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Development of immune checkpoint therapy
for cancer
Jill M. Fritz and Michael J. Lenardo

Since the early 20th century, immunologists have investigated mechanisms that protect vertebrates from damaging immune
responses against self-antigens by mature lymphocytes, i.e., peripheral tolerance. These mechanisms have been increasingly
delineated at the molecular level, ultimately culminating in new therapeutics that have revolutionized clinical oncology.
Here, we describe basic science and clinical discoveries that converge mainly on two molecules, CTLA-4 and PD-1, that were
recognized with the 2018 Nobel Prize in Physiology or Medicine awarded to James Allison and Tasuku Honjo. We discuss their
investigations and those of many others in the field that contravene tolerance through checkpoint inhibition to boost
immune killing of malignant cells. We also discuss the mechanisms underlying each therapy, the efficacy achieved, and the
complications of therapy. Finally, we hint at research questions for the future that could widen the success of cancer
immunotherapy.

Introduction
T lymphocytes as cytotoxic agents against cancer cells
One of the infrequently heralded breakthroughs of the 1960s
was the observation that cells of the adaptive immune system
could be divided into two broad functional classes: B and T
lymphocytes or, simply, B and T cells (Miller, 1961; Cooper et al.,
1966). We will focus on T cells, which are important for im-
munotherapy because they secrete cytokines and generate cy-
totoxic reactions against other cells that are infected with
viruses or are cancerous (Miller and Mitchell, 1967; Masopust
et al., 2007). The body has a large repertoire of T cells, each with
a unique TCR that recognizes antigen as short peptides bound to
MHC proteins on the surface of APCs. These antigen/MHC
complexes, especially when unique to tumor cells, are the key
signal for T cells to attack. By either enhancing the initial rec-
ognition and immune response to cancer antigens or thwarting
peripheral tolerance “checkpoints,” or both, cancer immuno-
therapies generate and sustain tumoricidal immunity.

Peripheral tolerance of T cells
Tolerance is the ability of T cells to generally ignore antigens
endogenous or harmless to the host and mount strong reactions
only to foreign and pathogenic antigens. Failure of tolerance can
cause a range of autoimmune diseases and great human suffering,
although most people go through life without much obvious or

permanent damage from T cell immunity. Mechanisms have
evolved in T cells to ensure specific and controlled responses that
involve tolerance (limited responsiveness) to self. One mecha-
nism to prevent autoimmune responses is to eliminate auto-
reactive T cells during development, i.e., central tolerance. Other
mechanisms restrain, neutralize, or eliminate mature T cells in
the periphery when they engage antigens, i.e., peripheral toler-
ance (Miller and Morahan, 1992; Lenardo et al., 1999). To begin,
MHC-presented peptides will generally activate naive T cells only
if “costimulatory” signals are received through CD28 or allied
molecules. The ligands for CD28, B7-1 (CD80), and B7-2 (CD86)
are restricted to specific “professional” APCs and are induced by
pathogen-specific signals operating through TLRs and other
sensors for molecules from dangerous microbes. Hence, the in-
coming signal is evaluated for a likely correspondence to patho-
gens, and a go/no-go decision is made. This is a true “checkpoint”
for T cell reactivity. In fact, strong stimulation through the TCR
without costimulation paralyzes T cells in a nonresponsive state
called “anergy.” Anergy may contribute to peripheral tolerance to
antigens seen again and again, a key feature of “self” antigens.

To promote a therapeutic anticancer response, CD8+ T cells
that are strongly activated by tumor antigens must be unre-
strained by negative regulators. A fundamental problem in bio-
logical systems is that a priori information is often lacking about
how much stimulus will be encountered in order to gauge an
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appropriately measured reaction. Given that the immune system
is confronted daily with rapidly growing microorganisms, it is
a constant challenge to ensure an effective pathogen response
while limiting overkill that damages host tissues. Evolution has
countered with cybernetic or feedback control systems in which
the initial stimulus triggers negative regulators that dampen the
response (Lenardo et al., 1999). As described below, these nega-
tive regulators are proportionately engaged by the strength of
stimulation, and have been called “checkpoints” since they detect,
resist, and reverse overactivation. By creating negative feedback,
immune checkpoints vouchsafe more uniform and controlled
immune reactions to prevent collateral damage.

