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The human CIB1-EVER1-EVER2 complex
governs keratinocyte-intrinsic immunity to
B-papillomaviruses
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Patients with epidermodysplasia verruciformis (EV) and biallelic null mutations of TMC6 (encoding EVER1) or TMC8 (EVER2)
are selectively prone to disseminated skin lesions due to keratinocyte-tropic human B-papillomaviruses (B-HPVs), which lack
E5 and E8. We describe EV patients homozygous for null mutations of the CIB1 gene encoding calcium- and integrin-binding
protein-1(CIB1). CIB1 is strongly expressed in the skin and cultured keratinocytes of controls but not in those of patients.
CIB1 forms a complex with EVER1 and EVER2, and CIB1 proteins are not expressed in EVER1- or EVER2-deficient cells. The
known functions of EVER1 and EVER2 in human keratinocytes are not dependent on CIB1, and CIB1 deficiency does not impair
keratinocyte adhesion or migration. In keratinocytes, the CIB1 protein interacts with the HPV E5 and E8 proteins encoded

by a-HPV16 and y-HPV4, respectively, suggesting that this protein acts as a restriction factor against HPVs. Collectively,
these findings suggest that the disruption of CIB1-EVER1-EVER2-dependent keratinocyte-intrinsic immunity underlies the
selective susceptibility to B-HPVs of EV patients.

Introduction

Epidermodysplasia verruciformis (EV; OMIM ID 226400) is a  sistant to other microorganisms including other viruses and
rare Mendelian genodermatosis. EV patients are highly and se-  skin-tropic pathogens and even all other cutaneous and mucosal
lectively susceptible to skin diseases due to cutaneous human HPVs. Early in childhood, these patients present with persistent,
papillomaviruses (HPVs) of the B genus (Orth, 2006, 2008; de  disseminated, flat warts and pityriasis versicolor-like lesions
Jong et al., 2018). They are otherwise healthy and normally re-  of the skin that are induced by B-HPVs. Some patients develop
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nonmelanoma skin cancer, particularly on areas of the body ex-
posed to the sun. By contrast, B-HPV infection is widespread and
asymptomatic in the general population. EV is transmitted as an
autosomal recessive (AR) trait in most families but was shown
to be X-linked recessive in one family (Androphy et al., 1985).
Biallelic null mutations of either TMC6 or TMC8 encoding EVERI1
and EVER?2, respectively, account for about half the patients and
families displaying EV (Ramoz et al., 2002; Burger and Itin, 2014;
Imahorn et al., 2017; de Jong et al., 2018). These genes are widely
expressed throughout the body, including in leukocytes, but
patients with null mutations display no consistent abnormali-
ties of the development or function of any subset of leukocytes
(Lazarczyk et al., 2012; Crequer et al., 2013). EVER1 or EVER2
deficiency in keratinocytes, which would normally express both
proteins and are the natural and exclusive host cells of B-HPVs,
has thus been proposed as the cellular basis of the disease (Orth,
2006, 2008). The exceedingly narrow infectious phenotype and
the lack of detectable leukocyte abnormalities prevented EV
from being recognized as a primary immunodeficiency until
the discovery of genetic etiologies in 2002 (Ramoz et al., 2002;
Notarangelo et al., 2004; Casanova, 2015a,b). However, EV was
shown to be an inborn error underlying viral lesions between
1922 and 1946 by the works of Wilhelm Lutz and Edward Cock-
ayne (Lewandowsky and Lutz, 1922; Cockayne, 1933; Lutz, 1946),
before the first descriptions of congenital neutropenia by Ralph
Kostmann and inherited agammaglobulinemia by Ogden Bruton
(Kostmann, 1950; Bruton, 1952).

Patients with an “atypical” form of inherited EV have recently
been described (de Jong et al., 2018). These patients suffer from
primary immunodeficiencies due to profound T cell defects
caused by inactivating biallelic mutations of STK4 (Crequeretal.,
2012a), RHOH (Crequer et al., 2012b), COROIA (Stray-Pedersen
etal.,2014), TPP2 (Stepensky et al., 2015), DCLREIC (Tahiat et al.,
2016), LCK (Lietal., 2016), RASGRPI (Platt et al., 2017), or DOCK8
(Sanal et al., 2012; Liu et al., 2017). Other patients with atypical
EV have T cell deficits of unknown genetic etiology (Azzimonti et
al., 2005; Borgogna et al., 2014; Landini et al., 2014). In all these
patients, persistent infection with B-HPVs causes skin lesions
identical to those of patients with classic EV, but in a context of
broader infectious manifestations, the breadth and severity of
which depend on the mutated gene and the nature of the T cell
deficit. Indeed, patients with inherited T cell deficiencies typ-
ically suffer from various viral, bacterial, fungal, and parasitic
infections, including many infections of the skin and viral in-
fections in particular (Notarangelo et al., 2004; Fischer, 2015).
These patients are also prone to various autoimmune and, more
rarely, tumoral manifestations. An additional role of these gene
products in keratinocytes has not been formally excluded, but
the T cell deficit common to all these patients strongly suggests
that full T cell development and function are required for pro-
tective immunity to B-HPVs. Intriguingly, not all T cell deficits
seem to confer a predisposition to B-HPV-driven lesions, and
not all patients with such deficits display lesions of this type.
Finally, B-HPV-induced skin lesions resembling typical EV have
also been reported in a third group of patients who are otherwise
healthy years after successful allogeneic hematopoietic stem cell
transplantation (HSCT) for severe combined immunodeficiency
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due to mutations of IL2RG and JAK3 (Laffort et al., 2004). As
both these genes are also normally expressed in keratinocytes,
this third type of EV might be caused by a persistent deficiency
of their products in keratinocytes that is not corrected by alloge-
neic HSCT. The products of these genes may be physiologically
connected with EVERI and EVER?2 in keratinocytes.

The molecular basis of “typical” EV remains elusive. One plau-
sible hypothesis is that B-HPVs are defective for a growth-pro-
moting function encoded by the E5 gene, located between the
E2-L2 genes of cutaneous a-HPVs, or the E8 gene, located in the
E6 region of y-, k-, and p-papillomaviruses, and that EVER1/2
deficiency may compensate for the missing viral function (Bravo
and Alonso, 2004; Nonnenmacher et al., 2006; Orth, 2006,
2008). Indeed, it has been shown in vivo that cottontail rabbit
papilloma virus (CRPV)-ES is essential for the development of
lesions in rabbits (Hu et al., 2002; Nonnenmacher et al., 2006).
EVERI and EVER2 belong to a larger family of transmembrane
channel-like (TMC) proteins (Keresztes et al., 2003; Kurima
et al., 2003). TMC1 and TMC2 are components of the sensory
transduction ion channel in inner ear hair cells (Kawashima et
al., 2011; Pan et al., 2013; Kurima et al., 2015). Both TMC6 and
TMCS8 are broadly expressed in human tissues, but expression
levels are generally lower for TMC8 (www.proteinatlas.org). No
knockout mice have been reported for either of these genes. It has
been suggested that EVER] and EVER2 control intracellular zinc
homeostasis in human leukocytes and keratinocytes through in-
teraction with the ER-resident zinc transporter ZnT1 (Lazarczyk
etal., 2008, 2009, 2012). HPV16-E5a (E5a being encoded by mu-
cosal and E5B by cutaneous HPVs) has been shown to interact
with EVER1/2 (Lazarczyk et al., 2008), and both HPV16-E5a and
E8 from CRPV interact with ZnT1 (Nonnenmacher et al., 2006;
Lazarczyk et al., 2008). It has also been suggested that EVER2
modulates TNF receptor signaling in human keratinocytes (Gaud
et al., 2013; Vuillier et al., 2014). The pathogenesis of EV-like le-
sions in patients with IL2RG and JAK3 mutations years after suc-
cessful HSCT also remains unknown. Overall, the pathogenesis
of B-HPV-driven lesions in EVER1- and EVER2-deficient patients
and the mechanisms by which human keratinocytes normally
control B-HPVs remain unexplained. We investigated patients
with typical EV but no mutations of TMC6 or TMC8. We hypoth-
esized that the discovery of novel genetic etiologies of EV might
open up new avenues of investigation into the pathogenesis of EV
and the interaction between human keratinocytes and B-HPVs.

Results

Clinical features of EV patients

We investigated 24 individuals with unexplained typical EV (P1-
P24) from six families originating from and living in five differ-
ent countries (Colombia, France, Iran, Switzerland, and Togo;
Fig.1A). None of the patients carried mutations in the exons and
flanking intron regions of TMC6 or TMC8. The cohort was clin-
ically homogeneous, with disseminated B-HPV-positive skin le-
sions at various sites on the body beginning in childhood or early
adulthood (Table 1and Fig. S1). B-HPV5 and/or -HPVS8 genotypes
have been identified in the lesions of all patients tested (12 of 24).
Cutaneous squamous cell carcinoma (SCC) developed in 14 of the
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Figure 1. Identification of homozygous
mutations affecting human CIB1in a cohort
of 24 EV patients. (A) Pedigrees of six kindreds
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24 patients, mostly on sun-exposed areas of the skin (Table 1). 12
of the 24 patients died: two from disseminated skin cancer (at
the ages of 71 yr for P13 and 21 yr for P16) and 10 from causes
unrelated to EV (aged 47-91 yr). None of the patients displayed
any other unusually severe infectious diseases despite exposure
to alarge number of different infectious agents in urban or rural
areas of countries as diverse as Colombia, France, Iran, Switzer-
land, and Togo. The clinical features of all patients other than
kindred F from Iran have been described in detail elsewhere with
the confirmation of B-HPV genotype and/or typical histological
signs of B-HPV infection (Lutz, 1946; Rueda and Rodriguez, 1976;
Kienzleretal., 1979; Kremsdorf etal., 1984; Deau etal., 1991, 1993;
Rueda, 1993; Saka et al., 2009; Arnold et al., 2011; Imahorn et al.,
2017). Case studies for all 24 patients are listed in Materials and
methods. P13 and P14 were among the first EV patients to be
documented by Wilhelm Lutz in 1946 (Lutz, 1946). Overall, these
patients were clinically and virologically indistinguishable from
patients with biallelic truncating mutations of TMC6 or TMC8,
with an AR but unexplained inheritance of lesions due to 8-HPVs.

Immunological features of EV patients

Immunophenotyping of the patients tested (P3, P5, P15, P16, and
P17) revealed normal numbers and compartmentalization of cir-
culating T cells, B cells, and NK cells (Table S1) as in patients car-
rying homozygous inactivating mutations of TMCS8 (Crequer et
al., 2013). Furthermore, T cell function after CD3 stimulation (P3
and P5; Table S2) and B cell function as measured by antibody re-
sponses to common DNA and RNA viruses (P1-P5; Table S3) were
normal. This finding is also consistent with those for patients
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affected by EV. Familial segregation of homo-
zygous CIBI mutations (m/m) in six consan-
guineous families indicating an AR pattern of
inheritance with complete clinical penetrance.
(B) Graphical representation of the CIB1 cDNA
exon (c.CIB1) and protein (p.CIB1) structure
with presentation of the EF-hand domains. The
arrows at the top indicate the location of the
cDNA positions affected by the C/IBI mutations
found in the families, whereas those at the
Kindred F bottom indicate their consequences at protein

IFan level. ¥, stop codon; del, deletion; ins, insertion;
€.52-2A>G fs, frameshift.

with EVER2 deficiency (Crequer et al., 2013) but not for patients
with RHOH, MST1, CORO1A, ARTEMIS, RASGRP, DOCKS, and
TPP2 deficiencies who suffer from CD4* T cell lymphopenia and
various degrees of impairment of circulating T cell response to
CD3 stimulation (Crequer et al., 2012a,b; Sanal et al., 2012; Stray-
Pedersen et al., 2014; Stepensky et al., 2015; Tahiat et al., 2016;
Liu et al., 2017; Platt et al., 2017). Finally, more detailed analyses
of skin-homing T cell populations (CLA*, CCR10*, CLA*CCR4*,
and CLA*CCR10* subsets) revealed no frequency abnormalities
in the five patients tested (P1-P4 and P15; Table S4), again con-
trasting with the smaller sizes of these subsets within the CD4*
compartment in RHOH-deficient patients (Table S4; Crequer et
al., 2012b). These skin-homing subsets even displayed mild ex-
pansion in three EVER2-deficient patients (Crequer et al., 2013).
Thus, none of the patients tested displayed any detectable lym-
phocyte abnormalities, suggesting that they suffer from a new AR
genetic etiology of EV affecting keratinocyte-intrinsic immunity
as in EVER1- and EVER2-deficient patients.

