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Microglia, the resident immune cells in the brain, are essential for modulating neurogenesis, influencing synaptic remodeling, 
and regulating neuroinflammation by surveying the brain microenvironment. Microglial dysfunction has been implicated 
in the onset and progression of several neurodevelopmental and neurodegenerative diseases; however, the multitude of 
factors and signals influencing microglial activity have not been fully elucidated. Microglia not only respond to local signals 
within the brain but also receive input from the periphery, including the gastrointestinal (GI) tract. Recent preclinical 
findings suggest that the gut microbiome plays a pivotal role in regulating microglial maturation and function, and altered 
microbial community composition has been reported in neurological disorders with known microglial involvement in 
humans. Collectively, these findings suggest that bidirectional crosstalk between the gut and the brain may influence disease 
pathogenesis. Herein, we discuss recent studies showing a role for the gut microbiome in modulating microglial development 
and function in homeostatic and disease conditions and highlight possible future research to develop novel microbial 
treatments for disorders of the brain.
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Introduction
Microglia are tissue-resident macrophages that make up ∼5–15% 
of total brain cells and have several well-defined functions in the 
central nervous system (CNS; Pelvig et al., 2008). During early 
development, microglia actively regulate neuronal cell numbers 
and synaptic refinement, ultimately shaping neural circuitry 
(Sierra et al., 2010; Paolicelli et al., 2011; Wynn et al., 2013). To 
sustain brain homeostasis, microglia constantly survey their mi-
croenvironment through the dynamic extension and retraction 
of their processes (Davalos et al., 2005; Nimmerjahn et al., 2005). 
Upon sensing signals of infection or injury, microglia transition 
from a homeostatic surveillance state to an activated state, fa-
cilitating antimicrobial or tissue repair programs that restore 
homeostasis (Saijo and Glass, 2011).

In addition to important roles in brain development and ho-
meostasis, recent genetic studies provide evidence that microg-
lia contribute to the pathogenesis of several neurodegenerative 
and neurodevelopmental disorders (Salter and Stevens, 2017). 
However, environmental factors and mechanisms shaping the 
developmental, homeostatic, and pathogenic program of mi-
croglia remain poorly understood. Within the CNS, microg-
lial activity is governed in part by cytokines and chemokines, 
neurotransmitters, and other molecules that regulate signal-
ing pathways that influence various brain functions (Xavier 

et al., 2014). Once thought to be shielded from the circulatory 
system by the blood–brain barrier (BBB), microglial activity is 
now known to be influenced by factors originating outside the 
CNS, including the gut. Sophisticated crosstalk between the 
CNS and the gut microbiome (known as the gut–brain axis) 
is critical for several facets of CNS physiology, including mi-
croglial development and function (Mayer et al., 2015; Fung et 
al., 2017). Recent studies provide important insights into the 
role of gut microbiota in microglial maturation, identity, and 
function, both in steady state conditions and in diseases asso-
ciated with elevated microglial activation. These findings have 
sparked a new field in microbiology focused on identifying and 
mapping direct and indirect interactions between the gut mi-
crobiota and microglia.

In this review, we will highlight mechanisms by which 
the gut–brain axis regulates microglial identity and function 
during development and aging. We then discuss gut–brain com-
munication pathways and how perturbations in the healthy gut 
microbiota (i.e., dysbiosis) could potentially lead to microglial 
dysfunction. Finally, we will highlight possible interactions 
of the microbiome and microglia in the context of neurode-
velopmental and neurodegenerative disorders exemplified 
by autism spectrum disorder (ASD) and Parkinson’s disease 
(PD), respectively.
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Microglia during development and adulthood
Microglia maturation
Microglia were first discovered in the early 20th century by Pío 
del Río-Hortega, who pioneered exploration of microglial mor-
phology and function (Sierra et al., 2016). Until recently, the 
origins and precise lineage of microglia have been subjects of sig-
nificant debate in the biomedical research community. The analo-
gous function and structure between microglia and macrophages 
inspired the hypothesis that these cells share a common lineage. 
However, the advent of new methods to study cellular lineages, 
including genetic tracing, transgenics, and fate-mapping analy-
ses, defined distinct developmental trajectories and ontogenies 
between these two cell populations (Ginhoux et al., 2010).

Microglial development is thought to be precisely orches-
trated by an intrinsic genetic program and environmental cues 
(Fig. 1). This process begins in the yolk sac around embryonic 
day 7.5 (E7.5) as microglia emerge from erythromyeloid progen-
itor cells, which are hematopoietic precursor cells of the me-
soderm (Alliot et al., 1999; Ginhoux et al., 2010; Kierdorf et al., 

2013; Gomez Perdiguero et al., 2015; Hoeffel et al., 2015; Sheng 
et al., 2015). The maturation and differentiation of erythromy-
eloid progenitors into microglia within the yolk sac requires 
several transcription factors, including RUNX1, JUN, PU.1, and 
IRF8, the expression of which coincides with that of microglial 
markers, including CX3CR1, CD11b, and F4/80 (Ginhoux et al., 
2010; Matcovitch-Natan et al., 2016). At E8.5, microglia become 
mobile and begin to migrate from the embryonic yolk sac to the 
brain. This process of brain colonization precedes the formation 
of the BBB, which eventually shields microglia from potentially 
toxic peripheral influences throughout both fetal development 
and adulthood (Obermeier et al., 2013). Once in the brain, mi-
croglia are broadly distributed at varying densities and main-
tain a stable rate of proliferation depending on the stage of host 
development (Askew et al., 2017). The capacity for microglia to 
self-renew in their local environment, independent of hema-
topoietic progenitor cells circulating the bloodstream, is a de-
fining feature of these innate immune cells (Gomez Perdiguero 
et al., 2015).

Figure 1. Gut microbiota influences microglial development and maturation. (A) Microglial maturation states can be described in three primary phases: 
early, pre-, and adult microglia. Each phase of development can be defined by expression of a subset of genes that correspond to a core set of microglial func-
tions. Early and premicroglia have two main functions during early brain development: synaptic remodeling and subsequent shaping of neural circuitry and 
regulating the number of neurons through mechanisms of programmed cell death (PCD). A few weeks after birth, microglia transition to the “adult microglia” 
stage, in which they constantly survey their immediate surroundings and actively maintain homeostatic conditions. In the presence of tissue damage or an 
immune stimulus, microglia activate pro- and anti-inflammatory signaling cascades to clear pathogens and repair tissue damage to restore brain health. Recent 
evidence suggests that prenatal and postnatal inputs from the gut microbiota are critical for microglial maturation and function. (B) In SPF mice, a diverse gut 
microbiota promotes microglial development and maturation. Microglial development appears arrested in GF mice, as supported by high expression of genes 
characteristic of early and premicroglia in microglia from adult GF mice. This arrest in microglial maturation impedes their ability to initiate a sufficient immune 
response during infection. EMP, erythromyeloid progenitor.
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Early microglia identity and function
Transcriptomic studies suggest that after populating the brain, 
microglia undergo a stepwise maturation program in parallel to 
brain development, from early microglia (until E14) to premi-
croglia (E14 to the first weeks after birth) and finally adult mi-
croglia (Fig.  1; Matcovitch-Natan et al., 2016). Early microglia 
and premicroglia gene expression signatures are associated with 
cellular development, growth, and proliferation, whereas genes 
enriched in adult microglia are associated with immune signal-
ing pathways (Matcovitch-Natan et al., 2016; Thion et al., 2018).