Immune checkpoint therapy
Cytotoxic T lymphocyte–associated protein 4 (CTLA-4) biology
CTLA-4 is a member of the CD28 family of receptors that is in-
duced on the cell surface on conventional T cells by antigen

activation and constitutively expressed on regulatory T (T reg)
cells, a specialized subset of CD4+ T cells that can arrest T cell
responses (Sansom, 2000). It negatively regulates costimulatory
signaling and powerfully enforces peripheral tolerance. CD28
and CTLA-4 compete for binding to B7-1 and B7-2 on APCs, in-
cluding B lymphocytes, dendritic cells, and other immune cells.
As the cousin of CD28, which provides the critical cosignal
required for TCR-mediated proliferation, survival, and cyto-
kine production, CTLA-4 has evolved to counterbalance these
costimulatory signals since it can bind B7-1/B7-2 more tightly,
but delivers negative rather than costimulatory signals to the
T cell (Fig. 1; Walker and Sansom, 2011). CTLA-4 is part of a built-
in tolerance algorithm involving its induction with a delay, but
in proportion to T cell activation. This allows it to suppress
apparently spontaneous T cell reactions against self-antigens
and diminish the intensity of responses to foreign antigens.
Genetic CTLA-4 deficiency in mice and humans wreaks immune

Figure 1. Mechanisms of CTLA-4 function and inhibition. (A–C) CTLA-4 is up-regulated on activated T cells and inhibits further T cell activation by
competing with CD28 for B7 ligation. T reg cells, which constitutively express CTLA-4, trans-endocytose B7 ligands on APCs to prevent CD28 costimulation.
(D) Blocking CTLA-4 results in enhanced CD28-B7 ligation, which unleashes T cell expansion and effector function. By inhibiting CTLA-4 on T reg cells,
B7 trans-endocytosis is suppressed, resulting in increased APC potency. CTLA-4 blockade is also thought to cause T reg cell depletion through ADCC by cells
expressing Fcγ receptors.
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havoc with severe lymphoproliferation and clonal senescence,
lymphocytic infiltration into the lungs, brain, and gastrointestinal
tract, autoimmunity, hypogammaglobulinemia, respiratory tract
infections, and enteropathy. Loss of costimulation control is the
culprit, since immunopathology can be circumvented in CTLA-4–
deficient mice by either blocking B7 ligand interactions with a
soluble CTLA-4–immunoglobulin fusion protein or by crossing
CTLA-4–deficient mice to B7-deficient mice (Tivol et al., 1997;
Mandelbrot et al., 1999). Not surprisingly, therapy with
anti–CTLA-4 causes colitis as amajor side effect (Tivol et al., 1995;
Waterhouse et al., 1995; Kuehn et al., 2014; Schubert et al., 2014).
By contrast, clinical improvement has been observed when
abatacept, a Food and Drug Administration (FDA)–approved
CTLA-4–immunoglobulin fusion protein drug, is administered
to humans suffering from CTLA-4–haploinsufficiency with
autoimmunity and infiltration disease, a genetic deficiency of
CTLA-4 (Lee et al., 2016). The effectiveness of soluble CTLA-4 is
because it competes for CD28 ligands on the surface of APCs.
These soluble forms, like CTLA-4 itself, associate with B7-1 and
B7-2 with higher affinity and avidity than CD28 (van der Merwe
et al., 1997; Collins et al., 2002). Imaging analyses pinpoint CTLA-
4 accumulation in the immunological synapse, where it in-
terferes with CD28 recruitment and downstream signaling
(Yokosuka et al., 2010). Other studies show CTLA-4 consorting
with the TCR in lipid rafts to form lattice-like structures that
inhibit CD28 signaling (Darlington et al., 2002).

In addition to encumbering CD28 signaling, CTLA-4 en-
gagement induces negative signals (Krummel and Allison, 1996;
Walunas et al., 1996). The cytoplasmic domain of CTLA-4 attracts
several members of the PP2A family of serine/threonine phos-
phatases that disengage downstream TCR signaling (Lee et al.,
1998; Chuang et al., 2000). CTLA-4 can also run interference by
interacting directly with the TCR and prevent its tyrosine
phosphorylation following stimulation (Lee et al., 1998). Finally,
CTLA-4may strike at the heart of the proliferationmachinery by
decreasing ERK activity and increasing JNK in T cells (Calvo
et al., 1997; Schneider et al., 2002). Hence, CTLA-4 counteracts
several internal signaling nodes to impede activation and pro-
liferation of T cells.

