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JDP2: An oncogenic bZIP transcription factor in T cell
acute lymphoblastic leukemia

Marc R. Mansour*?*@®, Shuning He?*, Zhaodong Li?*, Riadh Lobbardi*#, Brian |. Abraham®*®, Clemens Hug?, Sunniyat Rahman?, Theresa E. Leon'®,
You-Yi Kuang®®, Mark W. Zimmerman?, Traci Blonquist’®, Evisa Gjini?, Alejandro Gutierrez®, Qin Tang®*, Laura Garcia-Perez’,

Karin Pike-Overzet®, Lars Anders®, Alla Berezovskaya?, Yi Zhou*#@®, Leonard I. Zon*3@®, Donna Neuberg’®, Adele K. Fielding!, Frank J.T. Staal°®,
David M. Langenau>*@, Takaomi Sanda'®!, Richard A. Young>', and A. Thomas Look’®

A substantial subset of patients with T cell acute lymphoblastic leukemia (T-ALL) develops resistance to steroids and
succumbs to their disease. JDP2 encodes a bZIP protein that has been implicated as a T-ALL oncogene from insertional
mutagenesis studies in mice, but its role in human T-ALL pathogenesis has remained obscure. Here we show that JDP2

is aberrantly expressed in a subset of T-ALL patients and is associated with poor survival. JDP2 is required for T-ALL cell
survival, as its depletion by short hairpin RNA knockdown leads to apoptosis. Mechanistically, JDP2 regulates prosurvival
signaling through direct transcriptional regulation of MCL1. Furthermore, JDP2is one of few oncogenes capable of initiating
T-ALL in transgenic zebrafish. Notably, thymocytes from rag2:jdp2 transgenic zebrafish express high levels of mcl1and
demonstrate resistance to steroids in vivo. These studies establish JDP2 as a novel oncogene in high-risk T-ALL and implicate
overexpression of MCLI as a mechanism of steroid resistance in JDP2-overexpressing cells.

Introduction

With the availability of next-generation sequencing technol-
ogy, a large number of recurrently mutated genes have been
identified that contribute to the molecular pathogenesis of can-
cer, spurring the development of targeted therapies. However,
such large-scale genomic approaches also identify a significant
number of “passenger” mutations of uncertain functional rel-
evance and disregard potential oncogenes whose expression is
dysregulated in the absence of an identifiable genomic lesion.
A powerful complementary approach to the discovery of novel
oncogenes and tumor suppressors has been the use of retroviral
and transposase-based insertional mutagenesis screens (Nusse
and Varmus, 1982; Callahan, 1996; Collier et al., 2005; Dupuy
et al., 2005, 2006; Copeland and Jenkins, 2010; McIntyre et al.,
2012). For instance, int-2/fibroblast growth factor-3 (FGF3), an
oncogene that is recurrently amplified in human breast tumors,
first came to prominence because of its dysregulation resulting
from a shared integration site of mouse mammary tumor virus in

murine models of breast cancer (Nusse and Varmus, 1982; Casey
et al., 1986; Callahan, 1996). Insertional mutagenesis screens
have been particularly effective in identifying novel oncogenes
in T cell acute lymphoblastic leukemia (T-ALL). The first studies
implicating Notch-1 as a major driver of T-ALL came from inser-
tional mutagenesis screens using Moloney murine leukemia
virus injected into neonatal mice (Girard et al., 1996). Remark-
ably, the majority of insertions occurred within the HD and PEST
domains of Notch-1, sites that are hotspots for somatic mutation
in a high proportion of human T-ALL cases, highlighting the rel-
evance of such approaches to human biology (Girard et al., 1996;
Hoemann et al., 2000; Weng et al., 2004).

JDP2is a transcription factor whose expression is recurrently
up-regulated because of a common integration site in murine
insertional mutagenesis models of T-ALL, yet its role in the
human disease has not been investigated (Stewart et al., 2007;
Rasmussen et al., 2009, 2010). This small bZIP protein contains
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an N-terminal domain that recruits cofactors, a basic domain
that binds DNA, and a leucine zipper domain capable of heterod-
imerization with other bZIP proteins, such as c-JUN and DDIT3
(Aronheim et al., 1997; Weidenfeld-Baranboim et al., 2008). The
role of JDP2 in cancer is controversial because it can partially
transform chicken embryonic fibroblasts and accelerate hepa-
tocellular carcinoma in mice, yet it has a tumor-suppressor role
in human prostate cancer, features that may relate to its ability
to both activate and repress AP-1 target sites, depending on the
cellular context and bZIP binding partner (Blazek et al., 2003;
Heinrich et al., 2004; Bitton-Worms et al., 2010).

Here we show that JDP2 is frequently aberrantly expressed
in human T-ALL and establish its oncogenic role by demonstrat-
ing that it can initiate T-ALL in transgenic zebrafish. JDP2 over-
expression is associated with a poor outcome in patients and is
required for survival of human T-ALL cells in vitro. Mechanisti-
cally, JDP2 transcriptional activity promotes cell survival through
direct activation of the anti-apoptotic MCLI protein. Finally, we
show that jdp2 overexpression leads to mcll up-regulation and
steroid resistance in vivo, providing a potential explanation
for the poor survival of T-ALL patients whose leukemic blasts
overexpress JDP2.