In addition to innate immune cell functions that are charac-
teristic of all tissue-resident macrophages, recent evidence has 
elucidated additional developmental and homeostatic functions 
of microglia that are specific to the nervous system. During the 
early stages of brain development, early microglia and premi-
croglia phagocytose excess neurons and release neurotrophic 
and neurotoxic factors, thereby controlling the relative ratio 
of neurogenesis to apoptosis to ensure that numbers of neu-
rons are maintained within a defined range (Sierra et al., 2010; 
Cunningham et al., 2013). In addition to dictating neuronal den-
sity, microglia supply a steady stream of neurotrophic factors 
(such as nerve growth factor [NGF], brain-derived neurotrophic 
factor [BDNF], and insulin-like growth factor 1 [IGF-1]) that pro-
mote neuronal survival and differentiation of neural progenitors 
(Gomes et al., 2013; Ueno et al., 2013).

Microglia also play a role in establishing and shaping neural 
circuitry during postnatal stages of development, which has im-
plications for cognitive function and social behavior (Paolicelli 
et al., 2011). Synaptic remodeling resulting in the removal of ex-
cess synapses eliminates redundancies in neural circuitry and 
improves efficiency in neural crosstalk. In a remarkable parallel 
to macrophage recognition of pathogens, this process has been 
shown to depend on several complement proteins (C1q and C3) 
that tag extraneous synapses for microglial engulfment (Stevens 
et al., 2007; Schafer et al., 2012). Furthermore, high-resolution 
microscopy has confirmed a physical, albeit transient, interac-
tion between microglia and synapses on neighboring neurons 
(Tremblay et al., 2010).

Adult microglia identity and function
In mice, microglia transition to an adult phenotype a few weeks 
after birth. The adult microglia transcriptome overlaps with, 
but is distinct from, other tissue-resident macrophages and is 
characterized by expression of microglial-specific markers, in-
cluding Sall1, P2ry12, Gpr84, and Tmem119 (Hickman et al., 2013; 
Butovsky et al., 2014; Gosselin et al., 2014; Matcovitch-Natan et 
al., 2016). While microglia are heavily involved in shaping the 
neuronal and synaptic landscape during early development, they 
are more actively involved in homeostasis and immune surveil-
lance during later developmental stages and adulthood, as sug-
gested by up-regulation of genes involved in immune regulation 
(Matcovitch-Natan et al., 2016). Systematic analyses of human 
microglial gene expression from postmortem and surgical tissues 
indicate broad similarities between human and mouse microg-
lial gene expression but also significant differences, particularly 
with regard to expression of genes associated with the patho-

genesis of neurodevelopmental and neurodegenerative diseases 
(Galatro et al., 2017; Gosselin et al., 2017).

Adult microglia are a morphologically dynamic population 
of cells; they display a wide spectrum of structural and molec-
ular phenotypes that reflect the status of their extracellular 
environment at a given time. Depending on the surrounding mi-
croenvironment, microglia can exist in a “surveying” or “active” 
state. Under steady-state conditions, surveying microglia have a 
ramified morphology with a small cell body and many long ex-
tended processes that are used to continuously scan and assess 
the health of cells in close proximity—a process critical for main-
taining homeostasis in the absence of pathology (Nimmerjahn et 
al., 2005; Torres-Platas et al., 2014). Upon insult to brain tissue, 
microglia swiftly activate, retracting their processes and transi-
tioning to an amoeboid morphology with an enlarged cell body 
(Nimmerjahn et al., 2005; Torres-Platas et al., 2014). Depending 
on the nature of the insult, microglia can initiate pro- or anti-in-
flammatory signaling cascades. Activation of pro-inflammatory 
signaling pathways causes microglia to release pro-inflamma-
tory cytokines (e.g., IL-6, IL-12, IL-1β, and TNF-α) and reactive 
species (e.g., nitric oxide and reactive oxygen species) into their 
surrounding environment to suppress and fight off invading 
pathogens (Franco and Fernández-Suárez, 2015; Tang and Le, 
2016). Conversely, activation of anti-inflammatory pathways 
allows microglia to mitigate and repair damage caused by the 
initial immune stimulus and the pro-inflammatory response. Ac-
tivation of these pathways triggers release of anti-inflammatory 
cytokines (e.g., IL-4, IL-10, and TGF-β) and neurotrophic factors 
that prevent development of chronic inflammation and allow 
microglia to maintain their neuroprotective and wound-healing 
properties (Franco and Fernández-Suárez, 2015). Maintaining 
tight control over microglial activation states is critical for CNS 
health, given the risk of pathology that is associated with height-
ened neuroinflammation.

In addition to their innate immune and homeostatic func-
tions, microglia have been implicated in the pathogenesis of a 
broad spectrum of neurodegenerative and behavioral diseases, 
including PD, Alzheimer’s disease (AD), multiple sclerosis (MS), 
schizophrenia, and ASD (Vargas et al., 2005; Hirsch et al., 2012; 
Frick et al., 2013; Bilimoria and Stevens, 2015). In each case, there 
is evidence of immune activation, suggesting a role for microg-
lia-driven inflammation as an etiologic factor (Perry and Holmes, 
2014; Norden et al., 2015). Of particular interest, recent genetic 
studies have identified a large number of coding and noncod-
ing risk alleles for neurodegenerative and behavioral diseases 
that affect genes highly or preferentially expressed in microglia 
(Lambert et al., 2013; Welter et al., 2014). Thus far, the risk al-
leles that have been identified are largely nonoverlapping across 
diseases and affect genes involved in diverse cellular processes, 
implying complex and poorly understood mechanisms linking 
microglia to neurodegeneration and behavioral disorders.

Gut–brain axis influences microglia development and function
Until recently, the microbiome did not spark much attention 
among neuroscientists. However, recent work characterizing 
the extensive communication between the gut and the brain has 
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demonstrated an active role for gut bacteria in governing several 
aspects of CNS physiology.

The ∼100 trillion microorganisms that reside in the digestive 
tract, and the wide assortment of metabolites they produce, are 
critical for maintaining health (Lloyd-Price et al., 2016). Within 
this complex community in humans are >1,000 bacterial species 
(Frank and Pace, 2008). Initial microbial colonization of the gut 
happens at birth and is heavily influenced by the mode of deliv-
ery (cesarean section versus vaginal birth; Dominguez-Bello et 
al., 2010; Rodríguez et al., 2015). In the first few years of life, the 
gut microbiota is relatively less diverse and less stable compared 
with that of adults, with an abundance of Proteobacteria and 
Actinobacteria (Palmer et al., 2007; Rodríguez et al., 2015). By 
the age of 5, the gut microbiota stabilizes and begins to resemble 
that of an adult, with members of Bacteroidetes and Firmicutes 
becoming most abundant (Eckburg et al., 2005).

Advances in sequencing technologies and bioinformatic tools 
to study the gut microbiome have contributed to a greater ap-
preciation of its diversity, plasticity, and paramount role in a 
multitude of physiological functions. Along with preserving 
the integrity of the intestinal–epithelial barrier along the gas-
trointestinal (GI) tract, gut bacteria are critical for the develop-
ment and maturation of the host’s innate and adaptive immune 
systems, nutrient absorption, host metabolism, and protection 
against foreign invaders (Hooper et al., 2001; Bäckhed et al., 
2004; Geuking et al., 2011; Round et al., 2011). Indeed, the func-
tions of the gut microbiota extend beyond the physical borders 
of the digestive tract in which they reside. The diverse reper-
toire of metabolites and signaling molecules produced by gut 
bacteria enter the systemic circulation, facilitating the molec-
ular crosstalk between host and microbes throughout the body 
(Martinez et al., 2017).

