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Targeting the interleukin-17 immune axis for cancer

immunotherapy

Gerardo A. Vitiello and George Miller®

The role of IL-17 in cancer remains controversial. Emerging evidence suggests that during early oncogenesis IL-17 supports
tumor growth, whereas in established tumors IL-17 production by y6 and Th17 cells potentiates antitumor immunity.
Consequently, y6 and Th17 cells are attractive targets for immunotherapy in the IL-17 immune axis. To optimize IL-17-based
immunotherapy, a deeper understanding of the cytokines dictating IL-17 production and the polarity of y and Th17 cells is
critical. Here, we delve into the dichotomous roles of IL-17 in cancer and provide insight into the tumor microenvironment
conducive for successful IL-17-based y§ and Th17 cell immunotherapy.

Introduction

Immunotherapy has changed the landscape of cancer treatment
(Couzin-Frankel, 2013). Remarkable response rates to immune
checkpoint blockade were observed in patients whose malig-
nancies previously carried a dismal prognosis, providing hope
for those with advanced and metastatic melanoma, renal, and
lung cancers (Borghaei et al., 2015; Brahmer et al, 2015;
Eggermont et al., 2016; Hodi et al., 2010; Robert et al., 2015;
Brahmer, J., et al. 2017. American Association for Cancer Re-
search Annual Meeting. Abstr. CT077). The lack of response to
immunotherapy, however, has been disappointing in a variety
of other malignancies, including pancreatic cancer, in which an
unfavorable, immunosuppressive tumor microenvironment
precludes immunotherapy success (Brahmer et al., 2012; Royal
et al., 2010). While tumor mutational burden, heterozygosity in
patient HLA genotypes, and “immunogenic” gene expression-
based tumor sequencing profiles have predicted immunother-
apy response in select cancers (Chowell et al., 2018; Prat et al.,
2017; Samstein et al., 2019), a deeper understanding of the
biochemical microenvironment contributing to resistance is
necessary.

IL-17 has been described as a prevalent cytokine in the tumor
microenvironment, where it can play dichotomous roles in both
cancer growth and tumor elimination (Murugaiyan and Saha,
2009). IL-17 regulates the immune response to microbes, bal-
ancing both cytotoxic and tolerant immune profiles that foster
symbiosis, but also results in chronic inflammation (Gaffen
et al., 2014; Ivanov and Manel, 2010). Subversion of the IL-17

immune axis may be one mechanism by which cancer utilizes
the immunosuppressive environment associated with a chronic
inflammatory response to undermine the efficacy of immune
checkpoint blockade. In this review, we first highlight both the
tumor-promoting and tumor-protective properties of IL-17 in
the tumor microenvironment. Next, we focus on the generation,
function, and polarity of the major inflammatory cells shaping
the IL-17 immune axis, namely y8 T cells and T helper 17 (Th17)
cells. Finally, we discuss y§ and Thl7 immune cell receptor-
based approaches and adoptive cell transfer (ACT) strategies
that may be used to augment the IL-17 immune axis for cancer
immunotherapy.

The roles of IL-17 in the tumor microenvironment

The IL-17 family comprises six cytokines (IL-17A through IL-17F)
that ligate five receptors (IL-17RA through IL-17RE; Kolls and
Lindén, 2004). For simplification, we refer to IL-17 as the en-
tire group of cytokines and do not differentiate among the six
subtypes, which have been shown to have divergent cells of
origin and tissue specificity (Iwakura et al., 2011). Furthermore,
there are functional discrepancies among IL-17 cytokine sub-
types that add complexity to the relationship between IL-17 and
the host immune response. IL-17A signaling strength, for ex-
ample, is nearly 10-30 times as potent as IL-17F signaling, which
may explain why IL-17A has been implicated in global immune
function, while IL-17F participates more peripherally in mucosal
immunity (Gaffen, 2009; Zhou et al., 2007). Regardless, the
overarching function of IL-17 is to mediate the response to
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Figure 1. Functions of IL-17 in cancer. (A) Tumor-promoting effects of IL-17 are directly attributable to increased molecular signaling, tissue remodeling, and
angiogenesis while indirectly related to the recruitment of immunosuppressive immune cells. (B) Conversely, the tumor-protective effects of IL-17 are directly
related to cancer cell apoptosis, antitumoral immune cell activation, and the induction of IFN-y*y6 T cells and mixed Th1/Th17 cells. MDSC, myeloid-derived

suppressor cell.

pathogenic and commensal organisms through varying effects
and targets, all of which balance the inflammatory response of
the immune system (Iwakura et al., 2011; Kolls and Lindén,
2004). In the “Tumor-promoting functions of IL-17” and
“Tumor-protective functions of IL-17" sections below, we
highlight the most pertinent roles of IL-17 with regard to cancer
initiation, progression, and immunotherapy (Fig. 1).