Results

Jdp2 is a common integration site in murine models of T-ALL

To identify novel human T-ALL oncogenes, we explored the Ret-
rovirus and Transposon Tagged Cancer Gene Database (RTCGD),
which contains the collated results of insertional mutagenesis
studies of murine T-ALL (Akagi et al., 2004). The majority of
recurrent retroviral integration sites were in the vicinity of genes
with well-recognized roles in T-ALL pathogenesis, including (in
order of frequency) Myc, Gfil, Notchl, Myb, Piml, miR17-92,
Ccnd3, Zeb2, and Aktl (Fig. 1 A). Notably, Jdp2, encoding a bZIP
protein without a reported role in human T-ALL, was the third
most frequently retrovirally targeted gene, with the majority of
insertions occurring on a CD2-Myc/Runx2 genetic background,
suggesting that Jdp2likely collaborates with these genes in trans-
formation (Stewart etal., 2007). Insertions were clustered either
within intron 2 or ~50 kb upstream of the transcription start site
(TSS), with most oriented antisense to Jdp2 and reported to acti-
vate gene expression (Rasmussen et al., 2009, 2010). Insertions
in the vicinity of Jdp2 are not limited to retroviral models of
T-ALL; recent studies of T-ALL initiated by the Sleeping Beauty
transposon have also identified a shared integration site at the
Jdp2 promoter and have shown that the inserted transposon
drives Jdp2 overexpression (van der Weyden et al., 2013). Thus,
both genome-wide retroviral and transposon insertional experi-
ments implicate Jdp2 as a T-ALL oncogene in mice.

JDP2 expression is associated with early T cell progenitors
(ETPs)/immature T-ALL and poor outcome

To address whether JDP2 is aberrantly expressed in T-ALL
patients compared with normal thymocytes, we isolated human
thymic subsets at various levels of differentiation and per-
formed quantitative RT-PCR (qPCR) for JDP2. A brief wave of
JDP2 expression was detected at the immature single-positive
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(ISP) and triple-negative stage of thymic maturation but was
not detected in CD34*CDla” ETPs or more mature thymocytes.
In direct comparison, 10 of 34 T-ALL patients expressed JDP2 at
higher levels than ISP cells (Fig. 1 B). Analysis of published data-
sets showed that the gene was more highly expressed in both
pediatric and adult T-ALL patients whose leukemic cells had an
immature/ETP-ALL phenotype (Fig. 1C; P = 0.006 and P = 0.001,
respectively), at a stage when JDP2 is not normally expressed
(Gutierrez et al., 2010; Van Vlierberghe et al., 2013). High lev-
els of JDP2 expression were not obviously associated with other
specific genetic or cytogenetic lesions (Fig. 1 D; Gutierrez et al.,
2010; Van Vlierberghe et al., 2013). Given previous studies that
ETP-ALL is associated with a poor outcome (Coustan-Smith et al.,
2009), we stratified patients according to JDP2 expression level
and analyzed their survival. JDP2-positive patients had an infe-
rior probability of 5-yr overall survival compared with JDP2-neg-
ative patients (40% vs. 74% 5-yr overall survival, respectively, P
= 0.03; Fig. 1 E), raising the possibility of a direct role for JDP2
in chemoresistance. In support of this concept, although patient
numbers were small, JDP2 was a poor prognostic marker within
the ETP group itself, identifying an ETP*JDP2* group with a par-
ticularly dismal outcome (Fig. 1 E).

To identify a cell line model to further investigate JDP2 func-
tion, we assessed JDP2 mRNA expression in a panel of >20 human
T-ALL cell lines. JDP2 was most highly expressed in Loucy cells
(Fig. 1 F), a cell line with the gene expression signature of ETP-
ALL, which is consistent with data from primary patient samples
(Van Vlierberghe etal., 2011; Anderson et al., 2014). Furthermore,
JDP2 was highly expressed at the protein level in a subset of the
T-ALL cell lines by Western blotting, at levels that correlated with
mRNA expression levels (Fig. 1F).

JDP2 is required for the survival of T-ALL cells

To assess whether JDP2 is required for the survival of T-ALL
cells, we performed shRNA knockdown experiments in Loucy
and KOPT-K1 cells, the two T-ALL cell lines with the highest
levels of JDP2 expression. We identified two independent shR-
NAs (shRNA#1 and #2) that efficiently depleted JDP2 protein
expression, and both shRNAs significantly impaired growth
of Loucy and KOPT-K1 cells (Fig. S1). The JDP2 shRNAs did not
demonstrate broad toxicity across a panel of cancer cell lines as
determined through the Achilles project (Fig. S2 A; Tsherniak
et al., 2017), nor in DND-41 T-ALL cells that do not express JDP2
(Fig. S2 B). Importantly, we were able to completely rescue the
inhibitory effects on cell growth through stable expression of
a JDP2 transgene containing “wobble” bases at the target site of
shRNA#2, showing that the effect on cell growth was caused by
knockdown of JDP2 and not off-target shRNA activities (Fig. S2
C). To study the effects of JDP2 depletion in more detail, we estab-
lished stable cell line clones expressing a doxycycline-inducible
JDP2 shRNA#2. shRNA induction led to a dramatic impairment
of cell growth in both cell lines (Fig. 2 A). This effect was medi-
ated through apoptosis as determined by flow cytometry for TdT-
dUTP nick-end labeling (TUNEL) and annexin V (Fig. 2 B and Fig.
S3A), as well as PARPI cleavage and cleaved caspase-3 (Fig. S3 B).
Furthermore, the kinetics of the onset of apoptosis corresponded
with JDP2 protein depletion (Fig. 2 C).
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Figure 1. JDP2is a common integration site in murine insertional mutagenesis studies of T-ALL and is aberrantly expressed in some patients with
T-ALL. (A) Number of insertions identified from multiple murine retroviral insertional screens for T-ALL, collated on the RTCG database (Akagi et al., 2004). Gray
bars are genes not yet implicated in human T-ALL. (B) JDP2 mRNA expression as determined by qPCR from 34 diagnostic adult T-ALL cases from the UKALL14
trial (black circles) and directly compared with normal thymic subsets sorted by FACS (blue circles). Thymocyte subsets were pooled from five individual donors
to reduce intersample variation. qPCR experiments were performed in triplicate from two independent experiments. TN, triple-negative; DP, double-positive;
SP, single-positive. Data points represent the mean + standard error of the mean. (C) JDP2 expression as determined by Affymetrix gene expression array data
for 40 pediatric T-ALL patients treated on the COG P9404 trial, separated according to ETP status (Gutierrez et al., 2010). JDP2 expression as determined by
Illumina bead-chip array for 53 adult T-ALL patients treated on the ECOG E2993 trial, comparing patients with immature versus cortical/mature phenotypes
(Van Vlierberghe et al., 2013). P values were calculated using the two-tailed Student’s t test. (D) Heatmap showing Affymetrix gene expression data for T-ALL
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JDP2 binds to TPA-response element (TRE) sites and can both
activate and repress its target genes