Communication between gut microbes and the CNS is me-
diated by a combination of immune, enteric, and neural path-
ways that provide physical and chemical connections between 
the CNS and the periphery, and several experimental paradigms 
have been used to demonstrate that gut microbes influence many 
facets of CNS physiology (Mayer et al., 2015; Fung et al., 2017; Yoo 
and Mazmanian, 2017). Germ-free (GF; i.e., lacking all commen-
sal and pathogenic microbes) mice, antibiotics, fecal microbiota 
transplant (FMT), and pre-/probiotics have demonstrated a role 
for gut bacteria in neurotransmitter signaling, synaptic plas-
ticity, myelination, and neurogenesis (Diaz Heijtz et al., 2011; 
Neufeld et al., 2011; Ogbonnaya et al., 2015; Hoban et al., 2016). 
Additionally, the absence of gut microbes causes deficits in cog-
nition and social interaction, further supporting the role of gut 
microbes in higher-order brain functioning (Neufeld et al., 2011; 
Luczynski et al., 2016).

The gut microbiota affects various cells in the CNS, including 
microglia. Indeed, recent studies have demonstrated that mi-
croglia are sensitive to factors produced by the gut microbiota. 
Striking differences in the structure and function of microglia 
derived from specific pathogen–free (SPF) and GF mice have been 
observed, both at the genetic and morphological level (Erny et al., 
2015). Since then, new work has defined additional factors and 
pathways by which gut microbes influence microglial maturation 
and function within the CNS.

Maternal microbiota shapes prenatal microglial 
maturation and function
While the womb is likely a sterile environment, new findings 
suggests that signals from maternal gut microbes may shape the 
developmental trajectory of fetal microglia close to the time of 
birth (Thion et al., 2018). At E14.5, embryonic microglia from 
offspring of GF dams display minor differences in gene expres-
sion compared with their SPF counterparts, whereas microglia 
collected close to birth (E18.5) demonstrate marked differences 
in gene expression, chromatin accessibility, morphology, and re-
gional distribution (Thion et al., 2018). For example, microglia 
from E18.5 embryos from GF mothers show an increased density 
in various brain regions, with increased numbers of microglia 
exhibiting a ramified morphology, indicative of a resting state. 
Altered microglial morphology and density, as well as attenu-
ated inflammatory responses, are also observed in offspring of 
GF dams immediately after birth, a time when microglia typically 
exhibit an activated phenotype (Castillo-Ruiz et al., 2018).

Interestingly, sex-related differences have been observed with 
regard to the influence of the maternal gut microbiota on microg-
lial function in offspring. In male offspring of GF dams, disrup-
tion of the transcriptomic profile and morphology of microglia 
was greatest during the embryonic phase of development, and 
differentially regulated genes were mostly associated with met-
abolic and translational pathways (Thion et al., 2018). In female 
offspring, by contrast, disruption was most notable in adults, 
and differentially expressed genes were primarily involved in 
immune and transcriptional signaling (Thion et al., 2018). This 
suggests that input of maternal gut microbes may have a greater 
impact on early microglia and premicroglia in male offspring 
than in females. These trends might help to explain the inherent 
functional differences in microglia from intact male versus fe-
male mice, as well as the sex variations in incidence rates of sev-
eral neurological disorders (Schwarz et al., 2012; Hanamsagar et 
al., 2015). The heterogeneity of microglial behavior in response 
to both intrinsic and extrinsic factors provides further evidence 
of their complexity, with the gut microbiome representing a key 
contributing factor in microglial development and function.

Diverse gut microbiota is a prerequisite for adult microglial 
maturation and function
Consistent with patterns observed prenatally, microglia from 
adult GF mice, lacking constant postnatal input from gut mi-
crobiota, show distinct differences in density and morphology 
compared with those derived from SPF mice (Erny et al., 2015). 
Morphological variations in microglia from adult GF mice include 
increased cell volume, dendrite length, segment number, and 
branch points. Microglia from adult GF mice also display differ-
ential expression of genes associated with microglial maturation, 
including down-regulation of genes that regulate cell activation 
and immune system defense pathways, such as Mapk8, IL-1α, 
Ly86, Jak3, and Stat1, all of which are normally highly expressed 
in adult microglia (Fig.  1; Erny et al., 2015; Matcovitch-Natan 
et al., 2016). Concurrently, genes highly expressed in microglia 
during early developmental stages that promote cell proliferation 
and survival, including Csf1r and Ddit4, are aberrantly up-regu-
lated in microglia isolated from adult GF mice.
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The immature gene expression profile resulting from the ab-
sence of gut microbiota contributes to the inability of microg-
lia to properly respond to immunostimulants such as LPS and 
the lymphocytic choriomeningitis virus, both of which failed to 
elicit an appropriate activation response in microglia from GF 
mice (Erny et al., 2015). The dampened immune response to both 
LPS and lymphocytic choriomeningitis virus included a relative 
decrease in microglial expression of genes encoding pro-inflam-
matory cytokines (e.g., IL-1β, IL-6, and TNF-α) and a reduction in 
microglia with an activated, amoeboid morphology. These find-
ings suggest that the gut microbiota is likely imperative for an ad-
equate microglia-mediated immune response against pathogens 
invading the CNS. Taken together, the gene expression profile 
and behavior of microglia from GF mice or under microbiota-de-
pleted conditions is reminiscent of an immature microglial phe-
notype, indicating that input from gut microbiota is required for 
microglia to progress to later stages of cellular maturation and 
adequately fulfill their role in immune surveillance.

To examine the extent to which microbial colonization in-
fluences microglial physiology, Erny et al. (2015) characterized 
microglia from mice co-colonized with Bacteroides distasonis, 
Lactobacillus salivarius, and Clostridium cluster XIV. Microglia 
from mice with such a limited microbial complexity displayed 
a genetic signature and morphology similar to that observed 
in microglia from GF mice. However, recolonization of those 
mice with a more diverse microbial community facilitated the 
transition to a mature microglial phenotype typically found in 
adult SPF animals. Thus, the presence of a complex and diverse 
microbial community, rather than exposure to gut bacteria per 
se, appears to be a prerequisite for proper microglial develop-
ment and function.

Investigations into the temporal window for microbe-mediated 
regulation of microglial maturation has revealed the need for con-
stant input from a diverse gut microbiota. This claim is supported 
by the conversion of microglia from adult SPF mice into an im-
mature phenotype following antibiotic administration to deplete 
the microbiota. With the exception of indiscernible differences in 
microglial density, microglia isolated from antibiotic-treated SPF 
mice exhibit a microglial gene expression profile and morphology 
nearly identical to those derived from GF mice (Erny et al., 2015; 
Thion et al., 2018). These findings suggest that microglia are highly 
sensitive to perturbations in the gut microbial community during 
adulthood and require continual input from a complex gut micro-
biota to maintain homeostasis in the adult.

Gut–brain communication pathways: Vagal transmission and 
systemic circulation
Despite the many unanswered questions regarding the intersec-
tion between gut microbiota and microglial physiology, there is 
evidence that pathways that collectively integrate the gut–brain 
axis influence microglial function in both homeostatic and disease 
conditions (Fig. 2). Gut–brain communication may influence mi-
croglia via two routes: the vagus nerve and the circulatory system.

