2012). In line with this, it was reported that
IL-17A, IL-22, and IL-23 are up-regulated in the serum of patients
with active psoriasis, and increased levels of IL-17A, F, and C
were found in psoriatic skin lesions (Johansen et al., 2009;
Fotiadou et al., 2015). Surprisingly, Y8 T cells and not Thi7 cells
were found to be the primary source of IL-17A/F in the Aldara-
mouse model, and their ablation led to disease protection (Cai
et al, 2011; Pantelyushin et al, 2012). Similarly, increased
numbers of IL-17 producing y8 T cells were also found in the skin
of psoriasis patients (Laggner et al., 2011). There is some debate
as to which cells in developing lesions initially deliver IL-17 as
CD8* IL-17 producing cells were also identified in psoriatic le-
sions (Ortega et al., 2009). The disease-promoting role of IL-17 in
psoriasiform inflammation was shown to be mainly mediated
via the activation of epithelial cells and keratinocytes and their
increased secretion of antimicrobial peptides, cytokines, and
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chemokines mobilizing the recruitment of neutrophils (re-
viewed in Perera et al., 2012).

After the identification of the IL-23/IL-17 axis as a key factor
in the pathogenesis of psoriasis, Ustekinumab, the first p40 in-
hibitor targeting both IL-12 and IL-23, was introduced to the
clinic with success (Papp et al., 2008). However, we found that
only IL-23 is disease-promoting in psoriasiform inflammation,
whereas IL-12 has a protective role (Kulig et al., 2016), sug-
gesting that collateral neutralization of IL-12 instead of IL-23
alone limited the effectiveness of these drugs.

Recently, the first three selective IL-23 inhibitors targeting
the IL-23pl9 subunit were licensed for treatment of plaque
psoriasis after successful completion of several phase III clinical
trials: Tildrakizumab, Risankizumab, and Guselkumab (Reich
et al., 2017; Gordon et al., 2018; Blauvelt et al., 2017b). IL-23p19
inhibitors were more efficient in improving skin lesions than
TNF inhibitors (Reich et al., 2017) and in line with findings from
the Aldara-model of psoriasiform inflammation, superior com-
pared with IL-12/IL-23 inhibitor Ustekinumab (Gordon et al.,
2018). The selective IL-23 inhibitor Guselkumab was also ef-
fective in psoriasis patients where combined IL-12/IL-23 inhi-
bition had failed (Langley et al., 2018), emphasizing that sparing
IL-12 is necessary for resolution of skin inflammation in some
psoriasis patients.
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Table 1. Clinical development of IL-17/IL-23 inhibitors in chronic inflammatory diseases

Barrier tissues

Nonbarrier tissues

Target Drugand  Plaque IBD Other diseases PsA Ankylosing RA ms Other
trade psoriasis spondylitis diseases
names

IL-17A Secukinumab  Approved Phase I, Asthma: Phase Approved Approved Phase III, Phase I, Diabetes
(AIN457; terminated Il, terminated terminated; terminated; mellitus type
Cosentyx) (ineffective); (ineffective); NCT01377012 NCT01051817  1: Phase I,

NCT01009281 NCT01478360 (Havrdova terminated
(Hueber et al., o et al, 2016) (business
2012) Atopic . reasons);
dermatitis:
Phase Il NCT02044848
NCT02594098
Hidradenitis Giant cell
suppurativa: arteritis: Phase II;
Phase II; NCT03765788
NCT03713632
Pityriasis
rubra pilaris:
Phase I;
NCT03342573
IL-17A Ixekizumab Approved Approved Phase Ill; Phase II;
(Taltz) NCT02696785  NCT00966875
(van der Heijde (Genovese
et al, 2018) et al, 2014)
IL-17A Netakimab Phase IIl; Phase III; Phase IlI; Primary biliary
(BCD-085) NCT03390101 NCT03598751 NCT03447704 cirrhosis:
Phase II;
NCT03476993
IL-17A CNTO 6785 Phase Il
(ineffective);
NCT01909427
(Mease et al.,
2018b)
IL-17A CJM112 Phase |, Asthma: Phase II;
terminated; NCT03299686
NCT01828086 Hidradenitis
suppurativa:
Phase II;
NCT02421172
IL-17A/  Bimekizumab  Phase III; Hidradenitis Phase Ill; Phase IIl;
IL-17F NCT03598790 suppurativa: NCT03896581; NCT03928743
Phase II; NCT03895203
NCT03248531