To gain insight into the transcriptional role of JDP2, we performed
chromatin immunoprecipitation (ChIP) with massively parallel
sequencing (ChIP-seq) in Loucy cells. Analysis of favored binding
motifs identified a significant preference for JDP2 binding at the
palindromic TRE sequence ATGA[C/G]TCAT (corrected P value
= 3.5 x 1072% Fig. 3 A), a sequence previously demonstrated to
bind JDP2 in functional experiments (Weidenfeld-Baranboim et
al., 2008; Jolma et al., 2013). Interestingly, there was no enrich-
ment for JDP2 binding to the cAMP response element (CRE)
sequence ATGACGTCAT (corrected P value = 1). JDP2 occupied
both active promoters and enhancers, as illustrated by its cooccu-
pancy with histone H3 lysine 27 acetylation (H3K27ac; Fig. 3 A).
The fact that JDP2 binding correlates with H3K27Ac modifica-
tion indicates that JDP2 binding is likely affecting the expres-
sion levels of expressed genes. We performed RNA-seq shortly
after JDP2 knockdown in KOPT-K1 and Loucy cells and, despite
modest knockdown, detected a similar number of differentially
up-regulated and down-regulated genes after JDP2 depletion (in
KOPT-KI, 102 significantly up-regulated and 95 significantly
down-regulated; in Loucy, 192 significantly up-regulated and
417 significantly down-regulated; Fig. 3 B). Approximately 25%
of differentially expressed genes were also bound by JDP2, sug-
gesting these were direct transcriptional targets of JDP2, and that
JDP2 may participate in complexes that function either as a tran-
scriptional activators or transcriptional repressors of its direct
target genes (Fig. 3 C).

JDP2 directly regulates MCL1 expression in T-ALL

We postulated that the dramatic and rapid induction of apoptosis
on knockdown of JDP2 might occur through its ability to directly
regulate one or more anti-apoptotic genes. To investigate such
an association in primary T-ALL samples, we performed cor-
relation analysis to identify genes whose expression was most
closely related to that of JDP2, using expression data from 165
T-ALL cases in the MILE study (Table S1; Haferlach et al., 2010).
There was a striking positive correlation between MCLI mRNA
expression and that of JDP2 (Fig. 4, A and B; Pearson coefficient
0.50, P = 6 x 10712), an association that we were able to validate in
three independent T-ALL cohorts (Fig. S4).

To address the possibility that JDP2 directly regulates MCLL,
we analyzed our ChIP-seq data and identified JDP2 binding and
H3K27ac enrichment at the MCLI promoter, as well as at a puta-
tive MCLI enhancer site 34 kb upstream of the gene (Fig. 4 C) that
resides within the same insulated neighborhood as MCLI (Hnisz
etal., 2016). Consistent with a direct regulatory role, knockdown
of JDP2 in stable cell line clones expressing a doxycycline-in-
ducible JDP2 shRNA#2 was associated with a marked reduction

of MCLI mRNA expression (Fig. 4 D), as well as a concomitant
reduction in MCL1 protein expression, with simultaneous induc-
tion of PARPI cleavage (Fig. 4 E). Furthermore, when we engi-
neered Loucy and KOPT-K1 cells to stably express MCLI such
that it was no longer under the transcriptional control of JDP2,
the adverse effects on cell viability after JDP2 depletion were sig-
nificantly, albeit partially, rescued (Fig. 4 F). Together, these data
indicate that JDP2 maintains T-ALL cell survival by up-regulating
MCL1 through direct transcriptional regulation.

JDP2 collaborates with c-Myc to initiate T-ALL in the zebrafish
Our data in cell lines convincingly indicate a role for JDP2 in
maintaining tumor cell survival, but its ability to initiate T-ALL
remained in question. In zebrafish, the murine c-Myc oncogene
initiates a highly aggressive T-ALL when expressed from the
zebrafish rag2 promoter (Langenau et al., 2003). In this model,
transgenes form concatemers before genomic co-integration,
enabling mosaic expression of up to three transgenes injected
simultaneously into recently fertilized one-cell zebrafish
embryos (Langenau et al., 2008). This allows putative oncogenes
to be rapidly assessed for their ability to collaborate with c-Myc
in transforming early thymocytes. We thus coinjected single-cell
embryos with rag2:mCherry, rag2:mCherry/rag2:Myc, or rag2:
mCherry/rag2:Myc/rag2:jdp2 and monitored the fish by fluo-
rescent microscopy for tumor onset (Fig. 5 A). Coexpression of
jdp2 with murine c-Myc led to a marked increase in tumor pen-
etrance, with 80% of fish exhibiting T-ALL at 120 d, compared
with 40% when c-Myc was expressed alone (P = 0.001; Fig. 5 B).
These data are consistent with the high incidence of activating
Jdp2 viral integrations that are selected based on their ability to
accelerate the onset of T-ALL in mice with a c-Myc transgenic
background (Stewart et al., 2007).