The vagus nerve
Thousands of sensory and motor fibers from the vagus nerve 
connect the gut and the brainstem and serve as a conduit for neu-

ral signals. Communication through the vagus nerve is essential 
for signals mediating satiety, stress, and mood, and these signals 
are governed by changes in enteric neuron activity and the be-
havior of gut microbes (Goehler et al., 2005; Forsythe et al., 2014; 
Browning et al., 2017). Given their close physical proximity, sym-
biotic and pathogenic gut bacteria can directly interact with and 
activate the vagus nerve, thereby exerting effects upstream to the 
CNS. Oral inoculation with the pathogen Campylobacter jejuni 
or intraduodenal injection of the probiotic strain Lactobacillus 
johnsonii are sufficient to induce activation of vagal sensory neu-
rons innervating the GI tract, as well as neurons in the brainstem 
(Goehler et al., 2005; Tanida et al., 2005). Additionally, metabo-
lites and neuroactive substances produced by microbes activate 
chemoreceptors located at vagal nerve endings (Hara et al., 1999; 
Raybould, 2010). Indeed, the anxiolytic effects of administration 
of the probiotic species Lactobacillus rhamnosus and Bifidobac-
terium longum is absent in vagotomized mice, providing strong 
evidence that gut–vagal nerve interactions regulate social behav-
ior (Wang et al., 2002; Bercik et al., 2011; Bravo et al., 2011).

Communication between intestinal microbes and vagal af-
ferents also appears to influence microglia and the level of 
inflammation in the CNS (Forsythe et al., 2014). In addition 
to interacting with gut microbes, vagal nerves interact exten-
sively with different components of the peripheral immune 
system, continuously monitoring the inflammatory state of the 
gut (Borovikova et al., 2000; Miao et al., 2004). Upon sensing a 
change in inflammation, such as increased production of pro-in-
flammatory cytokines, vagal afferents relay this information to 
the CNS and can ultimately influence the level of neuroinflam-
mation (Goehler et al., 1999). Concurrently, vagal efferent nerves 
relay information about the immune status of the brain back to 
the gut, with increased CNS inflammation feeding back to in-
hibit further release of peripheral pro-inflammatory cytokines 
through acetylcholine-mediated signaling (Wang et al., 2003; 
Goehler et al., 2005). Effective vagal nerve signaling is critical 
for sending appropriate signals to microglia in order to modulate 
levels of neuroinflammation. Electrical stimulation of the vagus 
nerve in the presence of an immune challenge in the periphery 
has downstream effects on microglial behavior, including up-reg-
ulation of anti-inflammatory pathways in the brain (Frasch et al., 
2016; Meneses et al., 2016; Kaczmarczyk et al., 2017). Vagus nerve 
stimulation combined with LPS challenge has also been reported 
to decrease microglial production of the pro-inflammatory cyto-
kines IL-6, IL-1β, and TNFα in the brain, an effect no longer ob-
served following vagotomy (Meneses et al., 2016). These findings 
support the role of the vagus nerve as a physical conduit between 
gut microbial activity and neuroinflammation.

Regulation of the intestinal barrier and peripheral 
immune response
The presence of bacteria along the GI tract is critical for the main-
tenance of the intestinal barrier, which facilitates the exchange 
of nutrients, water, and electrolytes and prevents the passage 
of harmful substances and pathogens from the intestinal lumen 
into the bloodstream (Jakobsson et al., 2015). By altering expres-
sion levels of tight junction proteins along the epithelial wall, and 
thus the level of bacterial infiltration in the mucosal layer, the 
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gut microbiota can fine-tune the level of intestinal permeabil-
ity (Karczewski et al., 2010; Alaish et al., 2013). The regulation 
of the intestinal barrier by gut microbiota shapes their role as 
mediators of the intestinal and peripheral immune response. 
Decreased strength of the intestinal barrier due to dysbiosis and 

other factors permits entry of pathogenic, immune-stimulating, 
and neuroactive substances into the systemic circulation (Kelly 
et al., 2015). Once in the circulation, these substances activate a 
pro-inflammatory immune response mediated by peripheral T 
cells and macrophages and compromise the integrity of the BBB 

Figure 2. Gut–brain communication pathways. 
Communication between the gut microbiota and 
the CNS encompasses several conduits along 
neural, enteric, and immune pathways. (A) Proper 
microglial maturation and behavior is dependent 
on crosstalk along the gut–brain axis. Information 
about the state of peripheral inflammation and 
GI health is received in the CNS via vagal affer-
ents that innervate the GI tract and can influence 
microglial activation and neuroinflammation. 
Fine-tuning of the intestinal barrier by gut micro-
biota and their interactions with gut immune cells 
modulates peripheral inflammation and can trigger 
downstream inflammatory responses in the CNS. 
BBB-permeable bacterial metabolites, including 
SCFAs, modulate microglial maturation through 
mechanisms that are yet to be determined. (B) 
The absence of gut microbes in GF mice confers 
a variety of physiological abnormalities in neural 
and microglial behavior in the CNS, resulting in 
heightened anxiety, stress, hyperactivity, and other 
behavioral symptoms. BDNF, brain-derived neuro-
trophic factor; HDAC, histone deacetylase.
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(Rochfort et al., 2014). Increased circulation of BBB-permeable 
pro-inflammatory cytokines and neurotoxic compounds may 
contribute to heightened microglial activation and production 
of pro-inflammatory cytokines in the brain (Qin et al., 2008; 
Riazi et al., 2008).

Along with affecting the level of permeability along the intes-
tinal tract, gut microbiota can influence the state of peripheral 
inflammation through interactions with nearby immune cells. 
Approximately 70–80% of immune cells in the human body are 
found in the gut, allowing for direct gut–immune cell interac-
tions (Vighi et al., 2008). When microbe-associated molecular 
patterns produced by pathogenic invaders bind to pattern rec-
ognition receptors, such as TLRs, on host cells, they influence 
the production of both pro- and anti-inflammatory cytokines 
(Fung et al., 2017). The circulation and subsequent entry of these 
cytokines into the brain acts locally on CNS cells, including mi-
croglia, that express the appropriate cytokine receptors, thereby 
influencing the state of inflammation in the brain. Indeed, in-
creased intestinal inflammation driven by either LPS or bacterial 
infection correlates with elevated levels of microglial activation 
and release of pro-inflammatory cytokines (Riazi et al., 2008; 
Henry et al., 2009). These studies provide further confirmation 
of the intimate link between peripheral inflammation, influ-
enced in part by the gut microbiota, and microglial activation 
and neuroinflammation.

Bacterial-derived neuroactive substances
Microbe-derived neuroactive metabolites are additional con-
tributors to gut–brain crosstalk. Circulation of microbe-derived 
neurotransmitters, including acetylcholine (Lactobacillus), 
GABA (Bifidobacteria and Lactobacillus), and serotonin (Entero-
coccus and Streptococcus), can potentially influence microglial 
activation through direct and indirect means (Komatsuzaki et 
al., 2005; Yano et al., 2015; Pokusaeva et al., 2017). Studies have 
demonstrated that 90% of serotonin required for the regulation 
of mood, behavior, sleep, and several other functions within the 
CNS and GI tract is produced in the gut. Binding of serotonin to 
5-HT receptors on microglia induces release of cytokine-carry-
ing exosomes, providing another mechanism for gut-induced 
modulation of neuroinflammation (Glebov et al., 2015). Another 
microbial metabolite that influences microglia activity is tryp-
tophan, a serotonin precursor. Metabolism of tryptophan by 
activated microglia produces the neurotoxin quinolinic acid, an 
N-methyl-D-aspartate agonist implicated in several neurological 
conditions including Huntington’s disease and depression (Feng 
et al., 2017). In a recent study using the experimental autoim-
mune encephalomyelitis (EAE) mouse model of MS, peripheral 
metabolism of dietary tryptophan by the gut microbiota was 
shown to generate metabolites that dampen the ability of microg-
lia to induce pro-inflammatory responses in astrocytes, thereby 
ameliorating disease (Rothhammer et al., 2018). These findings 
provide further confirmation of the role of gut microbiota in 
influencing behavioral and physiological functions previously 
thought to be exclusively controlled by local factors in the brain.