Identification of a 2.4-Mb chromosomal region by genome-
wide linkage (GWL)

We used GWL analyses to search for genetic etiologies of EV in
this cohort. Kindreds A, D, E, and F were known to be consan-
guineous, and consanguinity was suspected for kindreds B and
C. We confirmed that all patients were born to consanguineous
parents (Table S5) by showing that their inbreeding coefficients,
as estimated with FSuite (Gazal et al., 2014) and genotyping
data obtained with the Affymetrix Genome-wide Human Sin-
gle Nucleotide Polymorphism (SNP) or Illumina Infinum Global
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Table 1. Comparison of the clinical phenotypes of the 24 EV patients described in this study

Patient Case Sex Age(yr)  Ageonset(yr)/SCC  HPV type Skin lesions (location) scc Reference
P1 Al.viii.4 F 50 12/no Unknown Head and hands No Rueda (1993)
P2 Al.viii.7 M 47* 6/18 8,17,20 Head, neck, trunk, hands, legs, ~ Forehead Rueda (1993), case 11
and feet
P3 Al.viii.10 F 46 7/13 8,20 Head, trunk, legs, arms, and Forehead, lips Rueda (1993), case 12
hands
P4 Alwiiil2  F 44 7/no 8 Head and trunk No Rueda (1993)
P5 Al.viii.15 M 37 5/17 8,20 Head, trunk, hands, and upper ~ Forehead Rueda (1993), case 13
legs
P6 Al.vil3 M 47* 1/15 Unknown Head, trunk, hands, and legs Nose, trunk Rueda (1993), case 6
pP7 Al.viii.30 M 47 5/10 5,17, 36 Head, trunk, arms, hands, and ~ Canthus, nose Rueda (1993), case 7
legs
P8 A2.i.1 F 78* 1/47 5,8,20,24  Head, trunk, and extremities Forehead Rueda (1993) and Rueda and
Rodriguez (1976), case 1 both
papers
P9 A2.ii.10 F Unknown  5/38 8,9 Head, trunk, and extremities Rueda (1993) and Rueda and
Rodriguez (1976), case 2 both
papers
P10 A2.ii.12 M 48* 1/26 Unknown Head, trunk, and extremities Forehead, lips Rueda (1993) and Rueda and
Rodriguez (1976), case 3 both
papers
P11 A2.i.13 M 47* 3/27 5,8,20 Head, trunk, and extremities Forehead Rueda (1993) and Rueda and
Rodriguez (1976), case 4 both
papers
P12 B.ii.2 M 72% 23/43 8,15 Head, trunk, arms, hands, and ~ Forehead, check, ear Kienzler et al. (1979)
legs
P13 C.ii.l F 71* Childhood/35 5 Head, neck, hands, and legs Scalp, nose Lutz (1946) and Arnold et al.
(2011), case 1 both papers
P14 C.i.2 F 91* <7/52 5 Head, neck, and hands Nose, hand, neck, Lutz (1946) and Arnold et al.
forehead, scalp (2011), case 2 both papers
P15 D.iv.2 F 59 Childhood/54 5 Head, neck, arms, hand, knee,  Forehead, nose Imahorn et al. (2017)
and lower leg
P16 E.iv.4 F 21* 7/unknown Unknown Face and trunk Multiple (sun- Saka et al. (2009)
exposed skin)
P17 E.iv.6 F Unknown*  5/unknown Unknown Face and trunk Unknown Saka et al. (2009)
P18 E.iv.8 F Unknown*  Unknown/unknown Unknown Unknown Unknown Saka et al. (2009)
P19 E.iv.10 M 14 2/unknown Unknown Face and trunk Unknown Saka et al. (2009)
P20 Fv.2 M 47 3/46 Unknown Head, neck, trunk, and upper Forehead This study
and lower limb (basosquamous
carcinoma)
P21 Fv.3 M 44 2/no Unknown Head, neck, trunk, and upper This study
and lower limb
p22 Fv.7 F 30 5/no Unknown Head, neck, trunk, and upper This study
and lower limb
P23 Fvi.l F 22 1/no Unknown Head, neck, trunk, and upper This study
and lower limb
P24 F.vi.2 M 21 4/no Unknown Head, neck, trunk, and upper This study

and lower limb

Information collected from listed references or oral communication with the treating physicians. Please see Fig. 1 A for individual deidentifiers. F, female;
M, male; ages of death are marked with asterisks.

Screening array, were high. GWL analysis was performed by ho-
mozygosity mapping on 22 members of two branches (termed Al
and A2; Fig. 1 A) of the extended kindred A, P12 from kindred B,
P14 from kindred C, P15 from kindred D, six members of kindred
E, and four members of kindred F in two generations. A highly
significant linkage peak was found on chromosome 15, with a log-
arithm of odds (LOD) score of 16.7 for a 2.4-Mb interval (Fig. S2,
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A and B), strongly suggesting genetic homogeneity across these
kindreds. We then searched for allelic homogeneity by looking at
the haplotypes common to the various families. Kindred A is an
extended family with two branches: Al and A2 (Fig. 1 A). These
two branches originate from the same region of Colombia and
are homozygous for the same 3.5-Mb haplotype encompassing
the linked interval, consistent with a common ancestral muta-
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tion. Kindreds C and D were not known to be related, but both
are from Switzerland, albeit from different cantons. These two
families share the same short homozygous 1.74-Mb haplotype en-
compassing the linked interval, suggesting a common ancestral
mutation for these two Swiss families. The shared haplotype of
kindreds C and D is part of the common haplotype of the Colom-
bian patients. These findings reduce the interval of interest on
chromosome 15 to 1.74 Mb between positions 89.8 and 91.5 Mb.
Overall, these results strongly suggest that the 24 patients from
these six families have the same AR genetic etiology of EV, dif-
ferent from EVERI and EVER2 deficiency, as the corresponding
genes TCM6 and TCM8, which are organized in tandem, are ab-
sent from this interval.

Identification of bi-allelic mutations of CIB1

We then performed whole-exome sequencing (WES) on the
probands from kindreds A-C and E (P7, P12, P14, and P19) and
four patients from kindred F (P20-P23; Figs. 1 A and S2 C). This
analysis identified CIBI (encoding calcium- and integrin-binding
protein 1; CIB1) as the only gene carrying a very rare homozy-
gous nonsynonymous coding mutation (minor allele frequency
[MAF] < 0.001) in all patients tested. CIBI is located within the
1.74-Mb interval detected by GWL and homozygosity mapping,
which contains 33 other protein-coding genes and nine RNA
genes. In particular, no other gene within the interval of interest
on chromosome 15 was homozygous for rare nonsynonymous
coding variants common to all patients. The coding exons of the
42 genes were all fully covered by WES. Sanger sequencing of
genomic DNA confirmed that all 24 patients from the six kin-
dreds were homozygous for CIBI mutations (m/m), whereas the
34 unaffected family members tested were either heterozygous
(wt/m) or homozygous for the WT (wt/wt) allele (Figs. 1 A and
S2 D). The mutations were frameshift insertions (P1-P11, kin-
dred A: c.465_465+1insG; P12, kindred B: c.549_550insTT) and
deletions (P13-15, kindred C and D: c.248_249delAA) predicted
to cause premature stop codons (P1-P1l: p.I156Dfs*5; P13-15:
p-K83Rfs*4) or a stop loss (P12: p.A184Lfs*70), a nonsense allele
(P16-P19, kindred E: c.214C>T, p.R72*), and an essential splice site
mutation (P20-P24, kindred F: c.52-2A>G; Fig. 1 B) predicted by
the Genscan algorithm (Burge and Karlin, 1997) to eliminate the
acceptor site of exon 2 and to activate a cryptic acceptor site in
intron 1. This would result in the retention of 319 bp of intron 1
and the creation of a 47-aa protein product from exon 1 (aa 1-17)
and part of intron 1 followed by a stop codon (aa 18-47). All 24
patients from these six kindreds were homozygous for very rare
mutations of CIBI and had no other homozygous genetic lesion
in common. Moreover, the segregation of the mutant alleles sug-
gested an AR trait with complete penetrance as in families with
EVERI or EVER2 deficiency.

The CIBI mutations are predicted to be deleterious

The frameshift indels and splice-site mutations were not found
in the public databases Genome Aggregation Database (gnomAD;
Lek et al., 2016), Bravo (https://bravo.sph.umich.edu/freeze5/
hg38/), or the Greater Middle East variome project (http://igm
.ucsd.edu/gme/; Scott et al., 2016), and they were also absent
from our own in-house database of >4,500 exomes. The non-
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sense R72* variant (dbSNP accession number rs143773090) was
found in four heterozygous individuals from the total of 276,936
individuals for whom data were available in the gnomAD, indi-
cating an allele frequency of <1.4 x 1075, consistent with the very
low prevalence of EV. Furthermore, no homozygous CIBI non-
sense or frameshift mutations were present in these public or
in-house databases. The gene-damage index (Itan et al., 2015) of
CIBlis very low (1.131). Mutations of CIBI predicted to be delete-
rious, with a combined annotation-dependent depletion (CADD)
score above the CIBI-specific mutation significance cutoff of 2.3
(Kircher et al., 2014; Itan et al., 2016), are very uncommon in the
general population, particularly in the homozygous state (only
three missense mutations, each with a MAF <0.0027). The CADD
scores of the CIBI variants from the EV patients (35 for the inser-
tions, 27.7 for the deletion, 24.8 for the essential splice, and 40 for
the nonsense variants) were well above the mutation significance
cutoff. These genetic findings strongly suggest that these CIBI
mutations, which are very rare or private to the six kindreds, are
deleterious. Their strict unique recessive linkage with EV unam-
biguously demonstrates that homozygosity for deleterious CIBI
alleles is a new AR genetic etiology of EV.

Lack of CIB1 expression in patients’ cells

The CIB1 protein is ubiquitous throughout the body and was first
identified as an intracellular regulator of integrin signaling in
platelets on the basis of its calcium-binding EF-hand domains
(Fig. 1B). Human CIB1 has since emerged as a regulator of diverse
cellular processes including migration, adhesion, proliferation,
and cell death/survival (Leisneretal., 2016; Wang et al., 2017). We
first assessed the biochemical impact of the mutations by mea-
suring endogenous CIBI mRNA and protein levels in leukocytes.
Lymphoblastoid cell lines (LCLs) from P1-P5 and P7 had much
lower levels of CIBI mRNA than those from WT family members
(wt/wt), whereas heterozygous (wt/m) family members had in-
termediate RNA levels (Fig. 2 A). The stop-loss mutation in P12
is predicted to lead to an elongated transcript. The levels of CIBI
mRNA in LCLs from P12 were higher than those for kindred A but
much lower than those for WT controls (Fig. 2 A). P13 also had
very low CIBI mRNA levels in whole blood (Fig. 2 A), potentially
reflecting nonsense-mediated mRNA decay due to the presence
of premature stop codons. An antibody raised against an N-ter-
minal epitope of CIBI located upstream from all the premature
stop codons seen in the patients detected no endogenous CIBI
protein in LCLs or peripheral blood mononuclear cells (PBMCs)
from patients from kindreds A, B, and E, whereas CIBI protein
was detected in unrelated controls and healthy family mem-
bers (whether WT homozygous or heterozygous for the mutant
alleles; Fig. 2 B). Thus, all the CIBI mutations tested greatly de-
creased mRNA levels and resulted in a complete absence of CIB1
protein from the cells tested. These data indicate that the patients
had AR complete CIBI deficiency.

CIB1is expressed in keratinocytes

The ubiquitous pattern of expression and the pleiotropic func-
tions assigned to CIB1 are not easy to reconcile with the very
narrow clinical phenotype of EV patients. f-HPVs have a strict
tropism for the epidermis, and hair follicle stem cells probably
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serve as a reservoir for HPV persistence (Orth, 2008). We there-
fore assessed CIB1 protein levels by immunohistochemistry
(THC) in skin biopsy specimens from healthy controls. A strong
signal for CIB1 was obtained for the epidermis and hair follicles
(Fig. 2 C). We then assessed CIB1 protein levels in cultured pri-
mary keratinocytes from three healthy controls, one hetero-
zygous healthy individual from kindred A (wt/m), and three
patients from kindreds A, C, and D. CIB1 protein levels were high
in control and heterozygous individuals, whereas this protein
was not detected in the patients (Fig. 2 D). We also assessed CIB1
protein levels in whole-skin biopsy lysates from a heterozygous
individual of kindred F (wt/m) and in lysates from both lesional
and nonlesional skin biopsy specimens from his relatives P21
and P23. CIB1 protein was detected in the lysate from the het-
erozygous individual but not in lesional and nonlesional lysates
from the patients (Fig. 2 D). Thus, CIBl is clearly abundantly ex-
pressed in keratinocytes, the natural host cells of B-HPVs, and the
patients’ skin and cultured keratinocytes display no detectable
CIBI expression. Finally, we showed that mRNA levels for CIBI,
but also for TMC6 and TMC8, were not increased by type I IFN
treatment in keratinocytes (Fig. S3), consistent with the lack of
B-HPV lesions in patients with inborn errors of type ITFN immu-
nity (Dupuis et al., 2001, 2003; Ciancanelli et al., 2015; Kreins et
al., 2015; Lamborn et al., 2017). Collectively, these findings sug-
gest that AR CIB1 deficiency may underlie EV by disrupting kera-
tinocyte-intrinsic type I IFN-independent immunity to B-HPVs.