JDP2 can initiate T-ALL in zebrafish lacking ectopic

c-Myc expression

Next, we asked whether jdp2 overexpression was sufficient to
initiate tumorigenesis in the zebrafish without the requirement
for ectopic coexpression of c-Myc. For these experiments, we cre-
ated a stable founder zebrafish line expressing rag2:mCherry/
rag2:jdp2 (termed here Tg(rag2:jdp2)). During normal matura-
tion of the thymus in zebrafish, the size of the organ peaks at 10
wk of age, followed by progressive thymic involution. Similar to
other species such as rodents and humans, we noted consider-
able variations in thymic size between individual zebrafish of
the same age (Paton and Goodall, 1904; Nasseri and Eftekhari,
2010). However, in transgenic fish stably expressing jdp2, there
was a marked increase in thymic size compared with Tg(rag2:
mCherry) fish, which was most apparent at 8-10 wk of age and
was associated with a delay in thymic involution when monitored

patients treated on the COG P9404 trial, together with the mutational status of recurrently mutated genes. Yellow boxes denote wild-type genes, and black
boxes, the presence of a genetic lesion. (E) Kaplan-Meier curves showing overall survival for pediatric T-ALL patients treated on the COG P9404 trial, stratified
by JDP2 and ETP status. Patients were considered JDP2-positive using a probe presence score of >30; survival differences were calculated using the log-rank
test. (F) JDP2 gene expression in 21 human T-ALL cell lines as determined by Affymetrix gene expression array. Lower panel shows JDP2 protein expression in
a selection of T-ALL cell lines as determined by Western blot analysis. Representative Western blot from two independent experiments is shown.
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Figure 2. Human T-ALL lines are highly dependent on JDP2 for cell growth. (A) Cell growth kinetics in Loucy and KOPT-K1T-ALL cells, stably expressing a
doxycycline-inducible JDP2 shRNA. Corresponding Western blots showing JDP2 protein expression with or without doxycycline. Representative data from three
separate experiments are shown. (B) JDP2 depletion induces apoptosis in human T-ALL cell lines as determined by flow cytometric evaluation for TUNEL and
Plin Loucy (left) and KOPT-K1 (right) cells stably expressing a doxycycline-inducible JDP2 shRNA, with and without doxycycline treatment for 24 h. Data were
verified in two independent experiments. (C) Time course showing the kinetics of JDP2 depletion by Western blot analysis, and apoptosis induction measured
by flow cytometry for TUNEL, in doxycycline-inducible JDP2 shRNA Loucy (left) and KOPT-K1 (right) cells after the addition of doxycycline. Representative
Western blot from two independent experiments is shown. Data points represent the mean + standard error of the mean.
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over 14 wk, consistent with hyperplasia (Fig. 5, C and D; and Fig.
S5 A). Although thymic fluorescence was undetectable in all
Tg(rag2:mCherry) fish at 40 wk of age (n =24), it was retained in
all Tg(rag2:jdp2) fish (n=15; Fig. 5 E). This phenotype is reminis-
cent of what we had previously observed in transgenic Tg(rag2:
bcl2) fish, suggesting that jdp2 may play a role in mediating
anti-apoptotic signaling (Feng et al., 2010).

Strikingly, beginning at 40 wk of age, 8 of 15 Tg(rag2:jdp2)
fish (53%) developed tumors (Fig. 5 F). Leukemic transformation
was indicated by infiltration of mCherry-positive cells beyond
the thymus, that progressed to involve the kidney marrow and
ultimately the entire fish, similar to previous observations in
our rag2:Myc transgenic fish lines (Langenau et al., 2003). In
Tg(rag2:jdp2) fish, the kidney marrow was massively infiltrated
with blast cells with a monomorphic appearance and high nucle-
ar-to-cytoplasmic ratio, whereas blast cells were readily detect-
able on peripheral blood smears, indicative of leukemia (Fig. 6 A).
Consistent with a T cell phenotype, qPCR from purified tumor
cells showed high cd3 mRNA expression at levels comparable
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to those in Tg(rag2:Myc) transgenic tumors and normal thymo-
cytes (Fig. S5 B). Furthermore, the results of RNA-sequencing
(RNA-seq) of sorted tumor cells from Tg(rag2:jdp2) fish showed
expression of bclllb, gata3, Imo2, cd8, il7r, and rag2, consistent
with a diagnosis of T-ALL. Given the ability of JDP2 to regulate
MCLI expression in human cells, we analyzed mclla expression
in zebrafish tumors. As shown in Fig. 6 C, mclla expression was
approximately twofold higher in Tg(rag2:jdp2) compared with
Tg(rag2:Myc) tumor cells or normal thymocytes (mean expres-
sion, 641 vs. 315 and 356 reads per kilobase of exon per million
fragments mapped, P = 0.003 and P = 0.01, respectively Fig. 6 C),
consistent with our findings of direct regulation of MCLIby JDP2
in human cells.