Tumor-promoting functions of IL-17

I1L-17 has tumor-promoting effects by directly stimulating cancer
cells as well as by indirectly inducing an immunosuppressive
tumor environment. IL-17 binds IL-17R on tumor cells, signaling
the downstream activation of transcription factors (NF-«B,
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STAT, and AP-1), kinases (MAPK and HER1), tissue remodeling
matrix metalloproteinases (MMPs), and anti-apoptotic proteins
(Akt, Erk, mTOR, Bcl-2, and Bax) in a myriad of cancers. For
example, IL-17 ligation stimulates the proliferation and self-
renewal of ovarian cancer stem cells in a dose-dependent fash-
ion via the NF-«B and MAPK pathways (Xiang et al., 2015).
Similarly, IL-17 ligation up-regulates NF-«B signaling in a dose-
dependent fashion in glioblastoma cell lines (Kehlen et al., 1999);
mediates intracellular NF-«kB, MAPK, and AP-1 activity in gastric
cancer (Zhou et al., 2007); and promotes hepatocellular carci-
noma invasion and prostate cancer epithelial to mesenchymal
transition in vivo via MMP-2, MMP-7, MMP-9, and NF-«B signal
transduction (Li et al., 2011a; Liu et al., 2016). Finally, IL-17
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directly contributes to the proliferation of keratinocytes via the
IL-17R-Actl-TRAF4-MEKK3-ERK5 circuit in skin cancer, and
promotes MMP-dependent cell invasion, supports angiogenesis,
inhibits TGF-B-dependent cellular apoptosis, and enhances
MEK-, ERK-, JNK-, and STAT3-mediated cell proliferation in
breast cancer (Fabre et al., 2018; Wu et al., 2015b). Thus, IL-17
has been implicated in the oncogenesis of many tumor types.

IL-17-mediated ERK activation and HER1 phosphorylation
also promote resistance to docetaxel-based chemotherapy and
tyrosine kinase inhibition, highlighting the role of IL-17 not only
in cancer cell growth but also as a mechanism of treatment
resistance (Cochaud et al., 2013; Merrouche et al., 2016). IL-17
ligation on pancreatic cancer cells directly up-regulates ERK
signaling, which increases cancer cell invasion and endothelial
cell migration and supports the survival of cancer cells at distant
organs (Wu et al., 2015a). Notably, treatment with an antago-
nistic IL-17 antibody blocks the development of pancreatic can-
cer metastasis in a murine xenograft model. In colorectal cancer,
both secretory and membrane-bound forms of IL-17 can con-
tribute to cell cycle progression and oncogenesis (Al-Samadi
et al., 2016; Cui et al., 2012; Do Thi et al., 2016). The amount of
IL-17 also correlates directly with the severity of dysplasia in the
colonic adenoma-to-carcinoma sequence, making IL-17 an at-
tractive cytokine for colon cancer diagnosis and severity (Wu
et al,, 2013). Together, these results suggest that IL-17 supports
tumor growth, tumor progression, treatment resistance, and
metastasis.