Lack of CIB1 expression in EVER1- and EVER2-deficient cells

The clinical and virological phenotypes of EVER1-, EVER2-, and
CIB1-deficient patients are indistinguishable. We therefore an-
alyzed CIBI levels in LCLs derived from patients with EVERI or
EVER2 deficiency. Strikingly, individuals carrying inactivating
mutations of either EVERI (D576% Ramoz et al., 2002) or EVER2
(D362* [Ramoz et al., 2002] or TI50Mfs*3 [Crequer et al., 2013])
had very low levels of CIB1 protein, whereas their heterozygous
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skin

controls (ctrl 1-3), kindreds A, C, and D, or in whole-skin
lysates from kindred F. L, lesion. These results are represen-
tative of three and one independent experiments, respec-
tively. Asterisk indicates a nonspecific band.

relatives had normal CIB1 protein levels (Fig. 3 A). In EVERI- and
EVER2-deficient LCLs, CIBI mRNA levels were ~50% lower than
in control LCLs (Fig. 3 B). EVERI and EVER2 are therefore re-
quired for the correct expression of CIB1 protein. We detected
normal EVERI and EVER2 mRNA levels in CIB1-deficient LCLs
(Fig. 3 B), but a lack of reliable antibodies against EVER proteins
made it impossible for us to assess the levels of the correspond-
ing proteins. We also tested LCLs from patients with T cell de-
fects associated with persistent cutaneous B-HPV infections due
to RHOH or MST! (encoded by STK4) deficiency (Crequer et al.,
2012a,b). CIB1 levels were normal in cells from these patients
(Fig. 3 A). This dichotomy mirrors the lymphocyte frequency
data (Tables S1and S4) and suggests thatisolated B-HPV-induced
disease in patients with typical EV is caused by a common EVER1/
EVER2- and CIBl-dependent mechanism different from the T
cell-dependent mechanisms of disease in patients with atypical
EV as well as infectious phenotypes including but not limited to
B-HPV-induced lesions.

CIB1, EVER1, and EVER2 form a complex

These findings suggest that CIB1 protein stability might be con-
trolled posttranscriptionally by the EVERI and EVER2 proteins.
Consistent with this hypothesis, the stable overexpression of
EVERI in EVERI-deficient LCLs or of EVER2 in EVER2-defi-
cient LCLs rescued CIBI protein (Fig. 3 C) but not mRNA levels
(Fig. 3D). Asa control, the overproduction of either EVER protein
in CIBl-deficient LCLs did not rescue CIBI expression (Fig. 3, C
and D). In the absence of robust antibodies against the EVERI
and EVER2 proteins, overexpression was confirmed by assess-
ing mRNA levels (Fig. 3 D). These data suggest that EVERI and
EVER2 regulate CIBI expression posttranslationally. We there-
fore hypothesized that the CIB1, EVERI, and EVER2 proteins
form a multimeric complex that controls CIBI protein stability.
Reciprocal coimmunoprecipitation experiments in HEK293T
cells showed that CIB1 interacted with both EVER] and EVER2
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Figure 3. CIB1 forms a complex with EVER1 and EVER2. (A) CIB1 protein levels in LCLs derived from patients with loss-of-function mutations of EVERI
(D576*) and EVER2 (D362* or TI50Mfs*3), and comparison with those in heterozygous carriers, positive controls (ctrl 1and 2), P4 and P11, and patients with
RHOH and MST1 deficiencies. (B) CIB1, EVER1, and EVER2 mRNA levels were assessed by RT-qPCR in controls (n = 4), CIB1 m/m (P1-P6 and P12), EVER1 m/m,
and EVER2 m/m (n = 3 each) LCLs. Each symbol represents the mean of one cell line measured in three independent experiments. Statistical significance was
assessed by one-way ANOVA followed by Dunnett’s multiple comparison tests relative to healthy controls. (C) CIB1 protein levels in LCLs derived from patients
with loss-of-function mutations of EVERI (D576*), EVER2 (T150Mfs*3), and a healthy control after reconstitution with WT EVER1 or EVER?2 by retroviral trans-
duction and stable selection. Asterisk indicates a nonspecific band. (D) CIB1, EVER1, and EVER2 mRNA levels were measured by RT-qPCR in LCLs derived from
patients with loss-of-function mutations of EVERI (D576%), EVER2 (T150Mfs*3), or C/BIand a healthy control after reconstitution with WT EVER1 or EVER2 by
retroviral transduction and stable selection. The data were first normalized against RNaseP as a housekeeping gene and then against an appropriate untrans-
duced parental cell line by the AACt method. Statistical significance was assessed by one-way ANOVA followed by Dunnett’s multiple comparison test relative
to the corresponding untransduced control. (B and D) ns, P > 0.05; *, P < 0.05; **, P < 0.01; ***, P < 0.001. (E) HEK293T cells were transfected with plasmids
encoding CIB1-HA, FLAG-EVER], and FLAG-EVER? either separately or together; 24 h after transfection, samples were subjected to immunoprecipitation with
FLAG (Fl)- or HA-specific antibodies (+). Samples incubated with nonspecific IgG served as specificity controls. Western blots were performed to detect coim-
munoprecipitated CIB1-HA and FLAG-EVER1 or FLAG-EVER2. The immunoprecipitation of EVER1/2 and CIB1 was confirmed by reincubation with antibodies
specific for FLAG and HA, respectively. The presence of all proteins was checked by Western blotting of an input sample taken before immunoprecipitation.
GAPDH served as a loading control. vec, vector. (F) Healthy control keratinocytes were transfected with plasmids encoding CIB1-HA, FLAG-EVERL, and FLAG-
EVER2 either alone or in combination; 24 h after transfection, cells were subjected to immunofluorescence imaging with Alexa Fluor 568-HA and Alexa Fluor
488-FLAG antibody combinations. DAPI was used for counterstaining. Colocalization was assessed by calculating Pearson’s correlation coefficient with Imaris
software. Bar, 13 um. The results shown are representative of three independent experiments.

(Fig. 3 E). Subsequent immunofluorescence analysis in primary
keratinocytes indicated that overproduced CIBI was mostly lo-
calized in the nucleus. However, on coexpression with EVERI or
EVER2, CIB1 was localized in perinuclear and cytoplasmic web-
like structures that strongly colocalized with EVER1 or EVER2 as
demonstrated quantitatively by the calculation of Pearson’s cor-
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relation coefficient (Fig. 3 F). Furthermore, mass spectrometry
on CIBlimmunopurified after its ectopic expression in HEK293T
cellsidentified endogenous EVERI as the highest-ranked interac-
tor of CIBI (Fig. S4 A). EVER2 was not detected probably because
its mRNA was barely detectable in HEK293T cells at levels lower
than those of EVERI by a factor of at least 60 (Fig. S4, B-D). Col-

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20170308

920z Areniged 60 uo 1senb Aq 4pd'80£0.1L0Z Wel/28¥09.1/6822/6/G1z/pd-elonie/wal/Bio sseidni//:dpy woy papeojumoq

2295



lectively, these data strongly suggest that a multimeric complex
of CIBI and EVERI/EVER? proteins is required for CIB1 protein
stability. They connect CIB1 directly with the previously identi-
fied EV-causing proteins EVER1 and EVER2.

CIB1 does not affect intracellular free zinc and NF-kB signaling
The interaction between CIB1 and EVER1/2 led us to investigate
the contribution of CIBI to the known functions of EVERI and
EVER2 (Lazarczyk et al., 2008; Vuillier et al., 2014). EVER1 and
EVER?2 have been reported to control intracellular zinc homeo-
stasis by binding to the zinc transporter ZnT1, increasing its ac-
tivity to import zinc into the ER storage compartment, thereby
controlling free intracellular zinc levels (Lazarczyk et al., 2008).
We overproduced EVER1 and EVER2 in HEK293T cells; both pro-
teins repressed the basal and zinc-induced transcription of a
GFP reporter construct via the metal-response element (MRE;
Glinther et al., 2012; Fig. 4 A), consistent with previous findings
(Lazarczyk et al., 2008). However, CIB1 overexpression had no
effect on MRE activity, and no additional effect was observed
when CIBI was coexpressed with EVER1 or EVER2 (Fig. 4 A),
consistent with the lack of colocalization of CIB1 and ZnT1 (Fig.
S4 E). Moreover, our findings confirmed the interaction be-
tween the overproduced EVER1/2 and ZnTI proteins (Lazarczyk
et al., 2008), but we detected no interaction between CIBI and
ZnTl in the same conditions (not depicted). At odds with this
previous study (Lazarczyk et al., 2012), the absolute amounts
of free zinc, determined with the fluorescent zinc reporter Flu-
ozin-3, were unaffected in LCLs from patients with EVERI or
EVER?2 deficiency (Fig. 4 B). Consistent with these findings, P1-
P5, P7, and P12 also had normal free zinc levels in LCLs, and P14
had normal amounts of zinc in primary keratinocytes (Fig. 4 B).
Furthermore, all cell lines had zinc flux kinetics in the control
range (Fig. 4 C). No statistically significant effect of genotype
was detected in a two-way repeated-measures ANOVA. Thus,
the overexpression of EVERI and EVER2 modulated zinc-de-
pendent transcription, whereas that of CIBI did not, and en-
dogenous EVER1/2 and CIBI deficiencies had no overt effect on
zinc homeostasis, implying that the mechanism underlying EV
is zinc independent. Finally, an analysis of TNFa-dependent
canonical and noncanonical NF-«B activation upon overexpres-
sion of EVERI, EVER2, CIB], or a combination of these genes in
HEK293T cells revealed no differences relative to an empty vec-
tor-transfected control (Fig. 4 D), at odds with previous studies
(Gaud et al., 2013; Vuillier et al., 2014). Moreover, CIB1-deficient
keratinocytes from P5 and P14 displayed normal NF-«B activa-
tion in response to TNFa, as shown by assessments of IkBa phos-
phorylation (Fig. 4 E). This finding is consistent with the fact
that none of the many known inborn errors of NF-kB underlie
skin lesions caused by B-HPVs (Zhang et al., 2017). Thus, studies
of the known functions of EVER1 and EVER?2 identified no phe-
notype common to EVERI-, EVER2-, and CIBl-deficient cells. As
the three genetic deficiencies are AR with complete penetrance
and underlie strict virological and clinical phenocopies and the
three proteins are required for the stability of an oligomeric
complex, these findings suggest that the major mechanism of
EV pathogenesis is probably unrelated to zinc metabolism and
NF-«B activation.
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CIB1 deficiency does not affect keratinocyte

adhesion and migration

We then focused our attention on the known functions of CIBI.
None of the four phenotypes of CIBl-deficient mice were seen in
our patients, who had no cardiac, vascular, hemostasis, or fertil-
ity abnormalities (Yuan etal., 2006; Zayed et al., 2007; Naik et al.,
2009; Heineke et al., 2010). CIB1 has not been studied in human
or mouse keratinocytes. However, it has been reported to local-
ize to focal adhesions and to modulate cell migration (Leisner et
al., 2016). The keratinocytes of P5 contained normal levels of the
focal adhesion proteins vinculin and focal adhesion kinase (FAK)
and displayed normal FAK activation, as shown by Western blot
analyses of phosphorylation (pFAK), relative to two unrelated
healthy controls and a heterozygous family member (Fig. 5 A).
We assessed the formation of focal adhesions by performing im-
munofluorescence staining for vinculin- and pFAK-positive focal
adhesion structures in CIB1-deficient keratinocytes. Automated
surface detection and quantification showed these adhesions
to be of normal size, fluorescence intensity, and morphology,
similar to those of healthy controls and heterozygous relatives
(Fig. 5, B and C). Consistent with these results, CIB1 deficiency
had no detectable effect on the ability of keratinocytes to mi-
grate in scratch-wounding assays, although the results obtained
were at the lower end of the control range (Fig. 5,D, E, and F). Fi-
nally, we compared the transcriptomes of WT keratinocytes and
CIBl-deficient keratinocytes and of CIB1-deficient keratinocytes
and GST- or WT-CIBl-transduced CIBI-deficient keratinocytes.
We identified only 40 genes displaying at least a twofold down-
or up-regulation. These genes included CIB1 but not EVERI or
EVER?2, consistent with our quantitative PCR (qPCR) data. No
enrichment in a specific pathway was detected among these
genes (Table S6). Thus, the lack of CIBI1 caused no overt cellu-
lar phenotype related or unrelated to the known functions of
EVERI, EVER2, or CIB1 in LCLs or primary keratinocytes. These
data are consistent with the very narrow clinical phenotype of
EV patients, who are highly and selectively vulnerable to B-HPV
but otherwise healthy. However, they provide no insight into the
potential mechanism underlying B-HPV-driven lesions as even
keratinocytes displayed no detectable phenotype.