Short-chain fatty acids (SCFAs) are metabolic byproducts 
of bacterial dietary fiber fermentation that can enter the sys-
temic circulation and cross the BBB (Conn et al., 1983). Among 

the most abundantly produced SCFAs are acetic acid, propionic 
acid, and butyric acid, which collectively make up ∼95% of SCFAs 
synthesized in the gut (Cook and Sellin, 1998). SCFAs can exert 
physiological effects in the CNS via two primary mechanisms: 
activation of G protein–coupled receptors (GPCRs) expressed in 
the liver, spleen, and large intestine and inhibition of histone 
deacetylases (Kimura et al., 2011; Tan et al., 2014b). SCFAs have 
been shown to activate sympathetic nervous system activity and 
alleviate intestinal inflammation, and altered SCFA production 
has been demonstrated in a variety of neuropathologies such as 
PD and ASD (Smith et al., 2013; MacFabe, 2015; Unger et al., 2016).

More recently, the effects of SCFAs have been extended to 
microglia. Supplementation of drinking water with a mixture 
of three primary SCFAs (acetic acid, propionic acid, and butyric 
acid) rescued the immature genetic and morphological pheno-
type of microglia from GF mice (Erny et al., 2015). However, the 
exact SCFA signaling pathways that modulate microglial matura-
tion have yet to be fully elucidated. SPF mice lacking the free fatty 
acid receptor 2 (FFAR2), a GPCR required for SCFA signaling in 
the gut, exhibited a microglial phenotype similar to that observed 
in GF mice (Erny et al., 2015). The absence of FFAR2 expression 
on microglia suggests that SCFAs may influence microglial mat-
uration through signals that originate in the GI tract. However, 
exactly how this signal propagates to the CNS and governs mi-
croglial behavior is poorly understood. In addition to GPCR sig-
naling, the ability of SCFAs to permeate the BBB and infiltrate the 
CNS suggests potential direct influences on microglia. Indeed, 
treatment of microglial cells in vitro with various SCFAs, includ-
ing valproic acid and butyric acid, elevates levels of acetylation 
of histone H3 (Chen et al., 2007). This suggests that the ability 
of SCFAs to influence microglial behavior in vivo might occur 
through a combination of GPCR signaling and histone deacety-
lase inhibition. Together, these studies highlight the potential 
of gut-derived metabolites to enter the systemic circulation and 
exert their effects on microglia in the CNS.

Microglial dysfunction and microbial dysbiosis in disease
Given their wide spectrum of physiological functions and myriad 
roles in development and homeostasis, microglia are believed to 
be involved in the pathogenesis of several neurodevelopmental 
and neurodegenerative disorders. However, the factors and sig-
nals within the brain environment and the periphery that mod-
ulate microglial function and response during disease are not 
fully understood. The recent increase in research into gut–brain 
communication has created a new narrative for how the micro-
biome may shape microglial identity and function and how the 
microbiome, via microglia, may modulate the pathogenesis of 
neurological diseases. Accordingly, understanding the gut–brain 
axis will provide the foundation for potential novel therapeutic 
approaches in the years ahead.

Because of our increased awareness of the gut–brain axis, 
it has become clear that various neurological diseases, once 
thought to originate exclusively in the brain, are influenced by 
peripheral factors. The possible involvement of the microbiota in 
neurodevelopmental and neurodegenerative diseases stems from 
two primary observations. First is the critical role of gut-derived 
factors in regulating microglial function in the healthy state, 
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which suggests that signals originating from the gut microbiota 
might also drive a pathogenic microglial phenotype that pro-
motes disease. Second, dysbiosis is observed in several neuro-
logical conditions in which microglial dysfunction is thought to 
be a contributing factor to disease development, including ASD 
and PD (Table 1; Hsiao et al., 2013; Sampson et al., 2016). This 
dysbiosis is potentially sufficient to markedly disrupt microglial 
function and subsequently facilitate disease pathogenesis. Here, 
we discuss an emerging role for the gut–brain axis in ASD and PD, 
where most work has been done to date.

ASD
Children with ASD present with a wide range of cognitive and 
behavioral symptoms, including delayed language development, 
impaired social and communication skills, and repetitive be-
havior, depending on where they lie on the spectrum of disease 
severity (Plauche Johnson, 2004). In addition, symptoms of gut 
dysfunction such as irritable bowel syndrome, chronic diarrhea, 
and/or constipation are found in 23–70% of patients with ASD 
(Chaidez et al., 2014). The high prevalence of GI comorbidities 
among ASD patients and the correlation between the level of GI 
distress and severity of ASD symptoms has prompted studies 
investigating whether the development and/or progression of 
ASD has microbial origins. Cross-sectional studies comparing 
the gut microbiota composition between healthy and ASD indi-
viduals have revealed an altered microbiota profile in patients 
with ASD, with several studies reporting increased levels of Clos-
tridium and Lactobacillus along with elevated levels of SCFAs, 
including propionic and butyric acid (Wang et al., 2012, 2013; De 
Angelis et al., 2013; Kang et al., 2013). However, given the small 
sample size in these pilot studies, further studies with larger co-
horts are warranted.

While the etiology of ASD is complex and incompletely de-
termined, microglia may influence the course of the disease. A 
collective consequence of microglial dysfunction is stunted neu-
ronal development and immature brain circuitry, which could 
ultimately manifest in the ASD behavioral phenotypes. Postmor-
tem analysis of brain tissue collected from ASD patients show 
perturbations in microglial immune surveillance and synaptic 
remodeling, with evidence for heightened microglial activation, 
including increased expression of MHC II, elevated levels of 
pro- and anti-inflammatory cytokines, and increased microg-
lial density (Vargas et al., 2005; Morgan et al., 2010; Voineagu 
et al., 2011; Gupta et al., 2014; Lee et al., 2017). Impaired synap-
tic remodeling by microglia might contribute to the increased 
density of dendritic spines and excitatory synapses found in the 
brains of patients with ASD (Martínez-Cerdeño, 2017). Findings 
from animal models also support a possible role for microglia in 
ASD. Mice lacking the fractalkine receptor Cx3cr1 demonstrate 
a temporary reduction in the number of microglia during early 
postnatal development, as well as increased synaptic density, 
immature brain circuitry, and signal transmission deficits that 
persist into adulthood (Paolicelli et al., 2011; Zhan et al., 2014). 
Abnormal neural circuitry due to the absence of microglia during 
a critical window of brain development in these mice is associ-
ated with behavioral deficits similar to those seen in individuals 
with ASD (Zhan et al., 2014).

Other preclinical models have provided insight into the role 
of the microbiota and microglia in driving the pathology of ASD 
(Needham et al., 2018). The development of the maternal im-
mune activation (MIA) model was motivated by the increased 
incidence rate of ASD in children whose mothers suffered from 
a severe infection during certain stages of pregnancy. In the MIA 
model, offspring of mice injected with polyinosinic-polycytidy-
lic acid (poly(I:C)), a synthetic viral mimic that activates TLR3, 
demonstrate core symptoms of ASD, including repetitive behav-
iors, communication deficits, and decreased sociability (Malkova 
et al., 2012). These MIA offspring also exhibit increased intes-
tinal permeability and intestinal inflammation, two GI symp-
toms commonly found in children with ASD (Hsiao et al., 2013; 
Chaidez et al., 2014). Provision of IL-17 promoting segmented 
filamentous bacteria to MIA mothers further enhances behav-
ioral abnormities in MIA offspring (Kim et al., 2017). While the 
gut microbiota contributes to ASD symptomatology in both mice 
and humans, it also has protective effects. Similar to its amelio-
rative effect in colitis, oral administration of Bacteroides fragilis 
to offspring of MIA mice at weaning rescues the integrity of the 
intestinal barrier, reduces anxiety, and improves communication 
and repetitive behaviors (Hsiao et al., 2013). Similarly, provision 
of Lactobacillus reuteri to offspring of dams fed a high-fat diet 
attenuates their social deficits, further supporting a role for the 
gut microbiota in influencing outcomes of neurodevelopmental 
disorders (Buffington et al., 2016).