IL-17 also indirectly shapes the immune cell microenviron-
ment through chemokines and cytokines to support cancer cell
proliferation. Specifically, IL-17 induces the expression of
CXCL1, CXCL5, CXCL6, and CXCL8, which enhances the immune
suppressive function of myeloid-derived suppressor cells in
breast cancer, inhibits T cell infiltration in lymphoma models,
recruits macrophages in pancreatic cancer, and supports angi-
ogenesis and in vivo tumor growth in lung cancer (He et al.,
2010; Laan et al., 1999; Novitskiy et al., 2011; Numasaki et al.,
2005; Wu et al., 2015a). IL-17 potentiates systemic G-CSF ex-
pression in breast cancer in vivo, which attracts immunosup-
pressive neutrophils and maximizes the potential for breast
cancer metastasis (Coffelt et al., 2015). Similarly, cervical car-
cinoma cells respond to IL-17 by increasing IL-6 and CXCL8
expression, which recruit tumor-promoting macrophages and
neutrophils in vivo and result in increased tumor size (Tartour
et al., 1999). IL-17-induced CXCL8 expression from colonic epi-
thelial cells in colon cancer not only attracts immunosuppressive
neutrophils, but also synergizes with TNF to activate oncogenic
epidermal growth factor receptor and ERK signaling pathways
(Lee et al., 2008). Finally, IL-17 represses the expression of the
Thi-activating chemokines CXCL10, CXCL11, and CCR5, limiting
overall cytotoxicity within the tumor environment. In summary,
the direct and indirect oncogenic properties of IL-17 complement
each other to stimulate early tumor growth and suppress the
immune system.

Regardless of the mechanism by which IL-17 promotes tumor
growth, compiled data support our hypothesis that the protu-
moral properties of IL-17 impact the early stages of carcino-
genesis and oncogenesis rather than the later stages in an
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established tumor. IL-17 signaling has been shown to drive the
early stages of pancreatic and colorectal cancer formation (Chae
et al., 2010; McAllister et al., 2014), and inhibition of IL-17 sig-
naling prevented neoplastic initiation. Yet, the role of IL-17
blockade in established cancer models has been consistently less
clear (Martinez et al., 2008). This may be because the estab-
lished tumor is a complex microenvironment, rich in immune
cells, stromal components, and redundant signaling pathways
that make the effect of any individual cytokine less predictable
(Balachandran et al., 2019; Egeblad et al., 2010). This is an im-
portant distinction that requires further investigation, suggest-
ing that cytokine-based IL-17 inhibition may be more useful
during early tumor growth.

Tumor-protective functions of IL-17

IL-17 expression correlates with a better prognosis and im-
provement in patient survival in a variety of cancers, supporting
a role for IL-17 in antitumor immunity. In chronic lymphocytic
leukemia, for example, an increased number of peripherally
circulating IL-17+ Th17 cells is associated with better prognostic
markers and improved patient survival (Jain et al., 2012).
Analysis of IL-17 in gastric cancer surgical specimens reveals
that greater immunohistochemical IL-17 expression indepen-
dently reduces the likelihood of death by 48% at 5 yr (Chen et al.,
2011). IL-17 expression also correlates with a greater number of
cytotoxic IFN-y*CD4* and IFN-y*CD8* T cells in ovarian cancer
(Kryczek et al., 2009a). Conversely, a reduction in the number of
tumor-infiltrating Th17 cells or the amount of IL-17 in ascitic
fluid predicts a worse patient outcome (Kryczek et al., 2009a). In
cervical cancer, an increased number of IL-17* cells correlates
significantly with smaller tumors, reduced depth of tumor in-
filtration, and less frequent vascular invasion (Punt et al., 2015).
Finally, in colorectal and lung cancer, IL-17 recruits antitumoral
neutrophils to the tumor environment, which stimulates a T cell
response and correlates with better overall survival (Eruslanov
et al., 2014; Lin et al., 2015).