IL-17A/  M1095 (ALX-  Phase Il

IL-17F 0761) NCT03384745

IL-17RA  Brodalumab Approved Phase II, Asthma: Phase Phase I, Phase Il Phase II,

(Silig; terminated I, terminated terminated withdrawn terminated
Kyntheum) (disease (ineffective); (sponsor (sponsor (ineffective);
worsening); NCT01902290 decision); decision); NCT00950989
NCT00966875 F NCT02029495  NCT02429882  (Pavelka et al,,
(Targan et al, ) ) (Mease et al, 2015)
(ineffective);
2016) NCT01199289 2014)
(Busse et al.,
2013)
Zwicky et al. Journal of Experimental Medicine
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Table 1. Clinical development of IL-17/IL-23 inhibitors in chronic inflammatory diseases (Continued)

Barrier tissues Nonbarrier tissues
Target Drugand  Plaque IBD Other diseases PsA Ankylosing RA Mms Other
trade psoriasis spondylitis diseases
names
IL-17A/  ABT-122 Phase I, Phase I,
TNF (ineffective); (ineffective);
NCT02349451 NCT02433340,
(Mease et al., NCT02349451
2018a) (Khatri et al,,
2019)
IL-17A/  COVA 322 Phase II,
TNF terminated
(safety profile);
NCT02243787
IL-17/IL-  MT-6194 Preclinical
6 (Lyman et al,
2018)
IL-17/ LY3090106 Phase [; Sjogren’s
BAFF NCT01925157 syndrome: Phase
I; NCT02614716
IL-23p19 Risankizumab  Approved Crohn’s Asthma: Phase II; Phase IIl; Phase Il
(Skyrizi) disease: Phase Ill; ~ NCT02443298 NCT03675308,  (ineffective);
NCT03104413, NCT03671148 NCT02047110
NCT03105102, (Baeten et al,,
NCT03105128 2018)
Ulcerative colitis: Atopic dermatitis:
Phase III; Phase II;
NCT03398148, NCT03706040
NCTO3398135 Hidradenitis
suppurativa: Phase
II; NCT03926169
IL-23p19 Tildrakizumab ~ Approved Phase II; Phase Ill;
(Ilumetri; NCT03552276, NCT03552276
llumya) NCT02980692
IL-23p19  Guselkumab Approved Crohn’s disease: Phase III; Phase Il
(Tremfya) Phase Ill; NCT03796858, (ineffective);
NCT03466411 NCT03158285, NCT01645280
NCT03162796 (Smolen et al,,
2017)
IL-23p19  Brazikumab Phase |; Crohn’s disease:
(AMG 139) NCT01094093  Phase Ili;
NCT03961815,
NCT03759288
Ulcerative colitis:
Phase II;
NCT03616821
IL-23p19  Mirikizumab Phase IIl; Crohn’s disease:
(LY 3074828)  NCT03535194  Phase Ill;
NCT03926130
Ulcerative colitis:
Phase II;
NCT03524092
Source: https://clinicaltrials.gov if not otherwise specified. NCT, Clinicaltrials.gov identifier.
Zwicky et al. Journal of Experimental Medicine 5
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Between 2015 and 2017, three IL-17 pathway inhibitors
reached the market. Secukinumab and Ixekizumab are mono-
clonal antibodies specific for IL-17A and thus inhibit both IL-17A
homodimers as well as IL-17A/F heterodimers (Liu et al., 2016),
while IL-17F homodimers remain unaffected. In contrast, the
monoclonal antibody Brodalumab targets IL-17RA, and thus
blocks the activity of IL-17A, IL-17F, IL-17C, and IL-17E. All three
biologicals are approved by the Food and Drug Administration
and European Medicine Agency for the treatment of moderate to
severe plaque psoriasis. Several pivotal phase III studies dem-
onstrated rapid and sustained skin improvement in the treated
patients compared with placebo (Langley et al., 2014; Gordon
et al., 2016; Lebwohl et al., 2015). Depending on the design of
the studies, up to 42% of patients who received one of the IL-17
pathway inhibitors achieved disease-free skin (Papp et al., 2016).
Clinical responses are paralleled by decreased IL-17A, IL-17F, and
IL-22 expression and downmodulation of leukocyte infiltration-
promoting chemoattractants in the skin (Kolbinger et al., 2017).