CIB1, EVER], and EVER2 interact with the HPV E5

and E8 proteins

These results suggest that CIBl-deficient keratinocytes may dis-
play their EV-causing phenotype only in the presence of B-HPV
infection. Antiviral restriction factors are commonly targeted
and antagonized by viral proteins (Duggal and Emerman, 2012).
The specific feature of the -HPVs underlying EV lesions is their
lack of the E5 and E8 open reading frames (ORFs), rendering
them defective in healthy individuals (Orth, 2006). The E§ ORFs
from p-HPV1, y-HPV4, and k-CRPV are structurally related to the
E5 ORF, and the corresponding proteins function as growth-pro-
moting factors in E5-deficient k-papillomaviruses (Orth, 2008).
Indeed, it has been shown that CRPV-E8 is crucial in vivo (Hu et
al., 2002; Nonnenmacher et al., 2006). E5 and E8 are both hy-
drophobic transmembrane proteins with weak transforming
activity in vitro (Nonnenmacher et al., 2006). As EV patients are
prone only to cutaneous disease caused by B-HPVs, we hypoth-
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Figure 4. Analysis of zinc signaling/levels and NF-kB activation in the presence and absence of CIB1. (A) HEK293T cells were transfected with plasmids
encoding CIB1, EVERL, and EVER2 either alone or in combination and with a 4xMRE-dependent EGFP reporter construct. After 24 h, cells were stimulated
overnight with PMA/ionomycin (10 ng/ml and 50 ng/ml, respectively) or zinc sulfate (ZnSO4; 100 uM). The next day, cells were stained with 1 pg/ml DAPI to
exclude dead cells, and GFP fluorescence was determined with an LSRII flow cytometer. The RRR with the value for vector-transfected cells was set at 100%.
Statistical significance was assessed by one-way ANOVA followed by Dunnett’s multiple comparison test relative to the appropriate vector-transfected control
(ns, P > 0.05; *, P < 0.05; *** P < 0.001; n = 3). (B) Flow cytometric quantification of absolute amounts of labile zinc in LCLs derived from healthy controls,
EVER1-, EVER2-, or CIB1-deficient patients, or in keratinocytes from P14 with 1 uM FluoZin-3 as described by Haase et al. (2006). Statistical significance was
assessed by one-way ANOVA followed by Dunnett’s multiple comparison test relative to the healthy controls (n = 3). (C) Kinetics of zinc flux in LCLs derived from
healthy controls and EVER1-, EVER2-, or CIB1-deficient patients. Cells were loaded with 1 uM FluoZin-3 for 30 min. Fluorimetric measurement were performed
on a Victor microplate reader. Baseline fluorescence was recorded every minute for 10 min. Cells were then loaded with 100 uM ZnSO, and recorded for 15
min. The specificity of the zinc signal was confirmed by adding the calcium-specific chelator BAPTA before the quenching of the signal with the zinc-specific
chelator TPEN and recording for 20 min. No significant effect of genotype was detected in two-way repeat-measures ANOVA (n = 3). (D) HEK293T cells were
transfected with plasmids encoding CIB1-FLAG, FLAG-EVER], and EVER2 either alone or in combination. Cells were stimulated with 50 ng/ml TNFa 6 h after
transfection, incubated overnight, and then harvested and processed for Western blotting. Membranes were probed for the canonical NF-kB component (p)
IkBa and the noncanonical NF-kB component p100/p52. Expression of the constructs used for transfection was verified by incubation with a FLAG-specific
antibody. GAPDH served as a loading control (n = 3). (E) Primary keratinocytes from unrelated donors (controls 1and 2), a healthy family member from kindred
Al carrying the mutation in a heterozygous state (Al.viii.2), and one patient each from kindreds Al and C were stimulated with 10 ng/ml TNFa for 5, 10, or 20
min and then harvested and processed for Western blotting. Membranes were probed for the canonical NF-kB component (p)IkBa. CIB1 levels were assessed
with a polyclonal antibody. GAPDH served as a loading control. vec, empty vector (n = 3).

esized that the EVER1-EVER2-CIB1 complex interacts with E8
and E5 produced early in infection. We considered y-HPV4 E8
and k-CRPV E8, all B-HPV5 early-expressed ORFs (E1, E2, E6,and
E7), and as controls, all a-HPV16 early-expressed ORFs (E1, E2,
E5a, E6, and E7). We assessed the ability of the corresponding
proteins to interact with CIB1 in the human keratinocyte cell line
HaCaT in Duolink proximity-ligation assays (PLAs) by fluores-
cence microscopy followed by the automated surface detection
and quantification of total fluorescence intensity. This approach
can be used to detect proteins lying in close proximity and there-
fore likely to form a complex. This approach revealed that CIB1
was indeed targeted by HPV4 E8, CRPV E8, and HPV16 E5 but
also by HPV5 E1 and HPV16 E2 and not by any of the other six
E proteins from these two HPVs (Fig. 6 A). We then confirmed
these interactions by coimmunoprecipitation/immunoblotting
in HaCaT cells (Fig. 6 B). Collectively, these experiments showed
that CIB1 interacts with both the y-HPV4 E8 and a-HPV16 E5
proteins. These findings are consistent with a previous study
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showing that EVER proteins interact with HPV16 E5 (Lazarczyk
etal., 2008). The interaction between B-HPV5 E1 and HPV16 E2
and CIBI but not between HPV5-E2 and CIB1 suggests that the
CIB1-EVERI-EVER2 complex or at least CIB1 might be involved
against other cutaneous or mucosal HPVs in patients without EV.
All these observations provide a plausible mechanism of disease
in patients with EV. B-HPVs lacking the E5 and E8 ORFs cannot
overcome the CIB1-EVERI-EVER2 complex, which probably op-
erates as a restriction factor in keratinocytes (Fig. 7). Conversely,
in patientslacking EVER1, EVER2, or CIBI, the lack of this restric-
tion factor allows B-HPV-driven lesions to develop.

Discussion

We report AR complete CIB1 deficiency as a new genetic cause
of EV. We identified two frameshift insertions (I156Dfs*5 and
A184Lfs*70), one frameshift deletion (K83Rfs*4 in two kindreds),
one nonsense mutation (R72*), and one splice mutation (c.52-
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2A>G) in 24 patients from six families from five ethnically and
ecologically diverse countries: Colombia, France, Iran, Switzer-
land, and Togo. None of the heterozygous relatives of the patients
show any clinical signs of EV, whereas all homozygous individ-
uals suffer from EV. The familial segregation of the mutant CIBI
alleles is consistent with an AR trait displaying complete clinical
penetrance, but CIB1 deficiency is associated with somewhat
variable expressivity, as also reported for the deficiencies in fam-
ilies with EVERI and EVERZ mutations (Orth, 2006, 2008; Burger
and Itin, 2014). For example, in kindred A, the phenotype ranged
from very mild manifestations in P1 and P4 to more aggressive
disease with early cancer development in siblings P2, P3, and P5.
Nevertheless, in all patients, CIB1 deficiency led to the develop-
ment of EV from the age of 23 yr onward (the age at which clini-
cal penetrance can be said to be complete in this cohort). Finally,
none of these patients suffered from any other unusually severe
infection, like patients with EVER1 or EVER2 deficiencies and
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fluorescence intensity

vinculin

Scratch wounding closure

Figure 5. Focal adhesion formation and scratch
wounding in CIBl-deficient keratinocytes. (A) Pri-
mary keratinocytes from two donors, a healthy member
of kindred A (Al.viii.2; CIB1 wt/m), and P5 were allowed
to adhere to fibronectin-coated plates (10 pg/ml) for the
times indicated and were then harvested and processed
for Western blotting. The membranes were probed for
the focal adhesion (FA) components vinculin and (p)FAK.
GAPDH served as a loading control. (B and C) Primary
keratinocytes from two donors, a healthy member of
kindred A (Al.viii.2), and P5 were allowed to adhere to
fibronectin-coated coverslips (10 ug/ml) for 24 h. Cells
were fixed and stained with vinculin- and pFAK-specific
antibodies. Z stacks were acquired with a confocal micro-
scope. (B) Representative image for automated surface
detection for control 1. Bar, 40 pum. (C) The volume (size),
fluorescence intensity, and morphology of the vincu-
lin- and pFAK-positive structures were automatically
determined with Imaris. Values were normalized against
the total number of surfaces detected. Statistical sig-
nificance was assessed in one-way ANOVA followed by
Dunnett’s multiple comparison test relative to control 1.
No significant differences were detected for any of the
parameters tested (P > 0.05). (D-F) Primary keratino-
cytes from two donors, a healthy member of kindred A
(ALviii.2; CIB1 wt/m), and P5 were allowed to adhere to
fibronectin-coated plates (1 pg/ml) overnight. Scratch
wounds were created with a pipette tip, and wound clo-
sure was monitored by live-cell microscopy every 20 min
for 16 h. Bar, 283 pm. Wound closure was then quanti-
fied automatically with the MiToBo plugin in Image] with

merge

pFAK

measurement of the cell-free area normalized against
o control 1 the starting point (set to 100%; D and E). Statistical sig-
e conrol2  nificance was assessed by two-way repeated-measures
2%31 WM ANOVA. Differences between controls 1 and 2, CIB1

wt/m, and P5 were statistically significant. Differences
between control 2, CIB1 wt/m, and P5 were not signifi-
cant. (F) For confirmation of the accuracy of the results
obtained with the plugin, the total cell-free area at the
start and end points was determined manually. The data
shown are the means of two (controls 1 and 2) or three
(CIB1 wt/m and P5) independent experiments with at
least six data points acquired per set. Statistical signif-
icance was assessed by one-way ANOVA followed by
Dunnett’s multiple comparison test relative to controls
lor2.(ns, P> 0.05; *** P <0.001).

unlike those with atypical EV and T cell deficits. AR CIB1, EVER],
and EVER2 deficiencies are therefore indistinguishable clinical
and virological phenocopies, consistent with a typical form of EV.

CIB1 has been reported to have pleiotropic functions both in
vitro in cell culture models and in vivo in knockout mice (Leisner
etal., 2016). Mice lacking Cib1 have vascular, cardiac, and hemor-
rhagic phenotypes, and their males are sterile (Yuan et al., 2006;
Naik et al., 2009). By contrast, none of these phenotypes were
observed in patients, indicating that CIB1is not essential for these
functions in humans. Low CIBI mRNA levels are unlikely to be
causally associated with oligoasthenozoospermia-related steril-
ity (Sun et al., 2014) as a complete absence of the CIB1 protein
had no effect on male fertility in our cohort. We know that this
observation is robust because we have diagnosed 24 CIB1-defi-
cient patients from six kindreds originating from very diverse
ethnicities. Our findings suggest that the only nonredundant
function of CIBI in humans in vivo is the control of B-HPVs in
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Figure 6. PLAand coimmunoprecipitation in HaCaT. (A) HaCaT cells were transfected with plasmids encoding FLAG-HPV5 E1, E2, E6, and E7, FLAG-HPV16
El, E2, E5, E6, and E7, FLAG-HPV4 E8, FLAG-CRPV E8, and CIB1-HA alone or in combination. The day after transfection, samples were plated on microscopy
slides, allowed to adhere, fixed in acetone, permeabilized, and subjected to Duolink PLAs with rabbit-HA- and mouse-FLAG-specific antibodies. Z stacks were
acquired with a widefield microscope, and PLA-positive sites (defined as structures >0.35 pM?) were scored with Imaris software for 15-50 cells per condition.
These pooled results were obtained in two independent experiments. The orange bars indicate the mean. (B) HaCaT cells were transfected with plasmids
encoding CIB1-HA and the FLAG-tagged HPV E ORFs scoring positive in the PLA in A. 1d after transfection, samples were subjected to immunoprecipitation
(IP) with FLAG-specific antibodies. Western blots were performed to detect coimmunoprecipitated HPV5 E1, HPV16 E2, E5, HPV4 E8, and CRPV E8. The immu-
noprecipitation of CIB1 was confirmed by reincubation with a FLAG-specific antibody. The presence of all proteins was checked by Western blotting analysis
on an input sample taken before immunoprecipitation. GAPDH served as a loading control (n = 3). vec, vector.

keratinocytes. Cibl-deficient mice have not been challenged with
infectious agents including skin-tropic viruses. The only known
mouse-tropic papillomavirus, Mus musculus papillomavirus
type 1 (MuPV1; Ingle et al., 2011), does not belong to the B genus
(Joh etal., 2011).