When exploring the mechanism by which IL-17 expression is
tumor protective, there appears to be evidence for both direct
and indirect antitumoral function. Nonmalignant mammary
epithelial cells secrete IL-17, which ligates IL-17R on breast
cancer cells and signals apoptosis via receptor-mediated caspase
activation (Furuta et al., 2011). IL-17 can also activate individual
immune cells, as evidenced by enhanced CD107a, TNF, IFN-v,
perforin, NKp46, NKG2D, and NKp44 expression in natural
killer (NK) cells, or antitumoral macrophage polarization via
expression of IL-1, IL-6, IL-12, and TNF (Al Omar et al., 2013;
Jovanovic et al., 1998; Lu et al., 2013). The most potent tumor-
protective property of IL-17, however, results from indirect,
immune-mediated phenomena where IL-17 instructs the innate
and adaptive immune system to become cytotoxic (Benchetrit
et al., 2002). Endogenous IL-17 production suppresses tumor
progression via increased IFN-y* T cell activity in an immuno-
competent mouse model of colon cancer (Kryczek et al., 2009b).
IL-17 stimulates CXCL2 and CXCL3 production from squamous
esophageal cancer cells, which attracts myeloperoxidase*IFN-y*
antitumoral neutrophils in vivo and inhibits tumor growth
(Chen et al., 2017a). Similarly, IL-17 induces CCL2, CCL20,
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CXCL9, and CXCLIO production from esophageal squamous
cancer cells that recruits and activates T cells, dendritic cells
(DCs), and NK cells, correlating with an improvement in overall
survival in 181 patients with esophageal squamous cell carcino-
ma (Lu et al.,, 2013). IL-17 also coaxes IL-6 production from a
variety of cells in the tumor microenvironment, including
macrophages and tumor cells. Ultimately, the role of IL-
17-induced IL-6 expression in antitumor immunity is rooted in
the survival, proliferation, recruitment, and cytotoxicity of
leukocytes (Fisher et al., 2014a). Thus, in established tumors,
IL-17 both directly activates immune cells and indirectly nurtures
a cytotoxic cytokine environment.

Consequently, there are a few important observations to
recognize when characterizing the role of IL-17 in antitumor
immunity. First, the antitumor effect associated with exogenous
or genetic overexpression of IL-17 is dependent on CD4* and
CD8* T cells (Benchetrit et al., 2002). Similarly, endogenous IL-
17 production supports tumor growth in an immune-deficient
mouse model of colorectal cancer but potentiates an antitumor
response in an immunocompetent mouse model, strongly
suggesting that immune cells play an essential role in IL-
17-mediated cytotoxicity (Kryczek et al., 2009b). Next, the an-
titumoral effects of IL-17 appear to be related to cytokine shifts
and the expression of IFN-y in the tumor microenvironment
(Muranski et al, 2008), with Thi-like IFN-y-producing Thi7
cells being the major mediators of tumor destruction (Kryczek
et al., 2009a). Finally, IL-17-producing immune cells are not
constitutive IFN-y producers, but are instead activated by the
tumor environment to produce IFN-y in the appropriate setting
(Bailey et al., 2014; Chien et al., 2013). These observations not
only highlight the significance of the tumor microenvironment
in dictating IL-17 function, but also suggest the potential for
IL-17-producing immune cell modulation in cancer immunother-
apy. Therefore, a detailed understanding of the cytokine envi-
ronment that heralds IFN-y production from IL-17-producing
immune cells is paramount.

Cytokines and immune cell polarity in the IL-17 axis

Immune cells are functionally complicated and express different
effector molecules, including IL-17. Many animal-based IL-17
models only explore the function of exogenous IL-17 in the tu-
mor environment, and extrapolating these functions to include
IL-17-producing immune cells needs further validation. How-
ever, some IL-17-producing immune cells, namely y§ and Th17
T cells, have been directly implicated in antitumor immunity.
Since y8 and Th17 T cells are the two inflammatory cell types
primarily responsible for the production of IL-17 in the tumor
microenvironment, exploration into how the surrounding
cytokines shape their antitumoral phenotype is important for
ultimately predicting immunotherapy response (Fig. 2).

yé T cells

Y8 T cells are non-MHC restricted T cells functioning at the
interface of innate and adaptive immunity. After being gener-
ated in the thymus and developing an antigen-specific, mono-
clonal TCR, y8 T cells migrate to well-defined and anatomically
distinct immunological tissues (e.g., intestinal mucosa and
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dermis) in preparation for rapid education of an immune re-
sponse to commensal pathogens or inflammation (Vantourout
and Hayday, 2013). Activation of y8 T cells leads to a coordinated
antigen- and cytokine-mediated immune response that dictates
af CD8 T cell, CD4 T cell, B cell, NK cell, and DC activity (Fig. 2).
B cell germination, recruitment, maturation, and antibody pro-
duction ensue following y8 T cell activation and subsequent
CXCL13 production (Vermijlen et al., 2007). Depending on their
polarity, Y8 T cells also help refine DC antigen presentation,
directly induce NK cell activity, and activate or inhibit aff CD8
T cell activity.