Several studies suggest that additional functions of CTLA-4
may be T cell–extrinsic (Walker and Sansom, 2011). Hints ini-
tially came from the surprising observation that RAG2-deficient
mice transplanted with a mixture of normal and CTLA-4–
deficient bone marrow do not develop lymphoproliferative
disease (Bachmann et al., 1999). Something from the normal
marrow apparently suppressed the unrestrained immune re-
actions typically caused by CTLA-4–deficient bone marrow.
Later studies showed that T reg cells suppress dendritic cell
function by decreasing B7-1 and B7-2 expression (Misra et al.,
2004; Oderup et al., 2006;Wing et al., 2008; Qureshi et al., 2011).
This led to the fascinating discovery that CTLA-4 could pluck B7-1
and B7-2 from the surface of APCs and send them to lysosomes
within the T reg cells, a process called trans-endocytosis
(Qureshi et al., 2011; Kong et al., 2014). This leaves the APCs
without costimulatory ability.

CTLA-4 deficiency in mice and humans debilitates the
tolerance mechanisms described above, thereby fooling T cells

into activation and migration into organs as though they were
chasing an infection (Wing et al., 2008). All of the cell-intrinsic
and -extrinsic tolerance mechanisms required CTLA-4 to
evolve a multifaceted toolbox to restrain T cells following an-
tigen engagement. However, the fact that CTLA-4 operates at
the cell surface suggested a simple strategy for boosting T cell
immunity by using a CTLA-4 inhibitory antibody. This in-
spired a new mode of cancer treatment that could work in the
absence of any knowledge of tumor antigens (Leach et al.,
1996).

Development of CTLA-4 blockade for cancer therapy
Allison and colleagues first demonstrated that administering
CTLA-4 blocking antibodies in mice prevented tumor estab-
lishment and induced the rejection of preestablished tumors.
They also demonstrated immunological memory; mice contin-
ued to be able to reject tumor cells if they had once rejected the
tumor with anti–CTLA-4 therapy. Moreover, rejection depended
on immunogenicity of the tumor (Leach et al., 1996; Kwon et al.,
1997). The preclinical success in experimental animals led to
the development and testing of fully humanized monoclonal
antibodies against CTLA-4 that prevent its interaction with B7
ligands (tremelimumab and ipilimumab) in humans with ad-
vanced cancer (Hoos et al., 2010). Early clinical trials of CTLA-4
blockade showed disease regression in patients with various
tumor types (Hodi et al., 2003; Phan et al., 2003; Ribas et al.,
2005; Eroglu et al., 2015). These studies also showed that there
was a price to be paid for breaching tolerance, e.g., severe au-
toimmune reactions that led to early termination of certain
studies (Phan et al., 2003). A large phase III trial demonstrated
that ipilimumab increased the median overall survival of met-
astatic melanoma patients to 10.0 mo compared with 6.4 mo in
patients treated with the peptide vaccine gp100 (Hodi et al.,
2010). Notably, later follow-up studies revealed that ∼20%
of patients treated with ipilimumab survived for ≥3 yr
(Schadendorf et al., 2015). Ipilimumab also compared favorably
to standard chemotherapy (Robert et al., 2011). The FDA ap-
proved ipilimumab for the treatment of metastatic melanoma
in 2011. Given the success of ipilimumab, it is puzzling and
frustrating that tremelimumab has not had the same efficacy.
In a phase III trial, tremelimumab was no better in advanced
melanoma patients than standard chemotherapy (Ribas et al.,
2013). Clinical trials testing tremelimumab in other cancer
types (mesothelioma and non–small cell lung cancer) were also
unsuccessful. The discrepancy between ipilimumab and trem-
elimumab may be due to mechanistic or structural differences
in the antibody molecules (Furness et al., 2014; He et al., 2017).
To date, tremelimumab monotherapy has not obtained FDA
approval, although combinatorial therapies with trem-
elimumab are being evaluated. Overall, inhibiting CTLA-4 with
ipilimumab has caused a paradigm shift in cancer therapy by
successfully mobilizing the immune response against tumors.
As an orthogonal approach, checkpoint immunotherapy has
been effective in tumors like melanoma that responded poorly
to conventional chemotherapy. Although this form of immu-
notherapy has been a groundbreaking achievement, it is not a
panacea. Not all patients or cancer types respond, underscoring
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the need for a greater basic understanding of antitumor
immunity.