Our identification of AR CIBI deficiency establishes a third
genetic etiology of typical EV after AR EVER] and EVER2 defi-

A General Population B EV Patient
Cutaneous Cutaneous

B-HPVS ., ad-, 1, p-HPVs BHPVS 52, a4, y-, p-HPVs
(e

[EvErR2] IEVERM2! EVER1/2
e CIB1
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—— Genetic

deficiency

N B o, 7,
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Other restriction
factors

B-HPV : Clinical infection
non-B-HPV : Latent or clinical infection

Other restriction
factors

B-HPV : Latent infection
non B-HPV: Latent or clinical infection

Figure 7. Mechanism underlying EV. (A) In the general population, the
CIB1-EVER1-EVER2 complex restricts the transcription of minichromosome
of B-HPV, leading to the absence of clinical manifestation. The proteins E5 and
E8 expressed by the other cutaneous HPVs (a2-, a4-, y-, and p-HPVs) are able
to antagonize the CIB1-EVERI-EVER2 complex. However, additional restric-
tion factors are probably contributing to the absence of HPV lesions in the vast
majority of people. (B) In EV patients, the lack of CIB1-EVERI-EVER2 permits
the transcription of B-HPV minichromosome, which leads to the develop-
ment of EV lesions on the skin. However, the probable presence of additional
restriction factors against cutaneous HPVs other than B-HPVs accounts for
their normal control, which does not differ from the general population.
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ciencies. Six different homozygous and two compound hetero-
zygous mutations of TCM6 have been described in 14 patients
from eight kindreds (Ramoz et al., 2002; Tate et al., 2004; Zuo
et al., 2006; Aochi et al., 2007; Gober et al., 2007; Youssefian et
al., 2018), and 11 homozygous mutations of TCM8 have been de-
scribed in 17 patients from 11 kindreds (Ramoz et al., 2002; Sun
etal., 2005; Berthelotetal., 2007; Rady et al., 2007; Landini et al.,
2012; Burger and Itin, 2014; Miyauchi et al., 2016; Imahorn et al.,
2017; de Jong et al., 2018; Youssefian et al., 2018). All these muta-
tions are loss of function. The identification of five homozygous
loss-of-function alleles of CIBI markedly increases the number
of EV cases for which explanations have been found at the ge-
netic and molecular levels. Moreover, we identified a molecular
connection between CIB1, EVERI], and EVER2 as shown by the
very low levels of CIB1 proteins in cells from patients with EVER1
or EVER?2 deficiency. This is reminiscent of the interaction be-
tween TMC1, TMC2, and CIB2 in inner-ear hair cells, which is
required for normal sensory transduction (Giese et al., 2017). Our
observation provides a unifying cellular phenotype common to
all known genetic etiologies of typical EV. CIBI protein profiling
could therefore be used as a simple laboratory test for screening
patients with suspected EV, making it possible to target sequenc-
ing efforts on CIBI, TMC6, and TMC8 in patients with low levels
of CIB1 protein.

The clinical characteristics of EVER1- and EVER2-deficient
patients (EV in the absence of other clinical manifestations;
Orth, 2006, 2008; Burger and Itin, 2014) and of the patients
with CIB1 deficiency described in this study are identical and
markedly different from those of patients with atypical EV due
to CD4* T cell lymphopenia caused by RHOH, MST1 (encoded by
STK4), CORO1A, ARTEMIS (encoded by DCLREIC), DOCKS, RAS
GRP1, LCK, and TPP2 deficiencies. In such patients, persistent
B-HPV-induced lesions occur in the context of a much broader
infectious, autoimmune, and tumoral phenotype (Crequer etal.,
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2012a,b; Sanal et al., 2012; Stray-Pedersen et al., 2014; Stepensky
etal., 2015; Li et al., 2016; Tahiat et al., 2016; Liu et al., 2017; Platt
etal., 2017). Consistent with this observation, the CIBl-deficient
patients tested in this study had no detectable T-lymphocyte de-
fects in terms of either cell numbers or functions. The clinical
and immunological dichotomy between typical and atypical EV
is reflected at the cellular level by the profile of CIB1 expression
profile, with very low levels of CIB1 in patients with EVER1 and
EVER2 deficiencies but not in patients with RHOH and MST1 de-
ficiencies. These findings support the notion that patients with
typical EV have intact adaptive immunity and suffer from an in-
born error of cell-intrinsic immunity, resulting in an inability to
control B-HPV-driven keratinocyte proliferation.

Inherited CIBI deficiency is not associated with any detect-
able, constitutive phenotype in keratinocytes in terms of the
transcriptome, cell growth, migration, or adhesion. CIB1 defi-
ciency also has no impact on zinc homeostasis and NF-«B activa-
tion, suggesting that EVER proteins have other functions shared
by CIBI that are involved in the pathogenesis of EV. We reveal in
this study a phenotype of CIB1, EVERI, and EVER2 deficiencies
thatis conditional on infection with f-HPVs. Our findings suggest
that the CIB1-EVER1-EVER2 complex interacts in vivo with both
cutaneous y-HPV4 E8 and k-CRPV E8 as well as with a-HPV16
E5. In this light, it is plausible that B-HPVs that lack both the E5
and E8 ORFs cannot overcome the CIBI-EVERI-EVER2 complex,
unlike a-, y-, and u-HPVs and CRPV, which cause disease more
widely in the general population (Fig. 7). Both E5 and E8 are hy-
drophobic and transmembrane proteins with weak transform-
ing activity in vitro but potent growth-promoting activity in vivo
(Hu et al., 2002; Garcia-Vallvé et al., 2005; Nonnenmacher et al.,
2006; Maufort et al., 2007; Orth, 2008; Wechsler et al., 2018).
Conversely, the E5 and E8 proteins target and antagonize the
CIB1-EVERI-EVER2 complex, thereby contributing to virulence
toa-, Y-, and u-HPVs, which cause cutaneous warts in the general
population. By contrast, B-HPVs are capable of causing disease
only in EV patients lacking the CIB1-EVER1-EVER2 complex. The
interaction of B-HPV5 El and a-HPV16 E2 with CIBI is probably
not sufficient to antagonize the EVER-CIB1 complex, yet it sug-
gests that this complex might be involved in the pathogenesis of
the disease caused by various HPVs. However, EV patients are
apparently not more prone to develop common HPV warts, sug-
gesting that immunity against cutaneous non-fB-HPVs relies on
mechanisms other than the CIBI-EVERI-EVER2 complex (Fig. 7).
We have established that EV is caused by mutations of the genes
encoding the proteins of the CIB1-EVER1-EVER2 complex, which
acts as a restriction factor for HPVs in keratinocytes through
interaction with two viral E proteins, E8 and E5, which are ab-
sent from B-HPVs.

The CIB1-EVERI-EVER2 complex fulfills the five criteria com-
monly used to define restriction factors active against viruses
(Duggal and Emerman, 2012). First, the lack of CIBI, EVER],
or EVER2 is clinically associated with EV, lesions of which are
caused by B-HPVs. Second, patients lacking the CIB1-EVERI-
EVER2 complex display no other detectable cellular or clinical
phenotype. Third, the CIB1-EVER1-EVER2 complex operates in
keratinocytes, the host cells of B-HPVs. Fourth, E5 and E8 are
viral virulence genes expressed by cutaneous a-, y-, and p-HPVs

de Jong et al.
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but not B-HPVs, and the products of these genes target the CIB1-
EVERI-EVER2 complex. Fifth, human CIBI belongs to a multi-
gene family with four members. We do not provide experimental
evidence for the control of B-HPVs by the CIB1-EVER1-EVER2
complex in keratinocytes in vitro as this work would have gone
well beyond the scope of this study given the technical difficul-
ties involved. Nevertheless, we provide the first in vivo evidence
of arestriction factor operating in humans. Other restriction fac-
tors in humans have been validated in vitro or in animal models
(Kluge et al., 2015; Subramanian et al., 2018). The pathogenesis
of the B-HPV-driven skin lesions characteristic of EV in patients
with AR CIB1, EVER], or EVER2 deficiency involves the disrup-
tion of skin-restricted, cell-autonomous, nonhematopoietic,
keratinocyte-intrinsic, IFN-independent restriction factor (the
CIBI-EVERI-EVER2 complex)-mediated immunity against a
specific set of defective viruses (B-HPVs, which lack E5 and E8).

Materials and methods

Patients and case studies

The clinical characteristics of all patients are summarized in
Table 1. The experiments involving human subjects were con-
ducted in accordance with local, national, and international reg-
ulations and were approved by the French Ethics Committee, the
French National Agency for the Safety of Medicines and Health
Products, and the French Ministry of Research (protocol C10-13)
as well as The Rockefeller University Institutional Review Board
(protocol JCA-0700). Informed consent was obtained from all pa-
tients or their family members included in this study.

Kindred A (branches A1 and A2; P1-11)
Branches Aland A2 of kindred A originate from the same region
of Colombia, and affected individuals in these two branches of
the family are homozygous for the same 3-Mb haplotype encom-
passing a disease-linked interval on chromosome 15 that harbors
CIBI, consistent with a common ancestor for these two families.

Kindred A, branch A1 (Figs. 1 A and S1; Tables 1, S1A, S2, S3, S4,
and S5). P1-P5 were born to second-degree cousins (Fig. 1A). The
consanguinity of this family was confirmed by the high inbreed-
ing coefficient determined by SNP 6.0 array analysis (Table S5).
Neither of the parents displayed any signs of cutaneous HPV infec-
tion or EV. The clinical characteristics of P2, P3, and P5 have been
reported previously (Rueda, 1993). All five patients mounted nor-
mal antibody responses to various DNA viruses (HSV-1/2, varicella
zoster virus, CMV, EBV, and hepatitis B) and RNA viruses (hepatitis
A, hepatitis C, measles, rubella, and mumps) as shown by com-
parison with 12 healthy family members (Table S3). Furthermore,
P1-P4 were extensively phenotyped for skin-homing total CD3*,
CD4*,and CD8" T cell subsets (CLA*, CLA*CCR4*, CLA*CCR10*,and
CCRI10%), and no alterations were detected relative to five unre-
lated healthy donors and nine healthy family members (Table S4).

P1 (Alviii.4; Fig. 1 A) has a very mild EV phenotype. She first
developed persistent flat warts on the back of her hands at the
age of 12 yr. At the age of 15 yr, she developed warts on her face.
She is not currently followed by a dermatologist.

P2 (Alwviii.7; Fig. 1 A) presented with brownish macules on his
hands at the age of 6 yr. He was formally diagnosed at the age of
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13 yr. The hyperpigmented lesions progressively spread, forming
flat warts on his breast, neck, forehead, legs, and feet (Fig. S1 A).
The lesions on his forehead were hypochromic, and the lesions
on his trunk were pityriasis versicolor-like. He developed an
invasive ulcerating SCC on the right-hand side of his forehead,
which was surgically removed. He was treated by cryotherapy
and with topical 5-fluorouracil. Restriction enzyme analysis and
Southern blot hybridization showed that P2 was carrying HPVS,
HPV17, and HPV20. P2 also suffered from chronic hepatitis C
virus-induced hepatitis and died from hepatic carcinoma at the
age of 47 yr. This patient was described as case 11 by Rueda (1993).

P3 (ALviii.10; Fig. 1 A) presented with flat warts at the age of 7
yr. She was formally diagnosed at the age of 13 yr. She displayed
reddish and hyperpigmented flat warts on her forehead, trunk,
arms, hands, and legs. She developed three SCCs on the fore-
head and lips after the age of 13 yr. Restriction enzyme analysis
and Southern blot hybridization showed that P3 carried HPV8
and HPV20. This patient was reported as case 12 in a previous
study (Rueda, 1993). She displays no immunological abnormal-
ities of T cells, B cells, NK cells, or monocytes (Table S1 A), and
her T cell proliferation after anti-CD3 antibody stimulation was
normal (Table S2).

P4 (Alwviii.12; Fig. 1 A) presented with flat warts at the age of 7
yr and was formally diagnosed at the age of 22 yr. Her lesions are
located on the head and trunk. She has not yet developed SCCs.
She was shown to be HPV8 positive by restriction enzyme analy-
sis and Southern blot hybridization.

P5 (Alwviii.15; Fig. 1 A) presented with flat warts on his fore-
head at the age of 5 yr. The lesions spread to his hands, trunk, and
upper legs over time. He was formally diagnosed with EV at the
age of 7 yr. He developed an SCC on his forehead at the age of 31
yr, which was surgically removed. He is currently being treated
by cryotherapy and protection against sun exposure. Restriction
enzyme and Southern blot analyses showed that he carried HPV8
and HPV20. This patient was described as case 13 in a previous
study (Rueda, 1993). He displays no immunological abnormalities
of T cells, B cells, NK cells, or monocytes (Table S1 A), and his T
cell proliferation in response to anti-CD3 antibody stimulation
was normal (Table S2).

P6 (Al.iv.13; Fig. 1 A) presented with diffuse flat warts at the
age of 1 yr. He was formally diagnosed with EV at the age of 29
yr. He had numerous lesions over his entire body except for the
scalp, palms, soles of his feet, and mucous membranes. The backs
of his hands and his arms and legs were particularly severely af-
fected. Erythematous squamous and pigmented lesions evolved
to Bowen’s disease and recurrent invasive SCC after the age of
15 yr. Histologically, these lesions consisted of large cells with
an extensive clear cytoplasm and vacuolar nuclei in both the
stratum spinosum and granular layer of the epidermis, a feature
pathognomonic for EV. In semithin sections, inclusion bodies,
also typical of EV, were identified. This patient died at the age of
47 yr due to multiple aggressive SCCs. He was reported as case
6 in a previous study (Rueda, 1993). Unfortunately, this patient
died >35 yr ago, precluding genetic analysis.