IL-17 inhibitors showed superior efficacy in skin clearance
than previously approved psoriasis therapy with IL-12/IL-23
inhibitor Ustekinumab (Blauvelt et al., 2017c; Paul et al., 2019;
Lebwohl et al., 2015) or TNF inhibitor Etanercept (Griffiths et al.,
2015; Langley et al, 2014). In addition, Ixekizumab demon-
strated efficacy in Etanercept nonresponders (Blauvelt et al.,
2017a) and Brodalumab in Ustekinumab nonresponders (Langley
et al., 2014). Head-to-head trials comparing the efficacy between
the available IL-17 and IL-23pl9 inhibitors have not yet been
performed, but a recent meta-analysis of 77 randomized controlled
trials failed to detect a difference between the drug classes, as
Brodalumab, Ixekizumab, Guselkumab, and Risankizumab were
equally efficient to achieve skin improvement (Sawyer et al.,
2019).

Besides its presence in diseased skin, IL-17 is also observed in
healthy skin and has a nonredundant role in tissue protection
and immunity against fungi (Naik et al., 2015, 2017; Linehan
et al,, 2018; Okada et al., 2016; Sparber et al., 2019). In spite of
this, the safety profile of IL-17 pathway inhibitors is favorable
over long-term treatment with a consistent spectrum of adverse
events across all three therapies (Deodhar et al., 2019; Langley
et al., 2019; Lebwohl et al.,, 2015). Upper respiratory tract in-
fections occur more frequently, followed by a higher suscepti-
bility to mucocutaneous Candida spp. infections (Saunte et al.,
2017).

We speculate that IL-17 production in cells associated with
homeostasis in the skin is largely independent of IL-23R sig-
naling, suggesting that the blockade of IL-23 would trigger fewer
adverse effects compared with the general inhibition of IL-17,
which may serve a function in homeostatic barrier maintenance
and the control of the commensal flora. Indeed, the risk of
Candida infections was lower when targeting IL-23p19 alone
compared with studies with IL-17 inhibitors (Blauvelt et al.,
2018). Whether IL-23 may be required for homeostatic IL-22
remains unclear.

Inflammatory bowel disease (IBD)
IBDs, which comprise of Crohn’s disease and ulcerative colitis,
are inflammatory conditions of the colon and small intestine

Zwicky et al.
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(Abraham and Cho, 2009). Single nucleotide polymorphisms in
IL23R are associated with the susceptibility to IBD, and both
increased IL-23 and IL-17 levels were found in colon biopsies of
IBD patients, especially during active disease (Fujino et al., 2003;
Duerr et al., 2006; Holttd et al., 2008).