Tg(rag2:jdp2) tumors are transplantable into

secondary recipients

To test whether tumors from Tg(rag2:jdp2) zebrafish har-
bor leukemia-initiating cells, we exploited a recently devel-
oped immune-compromised zebrafish line with a rag2f4ofs
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Figure 4. JDP2 prevents apoptosis by directly regulating MCL1. (A) Waterfall plot showing genes most closely correlated with |DP2, using Pearson cor-
relation analysis of gene expression data from 165 T-ALL patients from the MILE study (Haferlach et al., 2010). The y axis represents the Pearson correlation
coefficient (R value) positively and negatively associated with JDP2 expression, adjusted for multiple testing using the false discovery rate, and P < 0.001. Genes
are distributed across the x-axis, with position of MCL1 highlighted. (B) Direct correlation between JDP2 and MCLL, from Fig. 4 A, is shown in detail together
with line of best fit. (C) ChIP-seq tracks for JDP2 and H3K27ac at the MCLI locus in Loucy cells. (D) Relative JDP2, MCLI, and BCL2 mRNA levels over time after
the addition of doxycycline to Loucy cells (left) and KOPT-K1 cells (right) stably expressing doxycycline-inducible JDP2 shRNA#2. gPCR experiments were per-
formed in triplicate and verified in two independent experiments. (E) Western blots showing kinetics of MCL1 depletion and PARP1 cleavage after the addition
of doxycycline in Loucy and KOPT-K1 cells expressing a doxycycline-inducible JDP2 shRNA. Representative Western blot from two separate experiments is
shown. (F) Doxycycline-inducible J/DP2 shRNA expressing Loucy and KOPT-K1 cells were stably transduced to express either GFP (control) or MCL1, and then
treated with or without doxycycline, and viable cell number was measured by Cell Titer Glo at 24 h. Bottom: Western blots showing MCL1 and JDP2 expression
in the transduced cell lines. P values were calculated using two-tailed Student’s t test applied to triplicate experiments performed twice. Data points represent
the mean ¢ standard error of the mean.
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hypomorphic allele, which is permissive of adoptive transfer of
allogeneic zebrafish cells (Tang et al., 2014). When tumor cells
harvested from Tg(rag2:jdp2) fish were injected into the circula-
tion of 2-d-old rag2f*5°% (Casper) mutant embryos, they rapidly
migrated to and engrafted in the thymus of recipient larvae, con-
sistent with their thymic origin (Fig. 6 D). Within 7 d of implanta-
tion, tumors had disseminated throughout the larvae, indicating
that donor cells had proliferated in the recipient animals, even-
tually leading to death of the animals (Fig. 6 D). This finding was
corroborated by the rapid tumor expansion visible when Tg(rag2:
jdp2) tumors were injected into the peritoneum of adult rag25450%
mutant fish (Fig. 6 E).

Tg(rag2:jdp2) thymocytes are resistant to glucocorticoids (GCs)
GCs form the backbone of most chemotherapy regimens for
adult and pediatric T-ALL, and early steroid response has proven
to be an important prognostic marker (Arico et al., 1995). Fur-
thermore, overexpression of MCLI has been identified as a key
regulator of steroid resistance in lymphoid malignancy, through
its ability to sequester GC-induced BIM (Wei et al., 2006). How-
ever, examining GC responses in vitro has been challenging, as
unlike the majority of GC-resistant primary T-ALL cases, T-ALL
cell lines frequently have mutations or down-regulation of GC
receptors (Geley et al., 1996). We previously demonstrated that
the zebrafish thymus undergoes rapid apoptosis after the addi-
tion of dexamethasone to the fish water (Langenau et al., 2004).
Because of the small size of zebrafish larvae and the ability to
accurately quantify thymic size through fluorescent microscopy,
this transgenic zebrafish line seemed an ideal model with which
to test GC resistance in vivo.

We thus exposed 5-d-old zebrafish to dexamethasone and
monitored thymic size. As expected, dexamethasone led to a
marked reduction in thymic fluorescence over 3 d of exposure in
Tg(rag2:mCherry) reporter fish (mean thymic fluorescent inten-
sity 6.6% of vehicle-treated controls) and was also highly effective
in Tg(rag2:Myc) transgenic fish (mean thymic fluorescent inten-
sity 7.9% of vehicle-treated controls; Fig. 7 A). However, Tg(rag2:
jdp2) zebrafish had significantly higher amounts of residual
thymic tissue after exposure to dexamethasone (mean thymic
fluorescent intensity 14.9% of vehicle-treated controls, P = 0.007
and P = 0.02 vs. rag2:mCherry and rag2:Myc, respectively; Fig. 7,
A and B). Fish transgenic for both Tg(rag2:Myc) and Tg(rag2:
jdp2) exhibited the most striking GC resistance (mean thymic
fluorescent intensity 33.0% of vehicle-treated control fish; P <
0.0001 compared with the response of rag2:Myc). These findings
are consistent with our observation that JDP2 directly regulates
MCLI, which is a known mediator of GC resistance (Wei et al.,
2006), thus implicating JDP2-up-regulated MCL1 expression as
at least one of the causes of the inferior outcome identified in
patients with JDP2 overexpression.