Mechanisms of CTLA-4 blockade in tumor regression
The simplest explanation behind anti–CTLA-4 immunotherapy
is that T cells exist that recognize tumor antigens, including
neoantigens resulting from somatic genemutations in the tumor
cell genomes. Possibly because these antigens are too close to
self-antigens or they are presented by poorly costimulatory tu-
mor cells, or other reasons, cytotoxic T cells need a kick-start
from CTLA-4 blockade. There are many variations of this theme,
but the key idea is that taking the brakes off T cell activation
causes greater tumoricidal action. Ipilimumab has been shown
to mask the epitope that binds to B7 ligands, suggesting that
CTLA-4 blockade inhibits the crucial interaction that normally
suppresses T cell responses (Ramagopal et al., 2017). Preventing
CTLA-4–B7 interactions not only fortifies effector T cells but
may also modulate the suppressive function and/or presence of
T reg cells (Fig. 1).

One pertinent question is how this relates to the classical idea
of tumor immunosurveillance. In other words, is the eradication
of malignant cells a primary capability that the immune system
has evolved to do, or are we artificially borrowing the cytolytic
power that protects against infections? One observation to
consider is that neither primary nor acquired immunodeficiency
leads to an outbreak of solid tumors. For example, the AIDS
epidemic, which has affected millions of people worldwide, is
not associated with an excess of common epithelial cancers
(Grulich et al., 2007). In fact, malignancies that usually arise can
be attributed to oncogenic viruses that are uncontrolled. On the
other hand, breaching peripheral T cell tolerance by anti–CTLA-4
therapy causes a whole range of intense immune reactions that
injure host and cancer cells alike. Nonetheless, a firm answer to
this question will require additional molecular investigation of
immune responses during checkpoint therapy.

Enhanced T effector function
CTLA-4 blockade unleashes potent antitumor T cell responses,
but the specificity and phenotype of these T cells under different
treatment settings are not fully understood. Recent studies have
indicated that immunotherapy can bolster specific T cell re-
sponses to neoantigens, peptides unique to the cancer genome
arising from spontaneous or carcinogen-derived mutations in
DNA (van Rooij et al., 2013). McGranahan et al. (2016) demon-
strated that melanoma and non–small cell lung cancer patients
with the highest burden of clonal neoantigens had the most
durable responses to checkpoint blockade. Other studies have
also reported a correlation between mutational load and re-
sponse to immunotherapy (Snyder et al., 2014; Rizvi et al., 2015;
Van Allen et al., 2015). The implication of these studies, albeit
indirect, is that a higher burden of mutations translates into
more tumor-specific neoantigens, which can then be targeted by
T cells. Obviously, there are a lot of links in this hypothetical
mechanistic chain. Neoantigens require greater investigation
through genomic and biochemical approaches. Personalized
vaccines against neoantigens are becoming a viable therapeutic
option and were the subject of recent review (Sahin and Türeci,

2018). This strategy could be conjoined with checkpoint inhi-
bition to further boost antitumor immune responses and im-
prove patient outcome.

The phenotypic profile of T cells that infiltrate tumors during
checkpoint blockade has been partly characterized using mass
spectrometry–driven methods and shows differential expres-
sion of markers involved in activation, development, and ex-
haustion (Fehlings et al., 2017; Wei et al., 2017). For example,
neoantigen-specific CD8+ T cells in tumor-bearing mice that
received either anti–CTLA-4 or anti–programmed cell death
protein-1 (PD-1); PD-1 therapy had reduced expression of
markers associated with T cell dysfunction (PD-1 and
glucocorticoid-induced TNFR-related protein) and increased
markers of T cell activation and development (stem cell antigen-1;
Fehlings et al., 2017). Tumor immune infiltrates in human mel-
anoma contain CD8+ T cells with an exhausted phenotype ex-
pressing PD-1 and T cell immunoglobulin mucin 3 (TIM3), and,
curiously, a subset of effector CD4+ T cells that express PD-1 and
inducible T cell costimulator (ICOS), markers that typically define
T follicular helper cells (Wei et al., 2017). Also, the phenotypic
profile of intratumoral T cells in human melanoma patients dif-
fered depending on the type of checkpoint blockade. Both
anti–CTLA-4 and anti–PD-1 therapy induced the expansion of
CD8+ T cells expressing PD-1 and TIM3, while anti–CTLA-4
therapy caused a selective increase in CD4+, ICOS+ effectors.
These T helper cell 1–like CD4+ cells have been reported in mul-
tiple tumor types following ipilimumab treatment (Liakou et al.,
2008; Chen et al., 2009; Carthon et al., 2010; Chaput et al., 2017),
and may enhance CD8+ T cell cytotoxicity and memory devel-
opment. Thus, CTLA-4 blockade increases effector capabilities,
particularly cytotoxicity, of antigen-specific CD8+ T cells, and
alters T cell differentiation.