While commensal symbiotic bacteria are critical for proper 
microglial maturation, induction of infection in pregnant dams 
can have disruptive effects on the progression of microglial 
development in offspring (Pratt et al., 2013; Matcovitch-Natan 
et al., 2016; Mattei et al., 2017). Microglia from young MIA off-
spring show increased expression of inflammation-related 
genes typically associated with an adult microglial phenotype 
and down-regulation of genes expressed during earlier devel-
opmental stages (e.g., Pu.1 and Irf8), suggesting that maternal 
inflammation disrupts the timeline of normal microglial matura-
tion (Matcovitch-Natan et al., 2016). Adult MIA offspring exhibit 
heightened microglial activation, as noted by increased levels of 
IL-6 and TNF-α (Pratt et al., 2013; Mattei et al., 2017). However, 
the differences in the microglial transcriptome seen in offspring 
from MIA versus healthy dams decline as mice reach adulthood. 
These findings indicate that the effects of maternal inflamma-
tion on microglial development and behavior in offspring may 
be restricted to a narrow developmental window, after which 
microglia revert to a relatively normal phenotype in adulthood. 
While the MIA model has limitations in terms of replicating the 
complex symptomatology of ASD, the model faithfully recapitu-
lates abnormalities in both microglial behavior and GI function 
that are frequently observed in patients. Replication of microbi-
ome effects on microglia in additional animal models would help 
strengthen the gut–brain link to neurodevelopmental disorders.

Studies of ASD and other neurodevelopmental disorders pro-
vide evidence for a potential pathogenic role for both dysbiosis 
and microglial dysfunction, and suggests that microglia may 
link early-life dysbiosis to long-lasting neurological abnormal-
ities. Perturbations in the composition of gut microbes during 
early developmental stages due to maternal infection, mode of 
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Table 1. Neuropathologies characterized by both microglial dysfunction and microbial dysbiosis

Neuropathology Categorization Hallmarks of microglial dysfunction Hallmarks of microbial dysbiosis References

ASD Neurodevelopmental Elevated microglial activation and release 
of pro-inflammatory cytokines in several 
brain regions.

23–70% of individuals with 
ASD report GI symptoms (e.g., 
constipation and abdominal bloating).

De Angelis et al., 2013; 
Hsiao et al., 2013; Kang 
et al., 2013; Wang et al., 
2013; De Rubeis et al., 
2014; Gupta et al., 2014; 
Hsiao, 2014; Zhan et al., 
2014; Koyama and Ikegaya, 
2015; Martínez-Cerdeño, 
2017

Synaptic and neural circuitry dysfunction 
found in postmortem brain tissue from 
individuals with ASD.

Increased Clostridium and 
Lactobacillus and decreased 
Bacteroidetes and Bifidobacterium 
found in fecal samples collected from 
children with ASD.

Mice lacking microglia during early stages 
of postnatal development demonstrate 
cognitive and behavioral hallmarks 
reminiscent of ASD, in addition to 
abnormal neuronal signaling.

Decreased SCFA levels in ASD 
patients compared to healthy 
controls.

Monocolonization of GF mice with 
Bacteroides fragilis attenuates 
cognitive and GI defects in mice.

Schizophrenia Neuropsychiatric Increased microglial activity observed in 
PET scan of schizophrenic patients.

Risk factors for schizophrenia 
involve disruptions to gut microbial 
community, including maternal 
infection, premature delivery, 
cesarean section delivery, and young-
age viral infection.

West et al., 2006; 
Severance et al., 2010, 
2015; Shaw, 2010; Diaz 
Heijtz et al., 2011; Miller 
et al., 2011; Monji et al., 
2013; Hercher et al., 2014; 
Na et al., 2014; Yolken 
and Dickerson, 2014; 
Castro-Nallar et al., 2015; 
Reisinger et al., 2015; 
Bloomfield et al., 2016; 
Sekar et al., 2016; van 
Kesteren et al., 2017

Elevated pro-inflammatory cytokine 
release (IL-2, IL-6, IL-8, and TNF-α) and 
neuroinflammation in the CNS.

High levels of colitis and GI 
dysfunction in schizophrenic 
patients.

Elevated microglial density in temporal 
cortex of schizophrenic patients.

GF and MIA mice display 
schizophrenic-like behaviors (e.g., 
decreased sociability and anhedonia).

Microglia-mediated disruptions in white 
matter structure and volume in the 
prefrontal cortex.

Oropharyngeal microbiota of 
schizophrenic patients is less 
diverse than controls and enriched 
in Lactobacilli, Bifidobacterium, 
and Eubacterium and depleted in 
Neisseria and Haemophilus.

Abnormal synaptic remodeling by 
microglia disrupts neural circuitry in 
schizophrenic patients due to increased 
expression of complement proteins C3 
and C4.

Schizophrenic patients demonstrate 
dysregulation of several metabolic 
pathways regulated by the gut 
microbiota.

MDD Neuropsychiatric Postmortem analysis of human brain 
tissue reveals elevated microglial 
activation and density in MDD patients.

High concurrence between GI 
disorders, such as IBS and MDD.

Benton et al., 2007; Bailey 
et al., 2011; Dinan and 
Cryan, 2013; Brites and 
Fernandes, 2015; Yirmiya 
et al., 2015; Marin et al., 
2017

Increased microglial secretion of 
exosomes carrying pro-inflammatory 
cytokines in individuals with MDD.

Probiotic supplementation of 
Lactobacillus casei improved mood in 
patients with depression.

Chronic stress, a partial contributor 
to/risk factor for depression, is 
attributed to increased microglia-driven 
neuroinflammation.

Mouse model of MDD exhibiting high 
levels of stress has increased levels 
of Clostridium and reduced levels of 
Lactobacillus and Bacteroides.

Precise role of heightened 
neuroinflammation in the brain in MDD 
remains poorly understood.
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Neuropathology Categorization Hallmarks of microglial dysfunction Hallmarks of microbial dysbiosis References

PD Neurodegenerative High levels of microglial activation found 
in the substantia nigra in brain tissue 
from PD patients.

>80% of PD patients report GI 
dysfunction (e.g., increased intestinal 
permeability, constipation, and 
nausea) 10–20 yr prior to onset of 
motor symptoms.

McGeer et al., 1988; 
Akiyama and McGeer, 
1989; Gerhard et al., 
2006; Kim and Joh, 2006; 
Watson et al., 2012; Fasano 
et al., 2013; Tan et al., 
2014a; Keshavarzian et 
al., 2015; Scheperjans et 
al., 2015; Machado et al., 
2016; Poirier et al., 2016; 
Sampson et al., 2016; 
Unger et al., 2016; Zhang et 
al., 2017

PET scans from 11 PD patients reveal 
widespread microglial activation in the 
basal ganglia and the temporal and 
frontal cortex that exceeds the level of 
activation found in healthy controls.

Microbiota of PD patients 
demonstrate increased levels of 
Enterobacteriaceae and decreased 
levels of Bacteroidetes and 
Prevotellaceae.

 α-Synuclein aggregates trigger microglial 
activation in the substantia nigra.

Concentrations of SCFAs (acetate, 
propionate, and butyrate) were lower 
in fecal samples collected from PD 
patients.

Microglial release of pro-inflammatory 
cytokines and neurotoxic factors is a 
contributing factor to dopaminergic cell 
death.