The cytokines and receptor ligands in the tumor environ-
ment dictate y§ T cell polarity. IL-17-producing y8 T cells rely
on IL-7 and IL-4 to engender a tumor-promoting phenotype
(Corpuz et al., 2016; Skeen and Ziegler, 1995; Wesch et al., 2001).
Similarly, exposure to TGF- and IL-15 can stimulate y§ T cells to
become more like FOXP3* immunosuppressive T regulatory
cells (Casetti et al., 2009). On the other hand, antitumoral IFN-
y-producing y8 T cells rely heavily on IL-1, IL-12, and IL-15
(Corpuz et al., 2016; Skeen and Ziegler, 1995; Wesch et al., 2001).
Microbial antigens, glycolipids, phosphoantigens, and tumor cell
ligation of NKG2B receptors expressed on y8 T cells can also
polarize and potentiate an antitumoral immune response or-
chestrated by the early activation of IFN-y* y8 T cells (Lafont
etal,, 2014; Lo Presti et al., 2018). Ligation of TLR8 on y§ T cells
can unleash an antitumoral phenotype via DC maturation and af§
T cell activation (Peng et al., 2007). Finally, TCR-specific ligation
on y8 T cells can lead to direct tumor cell lysis via perforin-
granzyme secretion (Alexander et al., 2008; Viey et al., 2005).
Additional mechanisms of y8 T cell-mediated cytotoxicity rely
on the expression and ligation of CD16, FasL, and TRAIL (Dieli
et al., 2007; Fisher et al., 2014c; Todaro et al., 2009).

As a result, y§ T cells can have both protumoral and antitu-
moral roles within the tumor environment (Zhao et al., 2018).
Y8 T cells promote tumor growth via angiogenesis in gallblad-
der cancer, pancreatic adenocarcinoma, and fibrosarcoma
(McAllister et al., 2014; Patil et al., 2016; Wakita et al., 2010). v8
T cells also elicit antitumoral properties by directly lysing breast,
renal, squamous, and osteosarcoma cells (Alexander et al., 2008;
Dhar and Chiplunkar, 2010; Li et al., 2011b; Viey et al., 2005).
Some evidence suggests that y§ T cells produce either IL-17 or
IFN-y, which is predictive of their protumoral or antitumoral
function, respectively (Rei et al., 2015). However, there is a
distinct phenotypic difference between naive IL-17-producing
y8 T cells and activated IFN-y-producing y8 T cells, the latter
of which are the earliest producers of IFN-y in the tumor envi-
ronment and “set the stage” for a cytotoxic immune response
(Gao et al., 2003). Moreover, IL-17 production by y8 T cells ap-
pears to be independent of TCR ligation, and immunothera-
peutic augmentation of y8 T cells can lead to tumor destruction
despite an unchanged production in IL-17 (Daley et al., 2016;
Vantourout and Hayday, 2013). These data support an “IL-17
default position” within the origin of y§ T cells (Vantourout and
Hayday, 2013), where TCR-independent IL-17-producing y8
T cells are more innate-like while adaptive IFN-y* y8 T cells are
experienced in TCR ligation. Ultimately, this suggests that when
licensing y8 T cells for cancer immunotherapy, reliance on
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Figure 2. Th17 and y8 T cell function in the IL-17 immune axis. The roles of IL-17, Th17, and y6 T cells in the tumor microenvironment. Th17 and y8 T cell
polarity is dictated by the presence or absence of specific cytokines. IL-1, IL-12, IL-15, TLR ligation, and microbial antigens potentiate an antitumoral y& T
phenotype. IL-1, IL-6, IL-12, and T-bet expression promotes a cytotoxic and mixed Th1/Th17 cell phenotype. MDSC, myeloid-derived suppressor cell.

functional studies rather than IL-17 expression alone should be
considered to characterize y§ T cell polarity.

Th17 cells

Th17 cells are a subset of CD4 helper T cells that play an es-
sential role in immunological development and response to
pathogens (Asadzadeh et al., 2017; Zou and Restifo, 2010).
Distinct from the cytotoxic Thl and immunosuppressive Th2
CD4 helper cell phenotypes, Thl7 cells are characterized by
the lineage transcription factor RORYT, which with epithelial
or tumor cell production of TGF-f or IL-6 promotes Th17 cell
maintenance (Fig. 2). RORYT drives a transcriptional program
that leads to the downstream expression of STAT3 and IL-17,
which together coordinate IL-17 production and immune
function.