Discussion

Insertional mutagenesis screens have been highly fruitful in
identifying novel oncogenes that subsequently prove to be
directly relevant to human disease. For instance, EVII, HOXA,
and MEISIwere first identified by their overexpression resulting
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from adjacent recurrent integration sites in murine insertional
mutagenesis models of AML, before appreciation of their promi-
nent roles in the human disease (Morishita et al., 1988; Nakamura
et al., 1996). Similarly, MYC and NOTCH-1, the most commonly
dysregulated oncogenes in human T-ALL, are both targets of ret-
roviral activation in murine insertional models of this disease
(Girard et al., 1996; Hoemann et al., 2000; Weng et al., 2004).
Interpretation of these assays assumes that integration of viral
sequences throughout the genome is random, and that the ear-
liest leukemias arise from cells where the viral LTR has resulted
in dysregulation of a nearby tumor suppressor or oncogene. A
pertinent example of this phenomenon in humans can be found
in the development of T-ALL in severe combined immunodefi-
ciency patients who received retrovirally transduced, gene-cor-
rected autologous hematopoietic stem cells, where the viral LTR
integrated into the vicinity of the LMO2 gene (Hacein-Bey-Abina
etal., 2003, 2008; Howe et al., 2008).

Our data strongly support both viral and transposase-based
insertional mutagenesis models that implicate JDP2 as a T-ALL
oncogene. One proposed mechanism by which the JDP2 protein
exerts its oncogenicity in this setting is through suppression of
TP53, given that T-ALLs arising on a TP53 heterozygous back-
ground have a particularly high frequency of insertions at the
Jdp2promoter (van der Weyden etal., 2013). Although this mech-
anism is intriguing, it is unlikely to be responsible for the ability
of jdp2 to transform thymocytes in our zebrafish model, where
loss of tp53 neither induces T-ALL nor collaborates with Myc in
tumorigenesis (Gutierrez et al., 2014). jdp2 thus represents one
of only a few select oncogenes (including Myc, Notch, and Myr-
AKT) capable of initiating T-ALL in the zebrafish; the long dis-
ease latency and incomplete penetrance in our model suggests
that as-yet undiscovered secondary mutations are likely to be
involved in transformation (Langenau et al., 2003; Gutierrez et
al., 2011; Blackburn et al., 2012, 2014).

Although the majority of studies support a repressive role for
JDP2 through its ability to recruit histone deacetylases and its
interaction with histones and the PRC2 complex, our ChIP-seq
data suggest it can also have a role as a transcription activator
in T-ALL cells. Unfortunately, we were unsuccessful in study-
ing histone modifications after JDP2 knockdown, presumably
because of nuclear fragmentation of cells undergoing apoptosis.
Interestingly, a previous study has shown that JDP2 can strongly
enhance transcription from promoters containing TREs, but not
from those containing CREs, consistent with the preferential
binding of JDP2 to TREs at active genes identified in our ChIP-
seq experiments (Weidenfeld-Baranboim et al., 2008). One other
factor that could potentially impact the transcriptional activity
of JDP2 is that approximately half of ETP-ALL cases have inac-
tivating mutations of members of the PRC2 complex (Zhang et
al., 2012). Loucy cells, for instance, lack detectable EZH2 mRNA
expression, but whether this influences the role of JDP2 as a
repressor or activator will require further study.

The most striking phenotype in vitro was a dependency
of human T-ALL-derived cell lines on JDP2 for their survival.
Mechanistically, JDP2 regulates prosurvival signaling through
direct transcriptional regulation of the anti-apoptotic gene
MCLI; indeed, programmed expression of MCLI was sufficient

Journal of Experimental Medicine
https://doi.org/10.1084/jem.20170484

920z Areniged 60 uo 1senb Aq 4pd ¥8¥0. 102 Wel/9rG6G.L/6261/L/G1z/pd-elonie/wal/Bio sseidni//:dpy woy papeojumoq

1938



A

Control Treated

Dexamethasone 25 ug/ml

Figure 7. Thymuses of Tg(rag2:jdp2) fish are resistant to
dexamethasone. (A) Representative fluorescent images of thy-

Tg(rag2:mCherry)

Tg(rag2:Myc/
rag2:GFP)

) muses from 8-d-old stable transgenic zebrafish larvae exposed
to dexamethasone (25 pg/ml) or DMSO control, from day 5 post-
fertilization (dpf). Bar, 0.1 mm. (B) Quantification of thymic flu-
orescence in 8-d-old stable transgenic zebrafish larvae exposed
to 25 ug/ml dexamethasone or DMSO control from 5 dpf. Values
are expressed as a percentage of thymic fluorescence in DMSO
control treated zebrafish, and P values were calculated using
two-tailed Student’s t test. Findings were validated in three
independent experiments.

Tg(rag2:jdp2/

rag2:mCherry)

Tg(rag2:jdp2/
rag2:Myc

rag2:mCherry)

B Dexamethasone 25 ug/ml at 5dpf
P<0.0001
> 801 . P=0.0064 . v
2 & P=0.02
() 1
I= E, 601
% 5 404 : Ty
g ;] . 2N
g g L] Ak v
Z g 20- e l:l “ ’
g Q - e %E" .
> 0 ofe —
> 0 T Lenafons - .
C
"L‘.(“ (ag (‘ag dp?«
@9 g
(@

to rescue the apoptotic effects of J]DP2 depletion. We and others
have recently shown that ETP-ALL cells depend on BCL2 for their
survival (Anderson et al., 2014; Chonghaile et al., 2014; Peirs et
al., 2014). Given that BCL2 and MCLI are able to bind and seques-
ter the same BH3-only proteins, BIM and BID, our current data
suggest that Loucy cells are “primed” for apoptotic death through
this pathway, such that inhibition of either BCL2 or MCL1 is suf-
ficient to trigger apoptosis. In support of this concept, previous
studies have shown that MCL1 depletion alone dramatically
impairs the viability of Loucy cells (Ariés et al., 2013).