Reduced frequency and function of T reg cells
Blockade of CTLA-4 on T reg cells may also give free rein to
antitumor T cell responses by reducing both T reg cell frequency
and suppressive function (Peggs et al., 2009). Studies in mice
and humans suggest that anti–CTLA-4 therapy depletes T reg
cells at the tumor site, although the precise mechanisms are
unclear (Liakou et al., 2008; Selby et al., 2013; Simpson et al.,
2013; Tarhini et al., 2014; Romano et al., 2015). By contrast, T reg
cells in secondary lymphoid tissues are increased (Maker et al.,
2005; Quezada et al., 2006; O’Mahony et al., 2007; Kavanagh
et al., 2008). These differences could be explained by higher
expression of CTLA-4 by intratumoral T reg cells or increased
effector cells in the tumor that mediate T reg cell death, but we
don’t yet have a compelling explanation for this paradox. T reg
cell depletion and antitumor activity are dependent on Fcγ re-
ceptors and not C3 expression (Selby et al., 2013; Simpson et al.,
2013), suggesting antibody-dependent cell-mediated cytotoxic-
ity (ADCC) is involved rather than complement-mediated lysis.
IgG1, the isotype of ipilimumab, has high affinity for FcγRIIIa
(CD16a), the Fc receptor mediating ADCC (Bruhns et al., 2009).
Interestingly, cancer patients with a high-affinity polymor-
phism in this receptor had greater responsiveness to ipilimumab
therapy (Arce Vargas et al., 2018). This lends more weight to the
idea that ipilimumab works partly by ADCC. Next-generation
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ipilimumab antibodies that have increased ADCC activity are
currently being tested in preclinical models (Korman, A.J., J.
Engelhardt, J. Loffredo, J. Valle, R. Akter, R. Vuyyuru, N. Bezman,
P. So, R. Graziano, K. Tipton, et al. 2017. AACR Annual Meeting.
Abstr. SY09-01).

T reg cells constitutively express high surface CTLA-4,
making them potent antagonists of T cell activation (Read et al.,
2000; Wing et al., 2008; Qureshi et al., 2011; Hou et al., 2015).
Thus, inhibiting CTLA-4 on T reg cells wipes out one of the
strongest tolerance enforcers. This is dramatically illustrated in
mice engineered to have CTLA-4–deficient T reg cells. Depleting
CTLA-4 on that compartment alone causes intense lymphopro-
liferation and fatal autoimmunity, while heightening antitumor
immunity (Wing et al., 2008). Anti–CTLA-4 antibody treatment
in mice also neutralizes T reg cells (Read et al., 2000; Takahashi
et al., 2000). T reg cells are elevated in many human cancers,
and this loosely correlates with a worse prognosis (Facciabene
et al., 2012). Suppression of T reg cells has been attempted with
both anti-CD25, to starve them of their principal growth factor
IL-2, or anti–CTLA-4 (Facciabene et al., 2012). Maker et al.
(2005) reported that CD25+ T reg cells isolated from patients
treated with anti–CTLA-4 antibody retained suppressive func-
tion in vitro; thus, if T reg cells survive treatment, at least some
of their functions remain intact.