SIBO was observed in 25–54.5% of 
patients.

Heightened microglial activation 
observed in several Parkinsonian-
like transgenic mice (α-synuclein 
overexpression) and toxin-induced mouse 
models (MPTP, 6-OHDA, and rotenone).

Misfolding and aggregation of 
α-synuclein may begin in enteric 
neurons that innervate the gut.

GF mice overexpressing α-synuclein 
demonstrate attenuated motor and 
GI symptoms compared to their SPF 
counterparts.

AD Neurodegenerative PET scans and postmortem analysis 
of brain tissue from AD patients reveal 
elevated microglial activation correlating 
with severity of disease in several brain 
regions (hippocampus, entorhinal cortex, 
and parietal cortex).

The absence of a microbiota 
in a GF mouse model of AD 
reduces aggregation of amyloid 
beta, microglial activation, and 
neuroinflammation.

Xiang et al., 2006; 
Koenigsknecht-Talboo et 
al., 2008; Shie et al., 2009; 
Ferrarelli, 2015; Hamelin et 
al., 2016; Hong et al., 2016; 
Minter et al., 2016; Harach 
et al., 2017; Keren-Shaul et 
al., 2017; Ho et al., 2018

Microglia were found to drive propagation 
of tau protein.

Reduction of microbial diversity 
following antibiotic administration 
reduced amyloid beta pathology and 
microglial activation in AD mice.

Microglia aggregation surrounds amyloid 
beta plaques.

Microbiota of APP​PS1 transgenic 
mice have a higher Bacteroidetes/
Firmicutes ratio compared to WT 
mice along with reduced levels of 
Verrucomicrobia.

Neurodegeneration occurs partially in 
response to microglia-driven chronic 
inflammation.

In vitro administration of several 
SCFAs (valeric acid, propionic 
acid, and butyric acid) obstructs 
aggregation of amyloid beta protein.

Neuroprotective microglia subtype 
recently identified operating through a 
TREM2-mediated signaling pathway.

Complement protein (C1q), involved in 
mediating microglial synaptic remodeling, 
is upregulated in AD mouse models.

ALS Neurodegenerative PET scans from ALS patients demonstrate 
high levels of microglial activation in the 
motor cortex and prefrontal cortex.

Small pilot study finds decreased 
microbial diversity in five ALS 
patients characterized by intestinal 
inflammation, low Firmicutes/
Bacteroidetes ratio, and low SCFA 
levels.

Turner et al., 2004; Beers et 
al., 2006; Zhao et al., 2010, 
2013; Gerber et al., 2012; 
Wu et al., 2015; Geloso 
et al., 2017; Rowin et al., 
2017; Zhang et al., 2017

Table 1. Neuropathologies characterized by both microglial dysfunction and microbial dysbiosis (Continued)
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Neuropathology Categorization Hallmarks of microglial dysfunction Hallmarks of microbial dysbiosis References

Microglial release of pro-inflammatory 
cytokines and neurotoxic factors 
(TNF-α and IL-1β) increases as disease 
progresses.

G93 ALS mice expressing mutant 
SOD1 protein have lower expression 
of intestinal epithelial tight junction 
proteins and subsequent disruption 
to the intestinal barrier.

Microglia expressing mutated Cu,Zn 
superoxide dismutase (SOD1), a familial 
ALS gene, accelerates loss of motor 
neurons and disease progression, while 
WT microglia conferred neuroprotective 
effects.

G93 mice have a varying gut 
microbiota composition compared 
to healthy control mice with reduced 
levels of Escherichia coli, Fermicus, 
and butyrate-producing bacteria.

The neuroprotective role of anti-
inflammatory microglia found in early 
stages of ALS is lost as increased levels of 
pro-inflammatory microglial activity drive 
neurodegeneration.

Drinking water supplemented 
with the SCFA butyrate improved 
intestinal barrier function and life 
expectancy in a G93 ALS mouse 
model.

Secretion of mutated SOD1 protein into 
extracellular space triggers microglial 
dysfunction and activation.

MS Autoimmune/ 
neurodegenerative

Colocalization of activated microglia and 
areas of demyelination and inflammatory 
lesion in MS patients and EAE mice.

Patients with MS have high levels of 
intestinal permeability.

Yacyshyn et al., 1996; 
Benveniste, 1997; Heppner 
et al., 2005; Sun et al., 
2006; Piccio et al., 2007; 
Yokote et al., 2008; Frischer 
et al., 2009; Napoli and 
Neumann, 2010; Lee et 
al., 2011; Vogel et al., 
2013; Miyake et al., 2015; 
Cekanaviciute et al., 2017; 
Gao et al., 2017; Kosmidou 
et al., 2017; Luo et al., 
2017

Activated microglia produce reactive 
oxygen species that contribute to 
oxidative stress and heightened 
neuronal injury, neurodegeneration, and 
demyelination.

High concurrence of inflammatory 
bowel disease and MS.

Inhibiting microglial activation prevented 
the onset of EAE in mice and decreased 
the presence of CNS lesions.

Dysbiosis found in MS patients (n = 
20) characterized by depleted levels 
of Bacteroides and Prevotella and 
enriched levels of Bifidobacterium 
and Streptococcus compared to 
healthy controls.

Microglia-mediated remyelination is 
impaired in MS patients.

Patients (n = 31) with MS have an 
altered microbiota composition 
compared to age- and gender-
matched controls, with increased 
levels of Pseudomonas and 
Mycoplana.

Activation of microglia during the early 
stage of disease facilitates recruitment of 
T cells from the periphery.

Monocolonization of GF mice with 
different species enriched in MS 
patients (Akkermansia muciniphila 
and Parabacteroides distasonis) 
influenced differentiation of 
regulatory T cells and lymphocytes.

Subsets of microglia with activated 
TNFR2 and TREM2 signaling demonstrate 
a neuroprotective role in EAE mice.

Development and severity of EAE 
is lower in GF mice and antibiotic-
treated mice compared to SPF mice, 
as shown by an attenuated release of 
pro-inflammatory cytokines.

Whether microglial-driven 
neuroinflammation is a cause or 
consequence of neurodegeneration in MS 
remains unclear.

IBS, irritable bowel syndrome; MDD, major depressive disorder; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; PET, positron emission tomography; 
SIBO, small intestinal bacterial overgrowth.

Table 1. Neuropathologies characterized by both microglial dysfunction and microbial dysbiosis (Continued)
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delivery, antibiotic use, and early-age infections increase an in-
dividual’s predisposition to atypical behavioral patterns. Given 
the requirement for constant input from the gut microbiota for 
normal microglial development and function, it is plausible that 
microbial effects on neural development and behavior may occur 
through changes in microglial activity (Erny et al., 2015; Thion et 
al., 2018). New evidence to further support this link will provide 
a greater appreciation for the role of a healthy gut microbiome in 
normal microglial and cognitive development.

PD
PD is the second most common neurodegenerative disorder and 
is defined by the presence of motor symptoms including brady-
kinesia, rigidity, and resting tremor (Postuma et al., 2015). Patho-
logical hallmarks of PD include death of dopaminergic neurons 
of the substantia nigra pars compacta and intraneuronal accu-
mulation of the α-synuclein protein (Goedert et al., 2013). A com-
plex interplay of genetic and environmental factors is thought to 
drive the pathogenesis of PD, eventually leading to mitochondrial 
and autophagic dysfunction (Shulman et al., 2011).