Also in mouse models of IBD, IL-23 was clearly associated
with colitis, and as for psoriasis and experimental autoim-
mune encephalomyelitis (EAE), an animal model for multiple
sclerosis (MS), IL-23 and not IL-12 is critically driving the
disease (Buonocore et al., 2010; Ahern et al., 2010; Yen et al.,
2006; Hue et al., 2006; Elson et al., 2007). In contrast, tar-
geting IL-17 or its receptors led to controversial results in
different animal models of colitis. Already in 2004, Ogawa
et al. (2004) showed that neutralization of IL-17 leads to in-
creased disease severity in the dextrane sulfate sodium (DSS)
model. Several studies confirmed this result in the DSS as well
as in other models of IBD (O’Connor et al., 2009; Song et al.,
2015; Lee et al., 2015; Maxwell et al., 2015) and are in conflict
with the few reports showing a disease promoting role of IL-17
(Feng et al., 2011; Leppkes et al., 2009; Yen et al., 2006). De-
spite the description of a protective role of IL-17 in different
murine models of colitis, IL-17A (Hueber et al., 2012) and
IL-17RA inhibitors (Targan et al., 2016) were tested for ther-
apeutic efficacy in patients with Crohn’s disease. The treat-
ment failed and the studies had to be terminated due to
exacerbation of colitis. In fact, it was already proposed in the
early 2000s that IL-17 has an important role in the mainte-
nance of barrier properties of epithelial tissues in vitro and
later also in vivo (Kinugasa et al., 2000; Lee et al., 2015). Two
independent reports using different colitis models demon-
strated that IL-17A increases the barrier integrity in epithelial
cells and demonstrated that tissue-protective IL-17 is pro-
duced by Y8 T cells in the absence of IL-23 (even though they
do express IL-23R; Lee et al., 2015; Maxwell et al., 2015).

Interestingly, new-onset IBD is a rare adverse event in pso-
riasis patients treated with IL-17 inhibitors (Schreiber et al.,
2019), and mucosal inflammation is also not part of the disease
spectrum in patients with inborn errors of the IL-17 pathway
(Okada et al., 2016). However, during an established mucosal
inflammation like in Crohn’s disease, the beneficial function of
IL-17 on the integrity of the epithelial barrier might prevail
(Maxwell et al., 2015).

While IL-17 inhibition resulted in alarming disease exacer-
bation, IL-23 inhibition has revealed promising results in clinical
trials for Crohn’s disease (Feagan et al., 2017, 2018; Sands et al.,
2017). These clinical data suggest that selective targeting of IL-23
allows the IL-23-independent IL-17 production in the gut needed
to keep the epithelial barrier intact, while IL-23-driven disease-
promoting IL-17-producing cells decrease, mirroring results
from previous animal studies (Lee et al., 2015).

Given the critical role of IL-23 in the maintenance of disease-
promoting IL-17-producing cells, selective IL-23 class inhibitors
hold the promise to interfere especially with the development of
these pathogenic IL-17-producing cells while sparing the IL-
23-independent IL-17-producing cells involved in host defense
against Candida and maintenance of the gut barrier. Several
reports indicated that the protective effect of IL-17 could be
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Figure 3. Effects of targeting IL-17 and IL-23 in psoriasis and Crohn’s disease. The neutralization of IL-23 cures skin inflammation in psoriasis by in-
terfering with the IL-23/IL-17 axis. Abrogation of pathogenic IL-23-dependent IL-17 production prevents IL-17-driven keratinocyte proliferation and neutrophil
recruitment. IL-23-independent IL-17 production is preserved, which is needed for protection from Candida infections. Direct inhibition of IL-17 also reduces
skin inflammation, but compromises host defense against Candida, leading to increased rates of candidiasis. Intestinal inflammation characteristic of Crohn’s
disease is improved upon IL-23 neutralization, which inhibits mainly IL-23-dependent IL-17 production and thus interferes with disease-driving mechanisms
like neutrophil attraction. IL-23 neutralization spares IL-23-independent IL-17 production important for maintenance of epithelial barrier function and control
of the commensal bacteria in the gut. In contrast, direct IL-17 inhibition exacerbates intestinal skin inflammation due to abrogation of the protective functions
of IL-17 on epithelial integrity and microbiota control. This leads to invasion of luminal bacteria with a subsequent influx of immune cells and secretion of other
pro-inflammatory cytokines to mount an immune response, which perpetuates intestinal inflammation.