Similar to y8 T cells, Th17 cells exhibit “plasticity,” where the
presence or absence of specific cytokines directs differentiation
and function (Guéry and Hugues, 2015; Majchrzak et al., 2016).
The presence of TGF-B, IL-23, and IL-6 maintains IL-17
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production and Thl7 differentiation, while TGF-B alone may
shift differentiation toward an immunosuppressive T regulatory
phenotype (Fig. 2). TGF-B and IL-6 co-culture also induces the
expression of the immunosuppressive ectonucleotidases CD39
and CD73 on Thi7 cells, perpetuating a protumoral phenotype
(Chalmin et al., 2012). Contrastingly, exposure to IL-12, IL-23,
and IL-1 in the tumor environment enables IL-17-producing Th17
cells to shift toward a Thl-type phenotype, where IFN-y alone or
IFN-y and IL-17 are coproduced (Lee et al., 2009; Revu et al.,
2018). IL-12 also potentiates a transcriptional profile controlled
by T-bet, enabling Th17 cells to mimic the high IFN-y production
of Thi cells. Notably, Thi-like Thl7 cells remain distinguishable
from Thi cells by a unique receptor profile characterized by the
expression of CD161, ICOS, and IL23R (Bailey et al., 2014). As a
result of their functional plasticity, Thl7 cells exhibit a stem
cell-like transcriptional profile in which a Thi-like phenotype is
acquired over time and persists in vivo (Muranski et al., 2011).
Furthermore, Th17 cells display an increased proliferative and
self-renewal capacity upon antigen restimulation when
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compared with Thl cells, which makes them attractive candi-
dates for ACT and immunotherapy.

The impact of Th17 cells on antitumor immunity is apparent
across multiple tumor models. In immunocompetent mastocy-
toma and lymphoma murine models, IL-17 inhibits tumor
growth in a T cell-dependent fashion mediated by the Thl cy-
tokines IL-6 and IL-12 (Benchetrit et al., 2002). In patients with
human papillomavirus-positive oropharyngeal cancer, the
presence of IFN-y*Th17 cytotoxic T cells correlated with disease-
free survival, whereas the presence of IL-17-producing non-T
cells was associated with an unfavorable immune response
and poor survival (Punt et al., 2016). Th17 cells have also been
reported to eradicate melanoma to a greater extent than Thl cells
by recruiting DCs and CD8* T cells to the tumor environment
(Martin-Orozco et al., 2009). Finally, in a mouse model of pan-
creatic cancer, RIP], a protein kinase important in inflammatory
signaling and cell death pathways, suppresses STAT1 signaling
in macrophages and potentiates a tolerogenic macrophage phe-
notype (Wang et al., 2018). Inhibition of RIP1 on macrophages
polarized the immune environment such that CD4* T cells ac-
quired a highly immunogenic, mixed Th1/Th17 phenotype that
increased expression of IFN-v, IL-17, T-bet, and RORYT. Not only
was RIP1 inhibition protective against pancreatic cancer, but the
associated cytokine shift also made both CD4* and CD8* T cells
receptive to concurrent immune-checkpoint blockade and ICOS-
based immunotherapy, further enhancing tumor destruction
and providing a preclinical rationale for targeting these cells in
antitumor immunity (Wang et al., 2018).

Immunotherapy targets in the IL-17 immune axis

The modulatory potential of the IL-17 immune axis makes IL-17
an attractive target for cancer immunotherapy. However, the
paradoxical roles of IL-17 in both tumor growth and elimination
make a “one size fits all” approach unlikely to succeed. Instead, it
is likely that IL-17-based immunotherapy will need to be indi-
vidualized to cancer type, stage, and perhaps even the specific
IL-17 isoform and receptor subunit, since different IL-17 iso-
forms signal via unique pathways and with different signaling
strengths even within the same cancer type (Zhou et al., 2007).
Consequently, it is essential to appreciate how IL-17 modulates
cancer cell proliferation and immunity in the tumor microen-
vironment, and the specific function of IL-17 in the tumor
environment is an important determinant in predicting thera-
peutic response to IL-17-based therapy. Similarly, current
animal-based models explore the role of exogenous or germline-
deleted IL-17, the findings of which may not be directly attrib-
utable to IL-17-producing immune cells. When testing the
potential for IL-17-producing immune cell immunotherapy,
therefore, conditional KO models may further validate and more
accurately predict the therapeutic potential of IL-17-based
immunotherapy.