PD-1/PD-L1 biology
PD-1 was first discovered by Honjo and colleagues as a member
of the immunoglobulin gene superfamily thought to be involved
in programmed cell death. It is a transmembrane protein ex-
pressed by select thymocyte subsets and T and B lymphocytes,
especially after antigen receptor stimulation (Okazaki et al.,
2002). However, detailed studies showed that its biological
function was to enfeeble T cell function not by death but by
old age. When engaged, it mediates a complex epigenetic
and transcriptional transformation in T cells, creating a new

hyporesponsive phenotype called “exhaustion” that resembles
senescence (Ishida et al., 1992; Agata et al., 1996; Okazaki and
Honjo, 2007; Pauken andWherry, 2015). PD-1 is triggered by the
B7 homologues, PD-L1 (B7-H1) and PD-L2 (B7-H2), that consti-
tutively reside on nonlymphoid tissues and can be up-regulated
in immune cells by proinflammatory cytokines such as IFN-γ
and TNF (Fig. 2; Dong et al., 1999; Freeman et al., 2000;
Latchman et al., 2001; Tseng et al., 2001). The critical role for
PD-1 in peripheral tolerance was shown in knockout mice that
developed lupus-like arthritis and glomerulonephritis (C57BL/6)
or autoantibody-mediated dilated cardiomyopathy and throm-
bosis (BALB/c) depending on the strain (Nishimura et al., 1999,
2001). Tolerance induction by PD-1 is a lymphocyte-intrinsic
effect involving phosphorylation of the immunoreceptor
tyrosine-based switch motif in its cytoplasmic tail and subse-
quent recruitment of Src homology 2 (SH2) domain–containing
tyrosine phosphatase 2 (SHP-2) in T and B cells (Okazaki et al.,
2001; Sheppard et al., 2004). However, in contrast to PD-1–
deficient mice (Juneja et al., 2017), T cells deficient in SHP-2
did not have enhanced antitumor immunity, suggesting other
pathways contributed to PD-1 suppression (Rota et al., 2018).
Indeed, PD-1 can inhibit phosphorylation of TCR/B cell receptor
proximal (CD3ζ, Zap70, Igβ, and Syk) and distal (PKCθ, PLCγ,
and ERK1/2) signaling molecules, which prevents calcium mo-
bilization and reprograms T cell metabolism from glycolysis
toward fatty acid β-oxidation (Okazaki et al., 2001; Zaugg et al.,
2011; van der Windt et al., 2012). Importantly, PD-L1 and PD-L2
are also expressed on myeloid cells present in the tumor mi-
croenvironment, and can be up-regulated on malignant cells
themselves (Kuang et al., 2009; Zhang et al., 2009). This type of
immunoediting sets up a protective barrier to antitumor im-
munity by exhausting PD-1 antitumor T cells that approach
(Wherry and Kurachi, 2015). Thus, breaking this mechanism of
tumor escape was proposed as a promising strategy for cancer
immunotherapy, and paved the way for further examination of

Figure 2. Mechanisms of PD-1 function and inhibition. (A and B) PD-1 is expressed by activated T cells and binds to PD-L1 and PD-L2 on APCs or other
nonimmune cells to inhibit T cell signaling through a poorly defined mechanism. Chronic T cell signaling results in exhaustion and an inability to properly
function. (C) PD-1/PD-L1 inhibition unleashes the expansion of CD4+ and CD8+ T cell populations, resulting in increased memory formation and cytotoxic T cell
responses.
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inhibiting PD-1/PD-L1 to unleash antitumor immunity (Iwai
et al., 2002).