mediated via the control of the commensal microflora (Tang
et al., 2018; Song et al., 2015; Kumar et al., 2016), which were
already earlier shown to induce IL-17 in the colon (Ivanov
et al., 2009). Interestingly, disrupted IL-17R signaling in gut
epithelial cells and the following dysbiosis was also connected
to a higher predisposition to neuroinflammation, indicating
that homeostatic IL-17R signaling in the gut is vital for a
normal gut microflora, which in turn can control the auto-
immune potential of lymphocytes (Kumar et al., 2016). Fur-
thermore, it was shown that only deletion of IL-17F but not
IL-17A prevents disease in both DSS and T cell-induced colitis
models and that IL-17F promotes colitis by inhibiting the
colonization of the gut by regulatory T cell-promoting com-
mensals (Tang et al., 2018). These findings indicate that
specific IL-17F inhibitors also could be a potential option for
the treatment of Crohn’s disease.

Fig. 3 summarizes the divergent roles of IL-23 and IL-17 in-
hibition in Crohn’s disease and psoriasis.
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Other chronic inflammatory disorders afflicting barrier tissues

The success of IL-17 inhibition in psoriasis encouraged the ini-
tiation of clinical trials in other chronic inflammatory diseases
with elevated IL-17 expression. Serum IL-17 and IL-23 levels are
increased in children with atopic dermatitis and correlated with
disease severity (Leonardi et al., 2015). IL-17 and IL-23 inhibitors
are currently in phase II trials; however, two trails with the
combined IL-12/IL-23 inhibitor Ustekinumab failed to show
superiority compared with placebo (Khattri et al., 2017; Saeki
et al., 2017), suggesting redundancy of the IL-23/IL-17 axis in
atopic dermatitis. Several case reports reported successful out-
comes of patients suffering from Hidradenitis suppurativa
(Jorgensen et al., 2018) and Pityriasis rubra pilaris (Wain et al.,
2018) with IL-17 inhibitors, indicating shared pathomechanisms
of these inflammatory skin diseases with psoriasis despite dif-
ferent clinical presentation. IL-17 pathway inhibition did not
show a benefit over placebo for the treatment of asthma in
multiple trials (Busse et al., 2013; see Table 1), suggesting that the
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IL-23/IL-17 axis is not a major pathological driver in asthmatic
airway inflammation.

Targeting IL-17 in inflammatory disorders affecting nonbarrier
tissues

Overexpression of IL-17 in mice leads to inflammation of epi-
thelial barriers as well as granulocytosis (Croxford et al., 2014;
Haak et al., 2009). However, no inflammation-related symptoms
of other, nonbarrier tissues are induced (Haak et al., 2009). This
argues against the notion that the dysregulation of IL-17 would
elicit immunopathology in nonbarrier tissues. The exception
seems to be psoriasis arthritis (PsA), where inflammation of the
skin usually precedes joint pathology and has a very different
disease etiology than rheumatoid arthritis (RA). Nevertheless,
the role of IL-17 in inflammatory disorders of nonbarrier tissues
was extensively studied using preclinical models, and IL-17 in-
hibitors were tested in the clinics.

PsA

PsA is the most common psoriasis-associated disorder, found in
up to 30% of psoriasis patients (Ritchlin et al., 2017; Villani et al.,
2015) and is among others associated to polymorphisms in IL23R
(Bowes et al., 2015). Increased numbers of IL-17 producing ILCs
as well as CD4 and CD8 T cells are found in the synovial fluid of
PsA patients (Benham et al., 2013; Leijten et al., 2015; Menon
et al,, 2014). In the joints, IL-17 seems to act on osteoblasts in-
ducing osteoclast differentiation and thereby increases bone
resorption (Sato et al., 2006). Until now, no specific murine
model for has PsA existed. However, in some models for psori-
asis, the development of arthritis was observed and demon-
strated that changes in the skin can be sufficient to induce
pathological changes in the joints (Zenz et al., 2005; Yamamoto
et al., 2015; Croxford et al., 2014). In line with this, most drugs
that are effective to treat psoriatic skin lesions also inhibit ar-
thritis in PsA patients, indicating a shared pathophysiology
(McInnes et al., 2013, 2015; Mease et al., 2015). However, it is
still unclear how inflammatory processes in the skin, which
often precede PsA, lead to arthritis (Eder et al., 2016).