P7 (Alwiii.30; Fig. 1 A), belonging to another branch of kin-
dred Al, displayed consanguinity because one of his parents was
the offspring of second cousins. Familial consanguinity was con-
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firmed by a high inbreeding coefficient determined by SNP 6.0
array analysis (Table S5). From the age of 5 yr, P7 presented erup-
tions of pityriasis versicolor-like and scaly erythematous lesions
on the face and neck, which spread as flat warts to his trunk,
forearms, legs, and the backs of his hands. He developed infil-
trative lesions, histologically defined as Bowen’s disease, at the
left medial canthus and on the nose. P7 was treated surgically for
Bowen’s disease and then topically with retinoic acid and 5-flu-
oruracil. P7 tested positive for HPV5, HPV17, and HPV36 by re-
striction enzyme analysis and Southern blot hybridization. This
patient was described as case 7 in a previous study (Rueda, 1993).

Kindred A, branch A2 (Fig. 1 A and Tables 1 and S5). P§-P11 were
born to healthy parents. Familial consanguinity was suspected
and confirmed on the basis of a high inbreeding coefficient in
Pllas determined by 250K array analysis (Table S5). The clinical
characteristics of P8-P11 have been described previously (Rueda
and Rodriguez, 1976; Rueda, 1993). All patients had normal karyo-
types and serum Ig levels.

P8 (A2.ii.1; Fig. 1 A) first presented with EV at the age of 1 yr,
but she was not formally diagnosed until the age of 59 yr. She
presented with flat warts on her head, trunk, and extremities.
She developed SCC on her forehead at the age of 47 yr. Restriction
enzyme analysis and Southern blot hybridization demonstrated
the presence of HPV5, HPV8, HPV20, and HPV24 in this patient.
She died at the age of 78 yr. This patient was described as case
1in previous studies (Rueda and Rodriguez, 1976; Rueda, 1993).
HPV5 was cloned from benign and malignant lesions from P8 and
characterized (Deau et al., 1993). HPV20 was originally cloned
from a benign lesion from P§ (Kremsdorf et al., 1984).

P9 (A2.ii.10; Fig. 1 A) first presented with EV at the age of 5
yr, but she was not formally diagnosed until the age of 40 yr. She
presented with flat warts on her head, trunk, and extremities.
SCC development has never been reported for this patient. Re-
striction enzyme analysis and Southern blot hybridization con-
firmed that this patient was carrying HPV8. This patient was
described as case 2 in previous studies (Rueda and Rodriguez,
1976; Rueda, 1993). HPV5 from P9 was cloned and characterized
as case B by Deau et al. (1991) and case 4 by Deau et al. (1993).

P10 (A2.ii.12; Fig. 1 A) first presented with EV at the age of
1 yr. He was not formally diagnosed until the age of 40 yr. He
presented with flat warts on his head, trunk, and extremities. He
developed SCC on his forehead and lips after the age of 26 yr, and
he died at the age of 48 yr. This patient was described as case 3 in
two previous studies (Rueda and Rodriguez, 1976; Rueda, 1993).

P11 (A2.ii.13) first presented with EV at the age of 3 yr but was
not formally diagnosed until the age of 36 yr. He presented with
flat warts on his head, trunk, and extremities. He developed in-
vasive SCC and basal cell carcinoma on his forehead after the age
of 27 yr. He died at the age of 48 yr. Restriction enzyme analysis
and Southern blot hybridization confirmed that this patient was
carrying HPV5, HPV8, and HPV20. He was described as case 4 in
two previous studies (Rueda and Rodriguez, 1976; Rueda, 1993).

Kindred B (P12; Fig. 1A and Tables 1 and S5)

P12 (B.ii.2; Fig. 1 A) was previously described in a case study
(Kienzler et al., 1979). He was born to French parents in 1933. Po-
tential parental consanguinity was investigated by calculating an
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inbreeding coefficient with FSuite software (Gazal et al., 2014).
This analysis indicated that his parents were first cousins (Table
S5). P12 presented with recurrent polymorphic skin lesions typ-
ical of EV from the age of 23 yr onwards. He developed several
SCCs on the forehead, cheek, and ear ~20 yr after the onset of
the disease. The viral etiology of his disease was confirmed by
the identification of HPV8 by restriction enzyme analysis and
by Southern blotting. P12 had normal levels of Ig, complement
components, and cellular immunity as shown by measurements
of dinitrochlorobenzene sensitization, rosette assays, leukocyte
migration, and lymphocyte proliferation. P12 died from natural
causes at the age of 72 yr.

Kindred C (P13 and P14; Fig. 1 A and Tables 1 and S5)

P13 (C.ii.]; Fig. 1 A) and P14 (C.ii.2; Fig. 1 A) were among the first
EV patients documented by Lutz, who was the first to describe
this disease and followed these two sisters from 1929/1930 on-
wards (Lutz, 1946). Both patients were also described in a more
recent study (Arnold et al., 2011). They were born to Swiss par-
ents who were shown to be consanguineous by inbreeding coeffi-
cient analyses (Table S5). P13 was born in 1912. She developed flat
wart-like lesions on her neck, face, and on the backs of her hands
in childhood, and these warts persisted throughout her life. After
the age of 35 yr, she developed several actinic keratoses and SCC.
She died of locally invasive SCC with regional lymph node me-
tastasis at the age of 71 yr. P14 was born in 1923 and developed
symptoms of EV in early childhood. Persistent lesions spread
from the neck and hands to the patient’s legs. After the age of 52
yr, P14 developed several actinic keratoses, SCCs, and basal cell
carcinomas that were clinically well managed by a combination
of surgery and topical treatment. P14 died from natural causes at
the age of 91 yr. HPV5 was identified by PCR amplification from
specimens obtained from these two patients.

Kindred D (P15; Figs. 1A and S1; Tables 1, S1B, S4, and S5)

P15 (D.iv.2; Fig. 1 A) was born to consanguineous parents from
Switzerland, and her phenotype was recently described in a
case study (Imahorn et al., 2017). Familial consanguinity was
confirmed by a high inbreeding coefficient determined with an
SNP 6.0 array (Table S5). P15 developed first lesions during early
childhood (Fig. S1 B). She was treated for several carcinomas in
situ (Bowen type) and SCCs from the age of 54 yr onwards. HPV5
was detected by PCR amplification and Sanger sequencing. This
patient has no immunological abnormalities of T cells, B cells, or
NK cells (Table S1 B). She was also extensively phenotyped for
skin-homing total CD3*, CD4*, and CD8* cells and T cell subsets
(CLA*, CLA*CCR4*, CLA*CCR10*, and CCR10*), none of which dis-
played any marked difference relative to five unrelated healthy
donors (Table S4).

Kindred E (P16-P19; Figs. 1A and S1 C; Tables 1 and S5)

P16 (E.iv.4; Fig. 1A), P17 (E.iv.6; Fig. 1A), and P19 (E.iv.10; Fig. 1 A)
were first described in a case study (Saka et al., 2009). In brief,
P16-P19 were born to consanguineous parents from Togo. Fa-
milial consanguinity was confirmed on the basis of a high in-
breeding coefficient in an SNP 6.0 array analysis (Table S5). P16
first developed papules on her face at the age of 7 yr, and these

de Jong et al.
CIB1 deficiency in epidermodysplasia verruciformis

lesions subsequently disseminated over her entire body. She was
diagnosed at the age of 15 yr and died at the age of 21 yr from a
pulmonary metastasis secondary to the development of multiple
SCCs on areas of the skin exposed to the sun. P17 first developed
papules on her face at the age of 5 yr, and these lesions subse-
quently disseminated over her entire body. P18 was not included
in the initial case study. Only limited information about her clin-
ical characteristics is available. She died in 2013 after an episode
of fever. P19 is currently 14 yr of age and was first presented with
disseminated skin lesions at the age of 2 yr (Fig. S1 C). P16, P17,
and P19 had normal blood counts and renal and hepatic functions
and were confirmed to be HIV negative. Histological analysis
confirmed the presence of the pathognomonic cytopathic effect
in a lesional skin biopsy. It was not possible to type the causal
HPV due to infrastructure-related difficulties.

Kindred F (P20-P24; Figs. 1A, S1D, and S2; Tables 1 and S5)

Two patients, a 47-yr-old man and his 22-yr-old daughter, were
referred to the Dermatology Department of the Tehran Univer-
sity of Medical Sciences for the evaluation of a chronic condition
that had begun during childhood. Similar presentations were ob-
served in other family members, with five in total all born to con-
sanguineous parents, suggesting the presence of an AR Mendelian
disorder in the extended family. All patients were healthy at birth,
but they developed cutaneous lesions resembling widespread flat
warts and thin plaques from the ages of 1-3 yr onwards. Multiple
hyperpigmented plaques were observed on the skin of the male
patient. These plaques had an occasionally verrucous surface and
displayed ulceration and scaling with raised pearly borders. Three
excisional biopsies of the ulcerated plaques revealed the pres-
ence of islands of infiltrative malignant cells in the dermis with
palisading basaloid cells and polygonal squamous differentiation
with areas of keratinization and intercellular bridges consistent
with basosquamous carcinoma. The patient also had numerous
slightly raised brown papules and plaques on the face, neck, arms,
chest, and back of the hands, some coalescing into larger plaques
with a papillomatous surface. Microscopic evaluations of these le-
sions revealed hyperkeratosis and acanthosis, with keratinocytes
displaying coarse keratohyaline granules, perinuclear halos, and
a blue-gray pallor characteristic of EV. A jaw x-ray (orthopanto-
gram) was performed to evaluate jaw keratocysts and other ab-
normalities suggestive of nevoid basal cell carcinoma syndrome,
which were found to be within normal limits. The index case and
one of his affected siblings were positive for HBsAg, and both re-
ported long-term hepatitis B infection and liver cirrhosis. The
female patient had numerous erythematous or hyperpigmented
papules with a flat surface, minimal scaling, and irregular borders
on the face, neck, hands, and arms. Flat pink macules and larger
patches with fine scales were present on the chest and upper
arms. Biopsy of the lesions revealed pathological features typi-
cal of EV warts with minimal papillomatosis and hyperkeratosis,
viral cytopathic effects, and a blue-gray hue.

Genome-wide linkage analysis and inbreeding

coefficient determination

Genome-wide linkage analysis was performed essentially as
previously described (Grant et al., 2011) but with minor modi-
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fications. 22 members of kindred A, P14, P15, and six members
of kindred E were genotyped with the Affymetrix Genome-wide
Human SNP array 6.0. P10 was genotyped with the Affymetrix
Genome-wide Human Mapping 250K, and P11 was genotyped
with the Affymetrix CytoscanHD array. Four members of fam-
ily F were genotyped with the Illumina Infinum Global Screen-
ing Array (642,824 SNP markers) using 200 ng genomic DNA
in accordance with the manufacturer’s instructions (Illumina).
Genotypes were called with the Power Tools Software Package
(Affymetrix), and Chromosome Analysis Suite Software was
used for P11. SNPs presenting more than one Mendelian incon-
sistency were discarded. SNPs were further filtered with pop-
ulation-based filters with PLINK software (Purcell et al., 2007)
according to the ethnicity of the kindred. A subset of markers
common to the three arrays and optimized to decrease their
linkage disequilibrium (LD) was used for parametric multipoint
linkage analyses in MERLIN (Abecasis et al., 2002) for kindreds
Al, A2, B, D, E, and F, considering founders to be second-degree
relatives and assuming AR inheritance with complete penetrance
and a deleterious allele frequency of 10~%. The family founders
and unrelated individuals from HapMap CEU, MEX, and YRI
were used to estimate allele frequencies for kindreds B and D, Al
and A2, and E, respectively, and to define linkage clusters with an
r? threshold of 0.4. For kindred F, we estimated allele frequencies
from an unrelated Iranian cohort of 82 healthy individuals.

We estimated the inbreeding coefficient F by Markov pro-
cesses to model homozygous states throughout the genome
according to the FEstim method (Leutenegger et al., 2003). We
used the FEstim_SUBS method to minimize LD between SNPs
as recommended in a previous study (Gazal et al., 2014) for the
random extraction of sparse markers at 0.5-cm intervals to cre-
ate 100 submaps. This strategy does not require the estimation
of LD scores for the data, and F is estimated by calculating the
median value of the estimates obtained from the different maps.
FSuite v1.0.3 software was used to calculate FEstim and to infer
the degree of parental consanguinity for each individual from the
genome-wide human SNP array data (Gazal et al., 2014).