Development of PD-1/PD-L1 blockade for cancer therapy
The discovery that PD-1 ligation induces T cell exhaustion meant
that inhibiting its engagement might improve immunity against
infections or cancer. Preclinical models demonstrated that PD-L1
blockade increased the duration of dendritic cell–T cell inter-
actions and promoted T cell activation in vivo (Fife et al., 2009).
Moreover, anti–PD-L1 treatment in tumor-burdened mice re-
sulted in enhanced tumor-specific T cell responses and inhibi-
tion of tumor growth (Dong et al., 2002; Iwai et al., 2002, 2005).
The effectiveness of PD-1/PD-L1 inhibition in tumor regression
encouraged clinical tests in humans with advanced cancer. The
fully human PD-1 (nivolumab) and PD-L1 (MDX-1105 and ate-
zolizumab) monoclonal blocking antibodies showed exciting
regression in patients with diverse incurable cancers, including
melanoma, non–small cell lung cancer, and renal cell carcinoma
(Brahmer et al., 2012; Topalian et al., 2012; Powles et al., 2014). In
multiple clinical trials, anti–PD-1 therapy resulted in an overall
response rate of 30–40% in patients with otherwise fatal mela-
noma (Hamid et al., 2013; Robert et al., 2015a; Weber et al.,
2015). One especially hopeful finding was a 26% response rate
in melanoma patients whose disease had progressed on ipili-
mumab (Robert et al., 2014). The FDA approved anti–PD-1 anti-
bodies, nivolumab and pembrolizumab, for melanoma in 2014,
and since then, for other malignancies. Atezolizumab became
the first PD-L1 inhibitor to receive FDA approval for the treat-
ment of urothelial cancer in 2016 despite an overall response
rate of only 15%, which nonetheless exceeded the historical
control rate of 10% (Rosenberg et al., 2016). Other PD-L1 in-
hibitors (avelumab and durvalumab) have also been approved,
and treatments with these inhibitors have expanded to include
non–small cell lung cancer and Merkel cell carcinoma of
the skin.

Mechanisms of PD-1/PD-L1 blockade in tumor regression
PD-1 engagement on activated T cells puts the brakes on by
causing cell cycle arrest, suppression of T cell migration, and
reduced cytolytic mediators (Patsoukis et al., 2015). This has
likely evolved to tune down the inflammatory and tissue-
destructive capacity of T cells if they remain activated. In the
face of an ever-growing tumor, however, PD-1 would blunt the
desired antitumor response. Evidence suggests that inhibiting
the PD-1/PD-L1 signaling pathway reinvigorates tumor-specific
T cells at the tumor site (Fig. 2). For instance, metastatic mela-
noma patients responding to anti–PD-1 therapy (pembrolizumab)
show exuberant proliferation of intratumoral CD8+ T cells cor-
relating with a decrease in tumor size (Tumeh et al., 2014).
Moreover, CD8+ T cells (CXCR5+PD-1+ICOS+) expand in response
to PD-1 blockade, which correlates with responsiveness to
anti–PD-1 therapy (Quigley et al., 2007; Kim et al., 2010; Im et al.,
2016). Up-regulated PD-L1 in tumor cell lines following IFN-γ
treatment is associated with increased apoptosis of tumor-
specific T cells, resulting in greater tumorigenesis in vivo (Dong
et al., 2002). Thus, PD-1/PD-L1 inhibition not only promotes ex-
pansion, migration, and cytolytic activity of tumor-specific T cells

but also may prevent their demise. Not surprisingly, boosting
T cell responses with anti-PD-1/PD-L1 therapy was most effective
when tumors expressed high levels of PD-L1 (Herbst et al., 2014).
Also, PD-L1 expression by infiltrating immune cells (dendritic
cells, macrophages, and T cells) was particularly important for
responsiveness to anti–PD-L1 therapy in multiple cancer types
(Herbst et al., 2014).

Although it is chiefly CD8+ T cells that recover function and
proliferate after anti–PD-1/PD-L1 therapy, CD4+ T cells may also
be rescued. The classic conception holds that CD4+ T cells are
required to produce stimulatory cytokines for primary CD8+

T cell responses and/or CD8+ memory formation (Williams and
Bevan, 2007). Activated CD4+ T cells also secrete IFN-γ and
chemokines that enhance vascular permeability and migration
of cytotoxic T cells and antibodies into peripheral tissues
(Nakanishi et al., 2009; Iijima and Iwasaki, 2016). Blocking PD-1
has a variety of CD4+ T cell effects. Takeuchi et al. (2018) iden-
tified three specialized phenotypes of CD4+ memory T cells that
expand in melanoma patients responding to PD-1 blockade.
Additionally, CD4+CD57+ T cells, a senescent subset with lim-
ited proliferative capacity but high IFN-γ production, are de-
creased in biopsies from patients responding to anti–PD-1
therapy, but increased in nonresponders (Ribas et al., 2016).
PD-L1 blockade during chronic viral infections causes a surfeit
of PD-1+ T reg cells and reduces CD8+ T cell responsiveness. To
counteract this, depletion of CD4+ T cells or T reg cells in
combination with PD-L1 blockade revives exhausted CD8+

T cells and reduces viral load (Penaloza-MacMaster et al., 2014).
Collectively, CD4+ T cell help during PD-1 blockade may im-
prove efficacy, but more studies are needed to define the im-
pact of CD4+ T cells in tumor regression in the context of
anti–PD-1/PD-L1 therapy.