Soon after the success in treating plaque psoriasis, Secuki-
numab and Ixekizumab received the Food and Drug Adminis-
tration/European Medicine Agency approval for treatment of
PsA (McInnes et al., 2015; Mease et al., 2017); Secukinumab has
extended the approved indication spectrum even for ankylosing
spondylitis (Baeten et al., 2015). Both IL-17A inhibitors have
shown clinical efficacy and long-term improvements, even in
patients unresponsive to first-line therapy with TNF inhibitors
(Coates et al., 2018; Nash et al., 2017). However, compared with
the high rates of complete skin clearance in plaque psoriasis,
effects on PsA are relatively modest, possibly due to a less pro-
nounced IL-17 signature in affected joints compared with skin
(Belasco et al., 2015). The safety profile in the setting of both
diseases is comparable to IL-17 pathway inhibition in plaque
psoriasis (Mease et al., 2019; Deodhar et al., 2019).

IL-23 inhibition is effective in phase II clinical studies in PsA
(Deodhar et al., 2018), and phase III studies are ongoing
(NCT03552276), while there was no evidence of clinically
meaningful improvements in ankylosing spondylitis (Baeten
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et al, 2018), although both diseases respond well to IL-17
blockade. A hypothesis for the dichotomy of clinical efficacy is
that in contrast to PsA, IL-17-producing cells become IL-
23-independent in the chronic phase of joint inflammation in
ankylosing spondylitis as shown in an animal model (van Tok
et al,, 2018). Counterintuitive to the proposed synergistic action
of TNF and IL-17A in PsA, a recent study failed to show supe-
riority of dual neutralization of TNF and IL-17A with a bi-specific
antibody over TNF inhibition alone (Mease et al., 2018a).

RA

Early after the discovery of IL-17, several reports showed an
association between IL-17 and RA, which is a systemic autoim-
mune disorder characterized by the chronic inflammation of
several organs including the synovia of joints (Scott et al., 2010).
Those reports demonstrated the presence of IL-17 and IL-17R in
synovial fluids and tissue from RA patients, and synovial IL-17
expression was identified as being predictive for joint damage
progression (Ziolkowska et al., 2000; Honorati et al., 2001;
Kirkham et al., 2006; Chabaud et al., 1999, 1998). The main
producers of IL-17 in synovial tissues of RA patients were
identified as CD4* memory T cells (Kotake et al., 1999). IL-17 was
shown to potently induce cytokines such as TNF, IL-1B, and GM-
CSF from different joint cells as synovial fibroblasts, chon-
drocytes, and macrophages (Yao et al., 1995a, 1995b; Fossiez
et al., 1996; Chabaud et al., 1998; Jovanovic et al., 1998) and
was associated to bone and cartilage degradation (Chabaud et al.,
2001; Cai et al., 2001; Chabaud and Miossec, 2001; Kim et al.,
2015; Osta et al., 2015).

The disease-promoting role of IL-17 in RA was also described
in mice. In wild-type mice, inflammatory arthritis can be in-
duced by injecting recombinant IL-17 into the intra-articular
space of knee joints (Chabaud et al., 2001; Cai et al., 2001).
With rare exceptions (Doodes et al., 2008), the large majority of
reports on IL-17 using different mouse models of RA showed that
ablation of IL-17 reduced disease severity (Lubberts et al., 2001;
Nakae et al., 2003; Katayama et al., 2013; Wu et al., 2010; Hirota
et al., 2007; Duarte et al., 2010; Chabaud et al., 2001). The ab-
lation of IL-17 was associated with reduced systemic levels of IL-
6 as well as IL-1B and RANKL (receptor activator of NF-xB
ligand)-producing cells in the synovium (Lubberts et al., 2004).
Also, the transdifferentiation of Foxp3 regulatory T cells into IL-
17-producing cells was associated to arthritis (Komatsu et al.,
2014). Furthermore, it was proposed that changes in the mi-
crobiome and IL-17 in the gut are early events in RA (Wu et al.,
2010), supporting the mucosal origins hypothesis suggesting
that the disease-promoting immunity in RA is initiated at mu-
cosal sites (leading to the circulation of auto-antibodies before
clinical symptoms are observed) and only later spreads to the
synovial joints generating symptomatic inflammation (reviewed
in Holers et al., 2018).