Many ALL cell lines show down-regulation or mutations of
the GC receptor, features that are only rarely found in primary
T-ALL samples, limiting what can be learned from studying GC
sensitivity of T-ALL cell lines in vitro (Geley et al., 1996). This
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was one of the reasons we chose to study GC responses in our
zebrafish model, where the ease in imaging the fluorescently
labeled thymus in zebrafish embryos, and its exquisite sensitiv-
ity to dexamethasone, makes it an attractive model for studying
GC responses in vivo. We show that the premalignant thymus in
Tg(rag2:;jdp2) transgenic zebrafish is resistant to GC treatment.
Similar to our findings in T-ALL cell lines and patients, zebrafish
mcll expression levels in thymocytes from Tg(rag2:jdp2) were
approximately twice those measured in wild-type or Tg(rag2:
Myc) fish. In light of MCLIas an important mediator of GC resis-
tance in lymphoid cells (Wei et al., 2006), these observations pro-
vide a potential mechanistic link between JDP2 overexpression,
GC resistance, and inferior survival in patients with T-ALL. We
have shown that JDP2 is preferentially up-regulated in ETP-ALL
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(Fig. 1, C and D), and support for increased GC resistance in
human ETP-ALL is provided by recent studies in human T-ALL
patient-derived tumor graft models, in which Delgado-Martin
et al. (2017) demonstrated that cells from ETP T-ALL models are
intrinsically more resistant to GCs than are cells from non-ETP
T-ALLs. Given that bZIP proteins such as JDP2 are extremely
challenging to target directly, our data suggest that inhibiting
its downstream effector MCL1 would be a rationale alternative
approach in patients with JDP2 overexpression, once specific and
potent MCLI inhibitors become available for clinical use.

Materials and methods

Cell lines

The identity of T-ALL cell lines used in this study was verified
by short tandem repeat analysis using the PowerPlex 1.2 system
(Promega) in January 2013. T-ALL cells were maintained in RPMI-
1640 supplemented with 10% FBS, L-glutamine, and penicillin/
streptomycin. HEK-293T cells were recently obtained from Amer-
ican Type Culture Collection and maintained in DMEM supple-
mented with 10% FBS, L-glutamine, and penicillin/streptomycin.

shRNA knockdown experiments in T-ALL cell lines

pLKO.1-puromycin lentiviral vectors expressing shRNAs tar-
geting JDP2 or control (luciferase and GFP) were obtained from
the RNAi Consortium of the Broad Institute. JDP2 shRNA#1
equates to clone TRCN0000019001 (targeting 5'-ACTCATGAA
CGCAGAGCTGAA-3'), and JDP2 shRNA#2 equates to clone
TRCN0000019002 (targeting 5-CGAGTCAGAAGGCAACCC
ACT-3’). Production of lentivirus and viral transductions was
performed as previously described (Sanda et al., 2012). To cre-
ate doxycycline-inducible JDP2 knockdown KOPT-K1 and Loucy
cells, JDP2shRNA#2 oligonucleotides were annealed and cloned
into the Agel/EcoRI sites of pLKO1-Tet-on (upper, 5'-CCGGCG
AGTCAGAAGGCAACCCACTCTCGAGAGTGGGTTGCCTTCTGA
CTCGTTTTT-3’; lower, 5'-~AATTAAAAACGAGTCAGAAGGCAA
CCCACTCTCGAGAGTGGGTTGCCTTCTGACTCG-3'). KOPT-K1
and Loucy cells were transduced with lentiviral supernatants,
selected by puromycin, and single-cell cloned by limiting dilu-
tion. Single-cell clones were expanded and assessed for shRNA
inducibility by qPCR and Western blotting for JDP2, 24 h after
the addition of doxycycline. To generate a retrovirus vector
encoding a wobble mutant JDP2 (JDP2w2, where JDP2w?2 refers
to JDP2 cDNA containing silent/wobble mutations (under-
lined) in the target site of shRNA#2, 5'-CGAATCGGAGGGTA-
ATCCACT-3'), human JDP2 cDNA was amplified by PCR using
forward primer, 5-TTGGGATCCGCCACCATGATGCCTGGGCAG
ATCCC-3’, and reverse primer, 5-TATAGTCGACTCACTTCT
TCTCGAGCTGCTCGAGCAGTGGATTACCCTCCGATTCGGGGGT-
3". The PCR products were cut by BamHI and Sall and cloned
into MSCV-IRES-GFP vector between BamHI and Xhol sites.
For rescue experiments, KOPT-K1 cells were stably transduced
with MSCV-IRES-GFP or MSCV-JDP2w2-IRES-GFP, sorted for
GFP expression by FACS, and subjected to knockdown exper-
iments with pLKO1-JDP2sh#2-puro vector. Cell growth assays
were performed in 96-well plate format, and cell number was
assessed at 72 h by Cell Titer Glo (Promega). The retroviral
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vector encoding MCL1 was generated as previously described
(Akahane et al., 2016).

Apoptosis assays

TUNEL assay and propidium iodide (PI) staining were performed
using the ApopTag Fluorescein Direct In Situ Apoptosis Detection
Kit (EMD Millipore) according to the manufacturer’s recommen-
dation. Briefly, 2 x 106 cells of each treated sample were fixed
with 1% paraformaldehyde in PBS for 15 min on ice, washed in
PBS, and incubated with 70% ethanol at -20°C overnight. The
cells were then washed and incubated with DNA labeling solu-
tion containing TdT and BrdU triphosphates for 4 h at 37°C. The
cells were washed and incubated in the staining buffer contain-
ing an Alexa Fluor 488 dye-labeled anti-BrdU antibody for 30
min at room temperature, and a mixture of PI/RNase was added.
After 30-min incubation at room temperature, TUNEL positiv-
ity and cell cycle distribution were analyzed by FACSCalibur
(BD Biosciences). Annexin V and PI double staining was also
used for detecting apoptosis. 2 x 10° cells of each treated sample
were washed with PBS, incubated in staining buffer containing
FITC-conjugated anti-annexin V antibody and PI (MBL Interna-
tional), and then analyzed by FACSCalibur.