Adverse events from immune checkpoint blockade
The cost of breaking tolerance is that checkpoint blockade
treatment is accompanied by immune-related adverse events in
≤80% of patients (Postow et al., 2018). Globally tampering with
immune homeostasis causes autoimmune and inflammatory
side effects involving the skin (pruritus and cutaneous rash),
gastrointestinal tract (colitis and diarrhea), endocrine glands
(hypophysitis and thyroid dysfunction) and liver (autoimmune
hepatitis), although any organ system can be affected. The
toxicity of anti–CTLA-4 therapy mirrors that of patients with
loss-of-function mutations in CTLA-4 or the lipopolysaccharide-
responsive and beige-like anchor protein, a critical regulator
of CTLA-4 cell surface expression. These include autoantibody-
mediated cytopenias, lymphocytic infiltration, and organ-
specific autoimmunity (Kuehn et al., 2014; Lo et al., 2015).
Effective management of these systemic disorders involves
continuous monitoring and multidisciplinary collaboration to
promptly diagnose and treat complications.

The adverse events resulting from CTLA-4 blockade differ
from PD-1/PD-L1 inhibition in frequency, distribution, and
toxicity because of the basic idea that CTLA-4 and PD-1 maintain
tolerance in different ways. Anti–CTLA-4 therapy more com-
monly causes high-grade toxicity, especially severe and life-
threatening colitis, whereas PD-1 inhibition has more tolerable
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side effects such as pneumonitis and hypothyroidism (Hodi
et al., 2010; Robert et al., 2015b). Not surprisingly, patients
who received ipilimumab and nivolumab combination ther-
apy experienced a greater frequency (55%) of adverse events
compared with either nivolumab (16.3%) or ipilimumab
(27.3%) alone, although dual therapy was more successful
therapeutically (see text box; Larkin et al., 2015). Severe, life-
threatening reactions necessitate discontinuing therapy.
Patients experiencing milder autoimmune reactions to im-
munotherapy often receive glucocorticoids to mitigate their
symptoms. However, glucocorticoid treatment can be inef-
fective and has its own side effects, so other interventions
have been deployed. Infliximab, an anti–TNF-α antibody
commonly used for inflammatory bowel disease, was recently
reported to completely resolve nivolumab-induced colitis
(Yanai et al., 2017). An IL-17 inhibitor, already used for
rheumatologic disease, has also been considered (Harbour
et al., 2015); however, it is possible that IL-17 blockade could
shackle antitumor efficacy (Esfahani and Miller, 2017). No-
tably, a retrospective study found that cancer outcomes were
unchanged by immunosuppressive therapies necessitated by
adverse events, which supports an optimistic view that ef-
fective immunotherapy need not be sacrificed by controlling
side effects (Horvat et al., 2015).

Conclusions
Over the past decade, immunotherapy has emerged as a new
pillar of cancer treatment and provides renewed hope for re-
ducing morbidity and mortality of this complex disease. Al-
though the concept of using the immune system to fight cancer
was theorized by Paul Ehrlich over a century ago (Strebhardt
and Ullrich, 2008), a deep understanding of the mechanisms
underlying antitumor immunity, particularly the role of T cells
in immunity, was needed to achieve clinical success (Miller and
Mitchell, 1967). The discovery that CTLA-4 negatively regulates
T cell signaling (Walunas et al., 1996), as well as the observation
that inhibiting CTLA-4 results in rejection of preestablished
tumors inmice (Leach et al., 1996), were the underpinnings of an
immunotherapeutic strategy that was the first to extend long-
term survival of patients with advancedmelanoma. Inhibition of
PD-1, another negative regulator of T cells, proved to be an even
more effective therapeutic than anti–CTLA-4. However, not all
cancer types can be vanquished yet with checkpoint blockade or
other types of cancer immunotherapy. Thus, while basic science
research has changed the face of clinical oncology, efforts must
continue to uncover molecular pathways that drive immune
function and homeostasis. Although the baton of immunother-
apy has been passed into the clinic, the history of this field has
taught us that strong basic science efforts in the laboratory today
are crucial to produce innovations at the bedside tomorrow.
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