While there is some evidence to suggest that anti-IL-17 an-
tibodies potentiate anti-VEGF therapy in colorectal cancer and
prevent the progression of pancreatic intraepithelial neoplasia
and pancreatic cancer metastasis (Ibrahim et al., 2018;
McAllister et al., 2014; Wu et al., 2015a), redundant signaling
mechanisms in the MAPK, NF-«B, and STAT3 signaling
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pathways may reduce the therapeutic impact of direct, cytokine-
based, anti-IL-17 immunotherapy in established tumors. The
most potent antitumor properties of the IL-17 axis appear to be
related to the induction of IFN-y*IL-17* mixed Th1/Th17 cells and
IFN-y* y§ T cells, which hinges on the plasticity of Th17 and y8
T cells, making Th17 and y8§ T cell immunomodulation a sub-
stantial target in the IL-17 axis. A thorough understanding of the
cytokines dictating y§ and Thi17 cell antitumoral polarity is
critical (Fig. 3). TCR stimulation, IL-1, IL-6, and IL-12 enable Th17
cells to acquire a mixed Th1/Th17 phenotype and produce IFN-y.
While some data imply that the production of IFN-y and IL-17 by
y8 T cells is developmentally defined through epigenetic and
transcriptional programming in the thymus (Ribot et al., 2009;
Schmolka et al., 2013; Shibata et al., 2014), IL-1, IL-12, IL-15,
microbial peptides, and ligation of specific y§ TCRs can also
unleash IFN-y production. Additional research should focus on
optimizing the cytokine environment before administering y8
and Th17 cell immunotherapy.

Examination of the immune receptors contributing to the
antitumoral polarity of y8§ and Thl7 T cells is also important in
order to optimize immunotherapy and ACT (Fig. 3). y8 T cells
express PD-L1, PD-1, BTLA, galectin-9, TLRs, and NK immuno-
globulin receptors including NKG2A, KIR2DL1, and KIR3DL1
(D’Ombrain et al.,, 2007; Papotto et al., 2017). Anti-PD-1 and
anti-PD-L1 therapy has already been shown to enhance y8
T cell-dependent tumor destruction (Daley et al., 2016; Hoeres
et al., 2018). B- and T-lymphocyte attenuator (BTLA) negatively
regulates Y8 T cell cytotoxicity and IL-17 production (Bekiaris
et al., 2013; Gertner-Dardenne et al., 2013a; Gertner-Dardenne
etal., 2013b), but the clinical applications of BTLA antagonism in
Y8 T cells have yet to be explored. TLR ligation enhances the
cytotoxic response of y8 T cells directly through costimulation
with antigen-specific TCRs and should continue to be explored
(Wesch et al., 2011). Galectin-9 has both immune-suppressive
and immune-enhancing functions (Chou et al., 2018). In EBV*
nasopharyngeal carcinoma, tumor cell expression of galectin-9
ligates TIM-3 on Thl helper cells to promote cell apoptosis and
induce immune escape (Chen et al., 2017b). Similarly, pancreatic
cancer cell expression of galectin-9 ligates dectin-1 on macro-
phages to promote a tolerogenic immune environment (Daley
etal., 2017). Our group has recently shown that galectin-9 is also
highly expressed on y8 T cells, and galectin-9 inhibition syner-
gized with checkpoint-blockade immunotherapy to induce tu-
mor regression (Daley et al., 2017; Daley et al., 2016).
Concordantly, antibodies targeting y8 T cell immune receptors
are a novel approach to cancer immunotherapy, and production
of an anti-human galectin-9 antibody is underway (Puretech
Health).