One prevailing theory to explain synucleinopathies is that 
progressive alterations in the microenvironment of microg-
lia, such as increased deposition of α-synuclein, can change 
microglial behavior and function (Zhang et al., 2005; Su et al., 
2008). These changes may ultimately trigger a neuropathogenic 
microglial phenotype that facilitates and accelerates PD pathol-
ogy. Heightened microglial activation results in the release of 
pro-inflammatory cytokines (e.g., IL-6 and TNF-α) and a variety 
of other neurotoxic compounds into their immediate extracellu-
lar environment (Zhang et al., 2005; Kim and Joh, 2006). This in 
turn could compromise neuronal function and eventually lead to 
synaptic degeneration and neuronal death. The sustained activa-
tion of microglia due to external cues from both misfolded α-sy-
nuclein and damaged neurons likely instigates a cycle of chronic 
inflammation that further perpetuates the death of dopaminer-
gic neurons and accelerates progression of the disease (Zhang et 
al., 2005; Kim and Joh, 2006).

Although PD is predominantly classified as a brain disorder 
affecting neurons of the nigrostriatal pathway, some believe that 
pathology originates in the gut. According to Braak’s hypothe-
sis, aggregation of α-synuclein spreads from the enteric nervous 
system to the brain via the vagus nerve in cases of sporadic PD 
(Braak et al., 2004; Rietdijk et al., 2017). Evidence for this theory 
is supported by both preclinical and clinical evidence demon-
strating the presence of α-synuclein deposits in enteric neurons 
of the gut before the detection of misfolded α-synuclein in the 
CNS (Braak et al., 2004; Bencsik et al., 2014). While this pattern 
of α-synuclein spreading is not observed in all cases of sporadic 
PD, vagotomy may be associated with reduced risk of developing 
PD in humans, potentially implicating peripheral influences on 
disease development (Svensson et al., 2015; Liu et al., 2017).

Given the possible crosstalk between the gut microbiota and 
microglia, the composition of intestinal bacteria may modulate 
disease pathogenesis. Nonmotor symptoms, including chronic 
constipation and GI distress, precede motor symptoms in up to 
80% of PD patients (O’Sullivan et al., 2008; Poirier et al., 2016; 
Unger et al., 2016). Moreover, differences in the gut microbi-

ota composition, bacterial load, and levels of bacterial metab-
olites have been observed in patients with PD when compared 
with healthy individuals (Hill-Burns et al., 2017). Studies show 
altered abundance of certain bacterial strains in patients with 
PD, changes that may correlate with severity of motor deficits 
(Scheperjans et al., 2015; Mertsalmi et al., 2017). While interin-
dividual variation is high, PD patients often exhibit increased 
levels of Enterobacteriaceae and decreased levels of Bacteroi-
detes and Prevotellaceae (Keshavarzian et al., 2015; Unger et al., 
2016). Small intestinal bacterial overgrowth is an additional de-
fining disease feature in 25–54.5% of PD patients (Fasano et al., 
2013; Tan et al., 2014a). The shift in microbial communities may 
contribute to the elevated levels of peripheral inflammation and 
intestinal permeability that are frequently seen in PD patients 
and might drive misfolding of α-synuclein in the gut and its ret-
rograde propagation to the CNS.

Support for the notion that the microbiota may drive the 
pathogenesis of PD was provided by studies in GF mice that over-
express human α-synuclein. These mice display reduced motor 
deficits, GI dysfunction, and microglial activation when com-
pared with mice with an intact gut microbiota (Sampson et al., 
2016). This observation suggests that the gut microbiota, along 
with genetic predisposition, may be required for disease onset 
and/or progression. Feeding these GF transgenic mice a mixture 
of three SCFAs up-regulated microglial activation and induced 
motor deficits similar to those observed in colonized animals 
(Sampson et al., 2016). In another recent study, FMT from healthy 
mice into mice injected with 1-methyl-4-phenyl-1,2,3,6-tetrahy-
dropyridine (MPTP), a toxin-induced model of PD, attenuated 
microglial activation and motor deficits and decreased SCFA lev-
els, suggesting that active signals from the gut microbiota may 
influence PD outcomes (Sun et al., 2018). Interestingly, a recent 
study showed that overall fecal SCFA concentrations were re-
duced in patients with PD compared with controls, while some 
specific SCFAs were relatively increased (Unger et al., 2016). The 
current uncertainties in the role of SCFAs in various PD models 
may stem from concentration- and region-dependent effects of 
SCFAs on host physiology. Despite these preliminary findings, 
precisely how the gut microbiota and microbial metabolites in-
fluence motor symptoms and neuroinflammation in PD remains 
poorly understood.

The presence of both microbial dysbiosis and microglial dys-
function has been characterized in behavioral (schizophrenia and 
depression), neuroinflammatory (MS), and neurodegenerative 
(AD and amyotrophic lateral sclerosis [ALS]) disorders (Table 1). 
Whether gut microbiota directly or indirectly affect microglia in 
these conditions remains largely unknown. Gradual changes in 
microbiota composition have been observed as normal features 
of aging, including changes in microbial resilience, stability, and 
diversity, which are features that occur alongside changes in 
microglial physiology with age (Zapata and Quagliarello, 2015; 
Buford, 2017). Similar to neurodevelopmental disorders, this 
trend suggests that microbiota-driven changes in microglial 
behavior might have a larger role in the onset or progression of 
neurodegenerative disorders than previously thought (Buford, 
2017). Studies investigating changes in microbiome composition 
and microglial function in the healthy and diseased brain over 
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time will provide additional insights into the nature of gut–brain 
interactions during the aging process.

Future directions and challenges
Tremendous progress has been made recently in elucidating 
and characterizing the distinct components and signals of the 
gut–brain axis. However, the studies to date likely only repre-
sent an initial glimpse into the functional interplay between 
the gut microbiome, microglia, and neurodevelopmental and 
neurodegenerative disorders. The advent of new tools, such as 
advanced next-generation sequencing methods used to study 
and characterize the microbiome and microglia, will facilitate 
further identification and characterization of mechanisms by 
which gut microbiota influence microglial maturation and func-
tion (Bennett et al., 2016). For example, the application of sin-
gle-cell sequencing to study microglia has also paved the way 
for potential identification of unique microglial subsets with 
neuroprotective roles in the context of neurodegenerative dis-
ease (Keren-Shaul et al., 2017). These studies have shifted the 
narrative from the notion of exclusively pathogenic microglia to 
one of a more nuanced mixture of microglial subsets, including 
some with neuroprotective properties, enabling a greater appre-
ciation of the multifaceted role microglia might play in driving 
neuropathological phenotypes and potentially accelerating the 
development of microglia-targeted therapies.

One of the outstanding questions is how changes in the gut 
microbiome might lead to an altered microglial phenotype and 
eventually to impaired brain homeostasis. It is unclear whether 
the observed disease-associated alterations in microbial commu-
nities are a cause or consequence of altered brain function and 
whether interventions targeting the microbiome can restore mi-
croglial function and lead to beneficial effects in neurodevelop-
mental and neurodegenerative diseases. Signals originating from 
the gut microbiota and transmitted to the brain have the poten-
tial to alleviate or exacerbate disease pathogenesis, changes that 
may operate through gut-mediated changes in microglial behav-
ior. Thus, continued exploration of the intersection of microbiol-
ogy, immunology, and neurobiology holds immense therapeutic 
promise. Several different microbiome-targeted approaches, 
including prebiotic, probiotic, and FMT strategies, have shown 
promising results for a variety of GI conditions in preclinical and 
clinical models and could be extended to pathologies involving 
microglia in the near future (Fond et al., 2015; Winek et al., 2016). 
Further investment in gut–brain axis research may catalyze the 
potential of harnessing the gut microbiome for development of 
innovative, noninvasive, and effective therapeutic strategies for 
disorders of the brain.
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