Despite the extensive rationale from preclinical studies in
mice and human to target IL-17 in RA, results from clinical
studies fell far short of expectations. Although IL-17A inhibition
was superior to placebo and improved symptoms in TNF non-
responders (Blanco et al., 2017; Genovese et al., 2014), response
rates were still lower compared with an established second-line
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biological CTLA4-Ig, Abatacept (Blanco et al., 2017). As these
studies provided evidence that IL-17A is a central pathogenic
driver only in a small subgroup of RA patients and other avail-
able substance classes are more effective, clinical development
was terminated after phase III (NCT01377012).

Many of the preclinical findings on IL-17 in RA were made
using the collagen-induced arthritis (CIA) model where DBA-
1 mice are immunized against type 2 collagen and immune re-
sponse is boosted with CFA (Courtenay et al., 1980). Despite its
valuable contributions to a better understanding of RA, in the
CIA model, y8 T cells are the main producers of IL-17, while these
cells were hardly detected in joints of RA patients (Ito et al.,
2009). We speculate that the CFA used in the CIA model in-
duces the excessive IL-17 expression, thus inflating the role of
IL-17 in the model compared with human RA.

Furthermore, it was recently shown that the transition of
disease initiation to symptomatic arthritis could be mediated by
IL-23 rather than IL-17. Pfeifle et al. (2017) found that IL-
23-activated Thl7 cells promoted the production of pro-
inflammatory antibodies by B cells via IL-22 and IL-21, but not
IL-17. However, at least in established RA, a recent study with a
selective IL-23 inhibitor showed no improvement in disease
symptoms (Smolen et al., 2017).

Ms

As for other inflammatory disorders, dysregulated cytokines
play an important role in MS. In 2002, it was shown that, as for
psoriasis, IL-23 and not IL-12 is disease-promoting in the EAE
model of MS (Cua et al., 2003; Becher et al., 2002). IL-
23-deficient mice were shown to be resistant to EAE and had
reduced levels of IL-17, while the transfer of IL-17-producing
T cells led to disease exacerbation (Langrish et al., 2005). The
presence of IL-17-producing cells in active brain lesions of MS
patients (Tzartos et al., 2008) and increased IL-17 levels in cer-
ebrospinal fluid especially during clinical exacerbation
(Matusevicius et al., 1999), supported the idea that IL-17 might be
implicated in MS pathogenesis.

Surprisingly, blockade of IL-17A or F in EAE only led to a
disease reduction in SJL/] mice, but had only a modest effect in
C57/BL6 mice (Park et al., 2005; Hofstetter et al, 2005;
Komiyama et al., 2006; Langrish et al., 2005; Haak et al., 2009).
McGeachy et al. (2007) reported that IL-17-producing Th cells
are only pathogenic when they are driven by IL-23, but not by
IL-6 and TGFp. In addition, IL-23 decreased the IL-10 expression
by IL-17-producing cells, promoting their encephalitogenic ca-
pacity. In support of this, we found that IL-23 authorizes T cells
to invade the central nervous system (CNS) and to polarize to
Thi7 cells (Gyiilvészi et al., 2009). Furthermore, several reports
suggested the existence of nonpathogenic Th17 cells (Yang et al.,
2009; Esplugues et al., 2011). All these findings demonstrate that
while IL-23 is essential for the development of EAE, IL-17 is
largely redundant for disease development, and IL-23 seems to
induce other pathogenic mediators. Indeed, we and others re-
ported that IL-23 converts nonpathogenic into pathogenic T cells
by the induction of GM-CSF (Codarri et al., 2011; El-Behi et al.,
2011). Within the CNS of EAE mice, GM-CSF is produced almost
exclusively by neuro-antigen-specific Th cells (Komuczki et al.,
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2019), and systemic dysregulation of GM-CSF leads to severe and
fatal CNS inflammation dominated by the invasion into the CNS
of monocytes (Spath et al., 2017). Lee et al. (2012) found that
T-bet, which was already associated to the expression of IL-23R
in Thi7 cells (Gocke et al., 2007) and protection from EAE
(Panitch et al., 1987), is driving the pathogenic functions of Th17
cells independently of their IL-17 production (Lee et al., 2012). In
line with this, clinically stable MS patients had higher expres-
sion of IL-10 in Thi17 cells, and single-cell clones from patients
with MS showed enhanced production of IL-17, GM-CSF, or
IFN-y, while in healthy controls, IL-10 dominated (Cao et al.,
2015; Hu et al., 2017).