WES

The method used for WES has been described previously (Bolze
et al., 2010; Byun et al., 2010). Briefly, genomic DNA extracted
from the patients’ blood cells or LCLs was sheared with a Covaris
S2 Ultrasonicator. An adapter-ligated library was prepared with
the Paired-End Sample Prep kit V1 (Illumina). Exome capture was
performed with the SureSelect Human All Exon kit (50- or 71-Mb
version; Agilent Technologies). Sequencing was performed on an
Illumina Genome Analyzer IIx (Illumina) generating 72- or 100-
base reads. For kindred F, DNA was extracted from peripheral
blood samples by the salting out method. DNA concentration
was measured with a Qubit 2.0 fluorimeter (Thermo Fisher Sci-
entific). WES was performed for probands and affected family
members. Exons and flanking intronic regions of ~20,000 genes
(45 Mb; 98% of consensus coding sequence exons) were captured
with the llumina TruSeq Exome Enrichment Kit and sequenced
on a NextSeq 500 instrument (Illumina). We used a BWA-MEM
algorithm (Li and Durbin, 2009) to align the sequences with the
reference human genome sequence (hgl9build). Downstream
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processing was performed with the Genome Analysis Toolkit
(GATK; McKenna et al., 2010), SAMtools (Li et al., 2009), and
Picard Tools (http://broadinstitute.github.io/picard/). Substi-
tution calls were made with GATK UnifiedGenotyper, whereas
indel calls were made with SomaticIndelDetector V2. All calls
with a read coverage of <2x and a Phredscaled SNP quality of
<20 were filtered out. Single-nucleotide variants were filtered
on the basis of dbSNP135 (http://www.ncbi.nlm.nih.gov/SNF/)
and 1000Genomes (http://www.internationalgenome.org) data.
All variants were annotated with ANNOVAR (Wang et al., 2010).
The sequence data are available from the Sequence Read Archive
website under accession number SRP151153. All variant calls with
a variant quality <200, depth of coverage <5, and mapping qual-
ity <40 were filtered out. Only exonic and splice variants were
retained, and synonymous and heterozygous variants were sub-
sequently removed. Single-nucleotide variants with a MAF of
>0.1% in public databases were then excluded, given the rarity
of EV. This process identified 26-56 variants per patient.

Sanger sequencing of genomic DNA

Genomic DNA samples from patients and their relatives were
used as a template for the amplification of 300-600-bp regions
encompassing the mutation by PCR with site-specific oligonu-
cleotides. Amplicons were sequenced with BigDye Terminator
technology on an ABI 3730 DNA sequencer. Lasergene Suite
and SnapGene were used for sequence analysis (DNASTAR
and SnapGene).

IHC

Briefly, skin punch biopsy specimens (6 mm in diameter) were
obtained from waste skin removed from individuals undergoing
abdominoplasty (two individuals). Biopsy specimens were frozen
in optimal cutting temperature compound (Sakura) and stored at
-80°C. Tissue sections were air dried, fixed with acetone, blocked
by incubation with 10% normal serum, and stained with the an-
ti-CIB1 monoclonal antibody UN-2 (Naik et al., 1997) or an IgGl-«
isotype control (Sigma-Aldrich) at a concentration of 13 pg/ml
overnight at 4°C. Tissue sections were thoroughly washed and
incubated with biotin-labeled horse anti-mouse secondary anti-
body (Vector Laboratories) for 30 min at room temperature. The
slides were then treated with 0.3% H,0, and washed, and the
staining signal was amplified with avidin-biotin complex Vec-
tastain (Vector Laboratories), activated with 0.015% H,0,, and
developed with a 5% solution of the chromogen 3-amino-9-eth-
ylcarbazole (Sigma-Aldrich) for ~20 min. IHC was performed on
specimens from four healthy donors.

RNA sequencing

Total RNA was isolated from primary keratinocytes from P5 and
P14, two healthy donors (control 1 and control 2), and cells from
P5 stably expressing GST as an irrelevant protein or comple-
mented with an untagged CIBI construct. Total cellular mRNA
was prepared for sequencing with the NextSeq 500/550 High
Output v2 kit. We generated 75-bp single reads on a NextSeq
500. Reads were mapped onto the reference genome with STAR
v2.5.3a (Dobin et al., 2013). A genome index specific to our data
was first created, and the single-end reads were then aligned
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in a two-pass strategy. In this strategy, new splicing junctions
are first detected and used for the final mapping. Read counts
were obtained for each gene with HTSeq v. 0.9.1 (Anders et al.,
2015). Gene expression levels were estimated with Transcripts
Per Kilobase Million (TPM). TPM takes the size of each sample
library and gene lengths into account to assess expression levels
(Conesa et al., 2016). Statistical analysis was performed with R
v.3.2.3 (The R Foundation, 2015). Gene expression profiles are
represented as the log(fold change) in expression values between
two different groups.

RT-qPCR
Human tissue

RNA was isolated from LCLs, primary keratinocytes, and
HEK293T cells with the RNeasy mini kit and from whole blood
with the PaxGene blood RNA kit (QIAGEN). Reverse transcription
was performed with the SuperScript III first-strand synthesis
system and oligo(dT) primers according to the manufacturer’s
protocol (Thermo Fisher Scientific). RT-qPCR was then per-
formed with TagMan assays using exon-spanning probes for CIB1
(Hs01089679_m1), EVER1/TMC6 (Hs00273164_m1), or EVER2/
TMC8 (Hs00380060_m1; Thermo Fisher Scientific) with nor-
malization against GAPDH (4310884E), 18S (Hs99999901_sl), or
RNaseP (4403326) as housekeeping genes by the ACT method.
Data are represented as fold changes and were analyzed with the
AACT method and comparison with an untreated control sample.
The data shown are the means of three experiments.

Cell lines and primary cell isolation

HEK 293T cells were obtained from ATCC (CRL-3216). PBMCs
were isolated by Ficoll-Hypaque density centrifugation (Amer-
sham Pharmacia Biotech) from cytopheresis or whole-blood
samples obtained from healthy volunteers and patients, respec-
tively. EBV-immortalized LCLs (EBV-B cells) were obtained as
previously described (Dupuis et al., 2001). Primary keratinocyte
isolation: Punch biopsy specimens from the inner upper arm
were washed three times with serum-free DMEM supplemented
with 50 pg/ml gentamycin. They were then treated with dispase
(354235; BD) at 4°C overnight. The following day, dermis and
epidermis were separated manually and treated with Accutase
(A6964; Sigma-Aldrich). The epidermis was then cut into pieces
and wounded to obtain basal keratinocytes, which were cultured
as described below.

Cell culture and transfection

HEK293T and HaCaT cells were maintained in DMEM supple-
mented with 10% FBS. LCLs were maintained in RPMI 1640
supplemented with 10% FBS. Primary keratinocytes were main-
tained on mitomycin-C-inactivated (10 pg/ml; 3 h) MEF 3T3-J2
feeder cells in complete Green medium (DMEM/Ham’s F12 in a
2:1 ratio supplemented with 10% FBS, 180 nM adenine, 10 ng/ml
EGF, 0.4 pg/ml hydrocortisone, 8.47 ng/ml cholera toxin, 5 pg/
ml insulin, 1.36 ng/ml triiodothyronine, and 10 pM ROCK inhib-
itor Y-27632). Transfections were performed with XtremeGENE
9 (Roche), FuGENE6 (Promega), Lipofectamine 2000 (Thermo
Fisher Scientific), or Lipofectamine LTX (Thermo Fisher Scien-
tific) in accordance with the manufacturer’s instructions.
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Plasmids

Myc/DDK-tagged pCMV6-entry expression plasmids for EVER1/
TMCe6, EVER2/TMCS, CIB1, HPV5 El, E2, E6, and E7 as well as
HPV16 El, E2, E5, E6, and E7 were obtained from Origene. An
HA-tagged CIB1 expression construct was generated by inserting
the CIB1 expression cassette from pCMVé6-entry into pcDNA3.1
between the BamHI and EcoRI sites. CIB1 was amplified by PCR
with the primers 5-ATTAGGATCCGCCACCATGGGGGGCTCGGG
CAGTCGC-3' and 5'-TCGAGAATTCTCAAGCGTAATCTGGAACAT
CGTATGGGTACAGGACAATCTTAAAGGAGC-3'. DDK-tagged
pcDNA3.1* expression constructs for CRPV E8 and HPV4 E8 were
generated by inserting the E8 ORF (NCBI Reference Sequence
NC_001541) amplified from the CRPV reference genome with 5'-
ATTAGGATCCGCCACCATGgactacaaggacgacgatgacaagGGACCT
GCAGAGACTGC-3' and 5'-tcgagaattcTTAATCTTCTTCCGCAAA
CTG-3' primers between the BamHI and EcoRI sites and restric-
tion cloning the purified synthesized codon-optimized HPV4
(gi]9626597) E8 ORF (from IDT) using the BamHI and EcoRI sites.
Lowercase letters denote restriction sites.

We generated the pLZRS-IRES-ANGFR (de Paus et al., 2013;
Martinez-Barricarte et al., 2016) expression plasmids for EVER1/
TMC6 and EVER2/TMC8 with the cold fusion cloning kit (System
Bioscience) in accordance with the manufacturer’s instructions
after linearization with EcoRI. The Myc/DDK-tagged expres-
sion cassettes were amplified by PCR from the abovementioned
pCMV6 entry clones with the following primers: EVER], 5-ATT
TAAATTCGAATTATGGCCCAGCCACTGGC-3' and 5'-AGGCCTGCA
GGAATTTTAAACCTTATCGTCGTCATCCTTGTAATCCAGGATATC
ATT-3'; and EVER2, 5-ATTTAAATTCGAATTATGCTGCTGCCG
CGG-3' and 5-AGGCCTGCAGGAATTTTAAACCTTATCGTCGTC
ATCCTTGTAATCCAGGATATCATT-3'. The integrity of all expres-
sion cassettes was confirmed by Sanger sequencing.

Retrovirus production and transduction

Retroviruses containing EVER1- or EVER2-encoding or empty
vectors were produced with the pLZRS-IRES-ANGFR constructs
described above in Phoenix A cells as previously described
(Martinez-Barricarte et al., 2016). Freshly harvested retrovi-
ruses were used to infect LCLs from a healthy WT control and
EV patients with EVER1 D576* m/m, EVER2 T150M fs*3, or CIB1
1156D fs*5. Cells were grown and purified as previously described
(Martinez-Barricarte et al., 2016) but in RPMI 1640 supplemented
with 10% FBS as the culture medium. Flow cytometry confirmed
that the transduced and selected populations were >95% pure.

Immunoblotting and immunoprecipitation

Cells were lysed by incubation in radioimmunoprecipitation
assay (RIPA) buffer supplemented with the inhibitors aprotinin,
NaF, N-ethylmaleimide, NazVO,, and leupeptin for 30 min on ice,
and the resulting lysate was then cleared. For immunoprecipita-
tion, 10% of the lysate was set aside as the input control. Cleared
lysates were incubated with 1 ug of the indicated antibodies
(FLAG, HA, GFP, or an Ig control) at 4°C on an overhead tumbler
for 2-16 h. Protein A-coupled magnetic Dynabeads (50 ul from a
stock solution; Thermo Fisher Scientific) were added, and anti-
body-bound protein was captured from the lysate by incubation
for 1 h at 4°C on an overhead rotator. Beads were washed three
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to five times with 200 pl lysis buffer, resuspended in 100 pl lysis
buffer, and transferred to new reaction tubes to prevent the coe-
lution of protein bound nonspecifically to the wall of the tube.
The beads were resuspended in 25-50 pl 2x Laemmli buffer and
boiled at 95°C for 5 min. Samples were subjected to standard SDS-
PAGE in Mini-Protean TGX 4-20% gels (Bio-Rad Laboratories),
and the resulting bands were transferred onto polyvinylidene
difluoride membrane by semidry transfer for 30-40 min at 200
mA and 25 V per gel. The primary antibodies used were specific
for CIB1 (raised against amino acids 24-43 [9, 11]), the HA epitope
(HA.11-16B12; Covance), the FLAG epitope (M2; HRP coupled or
unlabeled; Sigma-Aldrich), IkBa (L35A5), plkBa (5A5), and p100/
p52 (18D10; Cell Signaling Technology), GAPDH HRP-coupled
(FL-335), pFAK (2D11), and FAK (D-1; Santa Cruz Biotechnology,
Inc.), vinculin (VIN-11-5; Sigma-Aldrich), GFP (JL-8; Takara Bio
Inc.), and actin (137CT26.1.1; Abgent). We used normal rabbit and
mouse IgG (Santa Cruz Biotechnology, Inc.) as immunoprecipi-
tation controls. The secondary antibodies used were HRP-cou-
pled anti-mouse IgG and anti-rabbit IgG (GE Healthcare) or
anti-chicken IgY (Jackson ImmunoResearch Laboratories, Inc.).
Antibody binding was detected by enhanced chemiluminescence
with hyperfilm ECL or an RGB 600 Imager (GE Healthcare). The
data shown are representative of at least three independent ex-
periments unless too little material was available. See the figure
legends for details.