Like y8 T cells, Thi17 cells also have a characteristic immune
receptor profile, generally exhibiting low levels of PD-1, GRZB,
and perforin (Kryczek et al., 2009a). They also appear to highly
express the costimulatory markers ICOS and CD28 (Paulos et al.,
2010), which become an important consideration for ACT. Th17
cells mediate and promote long-term antitumor immunity
in vivo due to their capacity for self-renewal, durable persis-
tence, and resistance to apoptosis (Kryczek et al., 2011). Ex vivo
stimulation of Th17 cells in polarizing conditions (with IL-2 and
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antigen; Fig. 3) doubled the duration of antitumor activity and
increased the number of Thi7 cells persisting in vivo nearly 16-
fold (Hinrichs et al., 2009). ICOS stimulation also induces PI3K
and Wnt/B-catenin survival pathways that promote the self-
renewal and generation of memory Thi7 cells (Majchrzak
et al., 2017; Nelson, M., et al. 2012. Immunology 2012 Meeting.
Abstr. 46.29). In a mouse model of melanoma, PI3K and
[B-catenin inhibition unleash a potent antitumor Thl7 response
via conversion to an effector phenotype. ICOS agonism also
optimally expands Th17 cells for persistence in vivo (Guedan
et al.,, 2014). As a result, generation of an ICOS-stimulatory
CAR T cell for ACT showed improvement in tumor elimination
with enhanced IFN-y and T-bet expression when compared with
traditional CAR T cells (Guedan et al., 2014). ICOS stimulation,
PI3K inhibition, and B-catenin blockade should therefore be
considered in future Th17 ACT therapy.

y8 T cells are similarly being used for ACT immunotherapy.
VYy9V82 T cells are the most abundant y8 T cells in human blood
(Poupot and Fournié, 2004) and have been the major focus of
ACT immunotherapy. Polarization and ACT of y8 T cells using
IL-2 and zalendronate (which mimics TLR ligation) has shown
some efficacy in prostate cancer (Dieli et al., 2007), advanced
renal cell carcinoma (Bennouna et al., 2008; Fisher et al., 2014b),
non-small cell lung cancer (Nakajima et al., 2010), and neuro-
blastoma (Capsomidis et al., 2018). Notably, v8 TCRs do not re-
quire an antigen to be complexed to an MHC receptor in order to
generate an immune response, enabling them to rapidly respond
to foreign peptides in concert with the innate immune system.
The monoclonal y8 T cell receptor is also antigen specific, which
limits an uncontrolled immune response in the absence of MHC
presentation. As a result, different § and y chains have specific
activating ligands, including MICA/MICB for V61, ULBP4 for
V82, and phosphoantigens for Vy9V82 (Vantourout and Hayday,

Vitiello and Miller

IL-17 and cancer immunotherapy

2013). Some TCRs have already proven to be targetable in pan-
creatic and colon cancer (Devaud et al., 2013; Oberg et al., 2014;
Ramutton et al., 2014), and the cytotoxic features of each subset
of ¥8 T cell are currently being studied and evaluated for addi-
tional ACT applications (Hannani et al., 2012; Wu et al., 2017).
Finally, consideration for the microbiome in the IL-
17-immune axis warrants attention, since the IL-17 axis itself
plays an integral role in the host immune response to pathogenic
and commensal organisms. In pancreatic cancer, the intestinal
microbiome induces Th17 IL-17 expression and promotes pan-
creatic oncogenesis (McAllister et al., 2014; Sethi et al., 2018).
Ablation of the microbiome with antibiotics reduces cancer
growth in an IL-17-dependent fashion, which supports the
protumoral role of bacteria and IL-17 in the early stages of on-
cogenesis (Sethi et al., 2019). Moreover, microbial stimuli have
been shown to program the immunosuppressive phenotype of
many innate and adaptive immune cells, including y§ T cells,
Th17 T cells, and the recently described IL-17-producing innate
aB T cells (Hundeyin et al., 2019). Consequently, modulation of
the microbiome with concurrent immune-checkpoint blockade
may alter IL-17 production and open further opportunities for
anti-IL-17-based therapy (Onishi and Gaffen, 2010).

Concluding remarks

IL-17 function is both tumor promoting and tumor protective.
Published data support the hypothesis that IL-17 is protumoral
early in inflammation and cancer initiation, while antitumoral
activity develops in coordination with changes in the cytokine
and immune cell microenvironment in established tumors.
Immune-checkpoint blockade, activation of costimulatory re-
ceptors, and ACT of y8 T cells and Th17 should consider the
unique ontogenies, TCRs, and immune receptor profiles of these
cells. Further characterization of the immune profiles and
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factors affecting functional plasticity of Th17 and y8 T cells, in-
cluding the role of the microbiome, may open opportunities for
additional IL-17-based immunotherapy.
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