In summary, targeting of IL-17 does not efficiently inhibit
disease formation in mice, whereas targeting IL-23 selectively
blocks disease-promoting Th cells, independently of IL-17. The
role of IL-17 in MS remains controversial. Although IL-17 path-
way inhibition slowed down the formation of new Gd-enhancing
T1 brain lesions in a phase II study, the trial was terminated
because the cumulative number of lesions was not signifi-
cantly different compared with placebo at the primary end-
point (Havrdov4 et al., 2016). Although according to preclinical
data the new selective IL-23 inhibitors offer a promising
strategy for MS, clinical trials have not been initiated yet.
Combined IL-12/IL-23 inhibition failed to show clinical efficacy
in patients (Segal et al., 2008; Vollmer et al., 2011), possibly by
a negative effect of the concomitant IL-12 pathway inhibition.

Other nonbarrier-associated chronic inflammatory diseases
There are ongoing trials exploring the possibility of IL-17 in-
hibitors in primary biliary cirrhosis, giant cell arteritis, and
Sjogren’s syndrome (Table 1). The rational for such trials came
from observations that IL-17-producing cells were present in the
inflammatory infiltrates of the respective affected organs of
patients (Katt et al., 2013; Deng et al., 2010; Zhang et al., 2018). A
clinical trial investigating IL-17 inhibition in diabetes mellitus
type 1 patients was terminated during phase II (Table 1).

Concluding remarks

It is becoming increasingly clear that dysregulated cytokine
networks are fundamentally involved in chronic inflammatory
diseases and that targeting cytokines therapeutically has great
value in treating patients suffering from these disorders. Of
note, excessive production of single cytokines in transgenic mice
actually led to tissue-specific inflammation (Keffer et al., 1991;
Haak et al., 2009; Spath et al., 2017). IL-17 in particular is con-
nected with barrier function, and dysregulation of IL-17 is
closely linked to psoriasiform skin inflammation. The most
likely explanation for the skin tropism of IL-17-mediated in-
flammation is the fact that the receptor complex for IL-17 is
highly abundant in the skin compared with other tissues. The
normal steady-state function is likely the control of the com-
mensal microflora, and as a quasi-innate cytokine, IL-17 can
rapidly recruit other leukocytes in response to dysbiosis or
pathogen invasion through barriers. So, neutralization of the IL-
17/1L-23 axis has been shown to be beneficial in treating psori-
asis, while in Crohn’s disease only the targeting of IL-23 shows
clinical benefit, possible because the steady-state function of
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IL-17 in gut barrier function is too fragile for external inter-
vention. Nevertheless, the impact of the IL-23/IL-17 axis on the
microbiome is abundantly clear. The nature of the commensal
flora in the steady-state has in turn a dramatic effect on im-
munity in general. We thus propose that the conflicting data
regarding the role of IL-17 in preclinical models of inflammation
(outside of barrier tissues) is likely the result of the altered gut
immune axis observed in IL-17-deficient mice. The clinical
success of targeting the IL-17/IL-23 axis in chronic inflammation
of the body lining but not of diseases of internal organs (e.g., RA,
diabetes mellitus type 1, MS, etc.), was largely predicted in the
preclinical studies, which provides further support for integra-
tive and comprehensive bench to bedside research.
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