Immunofluorescence, PLA, and microscopy

Primary keratinocytes were plated on poly-L-lysine-coated cov-
erslips and transfected as indicated above. The cells were fixed by
incubation with 4% PFA 24 h after transfection, permeabilized,
and blocked by incubation in 0.2% Triton X-100, 3% BSA, and
10% normal serum, and then they were incubated overnight with
the primary antibody. The antibodies used were directed against
the FLAG (anti-DDK; Origene) and HA epitopes (Sigma-Aldrich)
and were used at a dilution of 1:500. The secondary antibodies
used were Alexa Fluor 488- or 568-conjugated goat anti-mouse
or anti-rabbit IgG (Thermo Fisher Scientific) at a dilution of
1:500. Cells were counterstained with DAPI (0.5 pug/ml). Cover-
slips were mounted on slides in Prolong Antifade Gold (Thermo
Fisher Scientific). Images were acquired with a DeltaVision
Image Restoration microscope (Applied Precision Ltd.) using a
60x oil-immersion objective and 0.24-um steps. Images were
deconvoluted with SoftWoRx software. Deconvoluted z stacks
were subjected to automated image and colocalization analysis
with Imaris software (Bitplane). Representative data from three
independent experiments are shown. For focal adhesion analysis,
primary keratinocytes were plated on fibronectin-coated (10 pg/
ml; Corning) coverslips, to which they were allowed to adhere for
24 h. Cells were fixed with 4% PFA, permeabilized with 0.3% Tri-
ton X-100, blocked in 5% normal serum and 0.3% Triton X-100,
and incubated overnight with the primary antibody. The anti-
bodies used were directed against vinculin (VIN-11-5; Sigma-Al-
drich) and pFAK (44-624G; Thermo Fisher Scientific), and they
were used at a dilution of 1:500. The secondary antibodies used
were Alexa Fluor 488-conjugated goat anti-mouse or anti-rabbit
IgG at a dilution of 1:500-1,000 (Thermo Fisher Scientific). Cells
were counterstained with Alexa Fluor 568-phalloidin (1 U phal-
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lotoxin/slide; Thermo Fisher Scientific) and DAPI (0.5 ug/ml).
Images were acquired with an AxioObserver.Z1 epifluorescence
microscope (ZEISS) equipped with an ORCA-ER camera (Hama-
matsu Photonics) and an ApoTome.2 (ZEISS) with a 40x 1.4 NA oil
immersion objective in 0.24-pm steps with Zen software (ZEISS).
Z stacks were subjected to automated image analysis and surface
detection with Imaris software. Focal adhesions were defined as
vinculin- or pFAK-stained surfaces with a volume >0.002 mm?3
within the lower half of the z stack. The parameters analyzed
included volume, fluorescence intensity, and morphology (mea-
sured as ellipticity). Values were normalized relative to the total
number of surfaces detected to obtain a mean per detected sur-
face structure. The data shown are the mean and SD of three ex-
periments with eight data points per set. For PLAs, HaCaT cells
were transfected with CIB1-HA or the indicated myc-DDK-tagged
HPV5 and HPV16 E ORF plasmids alone or in combination. Cells
were transferred to poly-L-lysine-coated coverslips after 24 h.
They were allowed to adhere for another 24 h and were then
fixed in ice-cold acetone. Duolink PLA (Sigma-Aldrich) was per-
formed in accordance with the manufacturer’s instructions with
anti-rabbit HA (Sigma-Aldrich) and anti-mouse DDK (Origene)
antibodies at a dilution of 1:400 and then were incubated over-
night at 4°C with the cells. Duolink In Situ Detection Reagents Red
was used for visualization.

Reporter gene assay

HEK293T cells were cotransfected with the indicated plasmids
and pMRE-GFP, a GFP reporter construct driven by four copies
of a MRE 5'-TGCACTC-3' (provided by W. Schaffner, University
of Zurich, Zurich, Switzerland). This element is activated by the
zinc-dependent metal transcription factor 1 (MTF-1). After 24 h,
cells were stimulated with PMA/ionomycin (10 ng/ml and 50 ng/
ml; Sigma-Aldrich) or ZnSO, (100 pM) overnight. The next day,
cells were stained with 1 pug/ml DAPI to exclude dead cells, and
fluorescence was acquired with an LSRII flow cytometer (BD).
Results are shown as the relative response ratio (RRR) calculated
as RRR= 100% x (sample - negative control)/(positive control -
negative control). Untreated mock-transfected cells served as the
negative control, and untreated vector-transfected cells served as
the positive control. The data shown are the mean and SD of three
independent experiments.

Determination of absolute free zinc levels and zinc kinetics

Labile zinc levels in LCLs and keratinocytes were determined
by flow cytometry as previously described (Haase et al., 2006).
Briefly, cells were loaded with the zinc-specific fluorescent
probe FluoZin-3 (1 pM; Thermo Fisher Scientific) for 30 min at
room temperature. Samples were either left untreated (F sam-
ple) or were treated with ZnSO, and the zinc ionophore pyrithi-
one/2-mercaptopyridine N-oxide (referred to as Fmax; 100 uM
and 50 pM; Sigma-Aldrich) or the zinc chelator TPEN (Fmin;
100 pM; Sigma-Aldrich). All samples were stained with DAPI
(0.5 pg/ml) to exclude dead cells. Fluorescence was recorded on
an LSRII flow cytometer. The concentration of intracellular la-
bile zinc was calculated from the mean fluorescence according
to the formula [Zn] = KD x ([F - Fmin]/[Fmax - F]). The dissoci-
ation constant of the FluoZin-3/zinc complex is 15 nM. The data
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shown are the means of three independent experiments for LCLs
and the mean and SD of three independent experiments for ke-
ratinocytes. For zinc kinetic measurements, LCLs were stained
with FluoZin-3 (1 uM; 30 min at room temperature) in HBSS
(Thermo Fisher Scientific) and then allowed to rest for 60 min
at room temperature. Fluorescence was recorded on a VICTOR
plate reader (PerkinElmer). Baseline fluorescence was monitored
every 60 s for 10 min. Cells were then sequentially loaded with
ZnS0, (100 uM), the calcium chelator BAPTA (25 uM; Sigma-Al-
drich), and the zinc-specific chelator TPEN (200 uM). In each set
of conditions, fluorescence was determined every 60 s for 10-20
min. BAPTA treatment ensured the specificity of the zinc signal.
Unstained cells were used to correct values for background flu-
orescence. The data shown are the mean and SD for three inde-
pendent experiments.

Flow cytometry/immunophenotyping

Whole blood was either processed directly or used for the isola-
tion of PBMCs on a Ficoll density gradient. The PBMCs obtained
were then either processed directly or frozen for future use. We
lysed the red blood cells by incubating 100 ul fresh whole blood
with fluorophore-conjugated antibodies for 20 min and then with
FACS lysing solution (BD) for 10 min at room temperature. The
antibodies used for staining were CD45-FITC, CD3-PE-Cy7, CD19-
PE-Cy7, CD4-Pacific Blue, CD14-V450, CD8-PE-Cy5, CD8-V450,
or CD16-CD56-PE, CD45RA-FITC, CCR7-PE, and CD3-APC. Fluo-
rescence was measured on a FACSCanto II flow cytometer (BD).
Frozen PBMCs were thawed, washed, and incubated with Zombie
UV viability dye (BioLegend) and then with fluorophore-conju-
gated antibodies in brilliant stain buffer (BD) for 30 min. The
antibodies used were CD45R0O-BV421, CD4-BV605, CCR4-BV421,
CLA-Alexa Fluor 647, CD45RA-Alexa Fluor 488, CCR7-Alexa
Fluor 647, CD8-PE-Cy7, HLA-DR-FITC, CD16-APC-Cy7, CD20-PE
(BioLegend), CD3-PerCP-Cy5.5, CCR10-BB515, and CD56-APC
(BD). Fluorescence was measured on an LSRII flow cytometer.
Data were analyzed with FlowJo software (v.9.8.3; Tree Star).
Whole-blood experiments were performed for two patients (P3
and P5). Frozen PMBCs from healthy donors (n = 5), WT family
members (n = 5), healthy heterozygous family members (n=4),
and patients (n = 5; P1-P4 and P15) were used. The data were ob-
tained in a single-time point experiment.

T cell proliferation assay

Freshly isolated PBMCs were loaded with carboxyfluorescein
succinimidyl ester (5 uM; Invitrogen) for 5 min, washed, and
plated at a density of 1 x 10° cells/ml in RPMI 1640/10% FBS
supplemented with 2% penicillin/streptomycin on plates coated
with anti-CD3 antibody (5, 2.5, or 1.25 ug/ml; clone UCHT1). Cells
were then stimulated with anti-CD28 antibody (1 pg/ml; clone
ANC28/5D10) for 3 d at 37°C in a humidified incubator under an
atmosphere containing 5% CO,. Cells were harvested and pro-
cessed for flow cytometry by incubation with an APC-conjugated
anti-CD3 antibody in flow cytometry buffer for 20 min. Fluo-
rescence was measured on a FACSCanto II flow cytometer. The
data were analyzed with FlowJo software using the proliferation
analysis tool. The parameters displayed included proliferation
index (the total number of divisions divided by the number of
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cells entering division), division index (the mean number of cell
divisions undergone by a cell from the original population), and
percent division (precursor frequency). The data shown were
obtained in a single-time point experiment on specimens from
two patients (P3 and P5) and two controls processed in parallel.

Scratch wound healing assays

Primary keratinocytes were plated on fibronectin-coated (10
pg/ml; Corning) glass-bottomed six-well culture plates (Mat-
Tek). The cells were allowed to adhere to the plates overnight,
and the resulting monolayer was then scratched with a pipette
tip. Wound closure was monitored every 20 min for 16 h with an
inverted Andor-driven spinning-disk confocal system equipped
with a Zyla 4.2 (Andor Technology) camera in brightfield con-
ditions with a 10x 0.3 NA air objective. During imaging, cells
were maintained at 37°C under an atmosphere containing 5%
CO,. The images were subjected to automated analysis with the
MiToBo plugin in Image] (National Institutes of Health) to de-
termine the cell-free area, which was normalized relative to the
initial cell-free area and expressed as a percentage. The start and
endpoint images were also manually analyzed by measuring the
total cell-free area with the freehand tool. The data shown are the
means for two to three experiments with at least six data points
per experiment.

Large-scale protein purification and mass

spectrometry analysis

For identification of the cellular partners interacting with CIBI,
we transfected HEK239T cells (~107 cells per 10-cm dish) in 10
dishes with 12 pg plasmid encoding CIBI-FLAG or ORF75-FLAG
(control) in the presence of GenJet transfection reagent (Sig-
naGen). 36 h later, the cells were lysed with RIPA buffer sup-
plemented with protease inhibitor cocktail and centrifuged
at 13,000 rpm for 20 min at 4°C. Lysates were precleared with
100 pl Sepharose 4B (Sigma-Aldrich) to remove cell debris and
then were mixed with a ~50% slurry of anti-FLAG M2 Affin-
ity Gel (Sigma-Aldrich) and incubated for 4 h at 4°C. The beads
were thoroughly washed in lysis buffer, and the bound proteins
were eluted by heating samples in 2x Laemmli SDS sample buf-
fer for 5 min at 95°C before separation by electrophoresis on a
NuPAGE 4-12% Bis-Tris gradient gel (Thermo Fisher Scientific).
The coimmunoprecipitated proteins were stained by incubation
with colloidal Coomassie solution (0.02% Coomassie Brilliant
Blue G-250, 5% aluminum sulfate-(14-18)-hydrate, 10% ethanol,
and 8% orthophosphoric acid [85%]; Kang et al., 2002) at room
temperature overnight. Bands specifically present in the CIB1-
FLAG sample but absent from the ORF75-FLAG sample were
excised and analyzed by ion-trap mass spectrometry at the Ta-
plin Biological Mass Spectrometry Facility (Harvard Medical
School, Boston, MA).

Gene ontology analysis

Gene ontology analysis was performed according to the PAN
THER classification system release 20170413 (Mi et al., 2013) with
the overrepresentation test and the Reactome version 58 (release
20161207) against the Homo sapiens database. Bonferroni correc-
tion for multiple testing was applied. 239 mapped hits were run
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against 21,042 database entries. The data are represented as fold
enrichments, with P values <0.05 considered significant.

Statistical analyses
Statistical analyses were performed with Prism 5.0 (GraphPad
Software).

Online supplemental material

Fig. S1 depicts photographs of the clinical EV manifestation of
the studied patients. Fig. S2 depicts the results of GWL analysis
and whole-exome filtering performed on the studied patient co-
hort and shows chromatographs obtained by Sanger sequencing
that confirmed the mutations identified in CIB1. Fig. S3 shows
qPCR expression data of EV-related genes after interferon treat-
ment of primary human control keratinocytes. Fig. S4 shows
the results obtained by performing mass spectrometry after im-
munoprecipitation of CIB1 expressed in HEK293T cells as well
as immunofluorescent microscopy and colocalization analysis
of CIBl and ZnT1 in primary human control keratinocytes.
Table S1 shows the results obtained by immunophenotyping
for the studied patients using flow cytometry. Table S2 shows
the T cell proliferation. Table S3 shows the viral serologies.
Table S4 shows the skin-homing T cell subpopulations. Table
S5 shows the inbreeding coefficient. Table S6 shows the tran-
scriptomic analysis.
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