T-ALL patient samples

Gene expression data were analyzed from published Affymetrix
U133 Plus 2.0 arrays from pediatric patients treated on the COG
P9404 trial and from HumanHT-12 v4 Expression BeadChip (Illu-
mina) from 53 adult T-ALL patients treated on the E2993 ECOG
trial (Gutierrez et al., 2010; Van Vlierberghe et al., 2013). gPCR
for JDP2 was performed from 34 diagnostic adult T-ALL cases
from the UKALL14 trial. Informed consent was obtained from
all patients according to the Declaration of Helsinki, and the
trial was approved by the West London Research Ethics Coun-
cil (09/H0711/90).

Normal thymic subsets

Thymuses were obtained as surgical tissue discards from chil-
dren aged 7 wk to 3 yr undergoing cardiac surgery at the Eras-
mus MC Rotterdam, with informed consent from the parents.
The children did not have immunological abnormalities. Thy-
mocytes were isolated by cutting the thymic lobes into small
pieces and squeezing them through a metal mesh, then stored
in liquid nitrogen. Thymocytes from five donors were used
to reduce intersample variation. After thawing, pooling, and
Ficoll density separation, thymocytes were labeled with fluo-
rochrome-conjugated monoclonal antibodies. For the isolation
of CD34*CDla" and CD34*CDla* thymocytes, CD34* progenitor
cells were prepurified by AUTOMACS (Miltenyi Biotec) using
the CD34 microbeads kit UltraPure (Miltenyi Biotec) before
FACS sorting. The following monoclonal human antibodies
were used: CDla-PE (HI149), CD3-APC (SK7), CD4-Pacific blue
(RPA-T4), CDS-FITC (SK1), CD13-PE (L138), CD16-PE (Leullc),
CD19-PE (4G7), CD33-PE (P67.6), CD34-APC (581), CD34-PE
(8G12), and CD56-PE (MY31; all BD Bioscience). Cell sorting
was performed on a FACSAria II cell sorter (BD Biosciences). All
populations were directly sorted as indicated by their marker
expression (Dik et al., 2005).
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RNA extraction and cDNA and expression analysis

mRNA was extracted using the RNeasy Mini Kit (Qiagen). Puri-
fied RNA was reverse-transcribed with the Superscript III RT kit
(Invitrogen). gPCR was performed with the Applied Biosystems
ViiA 7 using gene-specific primers and SYBR Green PCR Master
Mix (Roche). Primer sequences for gPCR were as follows: human
JDP2-F 5-ACGGAGTTTCTGCAGCGG-3’; human JDP2-R 5'-CAG
CATCAGGATGAGCTGC-3; human B-actin-F 5-AGAGCTACG
AGCTGCCTGAC-3’; human B-actin-R AGCACTGTGTTGGCGTAC
AG-3'; human GAPDH 5'-TGCACCACCAACTGCTTAGC-3’; human
GAPDH 5-GGCATGGACTGTGGTCATGAG-3; human MCL1-F
5'-GGACAAAACGGGACTGGCTA-3’; and human MCLI1-R 5'-TGC
CAAACCAGCTCCTACTC-3'.

Western blots and antibodies

Whole cell lysates were prepared in RIPA buffer. For JDP2 West-
ern blots, nuclear fraction protein was prepared using a Nuclear
Extract Kit (Active Motif). Protein concentration was quantified
with a Pierce BCA Protein Assay Kit (Thermo Fisher Scientific).
Equivalent amounts of protein were diluted in the Laemmli sam-
ple buffer (Bio-Rad Laboratories) and separated by SDS-PAGE.
Proteins were transferred to PVDF membranes (Millipore) and
subjected to immune blot analysis with specific antibodies for
JDP2 (ab40916; Abcam), BCL2 (4223S; Cell Signaling Technol-
ogy), BCL-XL (2764; Cell Signaling Technology), MCLL (5453;
Cell Signaling Technology), PARP1 (9542P; Cell Signaling Tech-
nology), cleaved caspase 3 (9664S; Cell Signaling Technology),
and B-actin (4967S; Cell Signaling Technology). All primary anti-
bodies were diluted at 1:2,000 in 5% milk in PBST (0.5% Tween-
20 in PBS), except for B-actin, which was diluted to 1:5,000 in
5% milk in PBST.

ChIP-seq experiments

ChIP coupled with massively parallel DNA sequencing (ChIP-
seq) was performed as previously described (Lee et al., 2006;
Marson et al., 2008; Mansour et al., 2014). Antibodies used for
ChIP were anti-JDP2 (sc-23456X; Santa Cruz Biotechnology)
and anti-H3K27ac (ab4729; Abcam). For each ChIP, 10 pg anti-
body was added to 3 ml of sonicated nuclear extract. [llumina
sequencing and library construction methods were previously
described (Marson et al., 2008). Reads were aligned to build hg19
of the human genome using Bowtie 1.0.1 with parameters -best
-k 2 -m 2-sam -1 40 (Langmead et al., 2009). For visualization
in the UCSC genome browser (Kent et al., 2002), WIG files were
created from aligned ChIP-Seq read positions using MACS with
parameters -w -S -space = 50 -nomodel -shiftsize = 200 to arti-
ficially extend reads to be 200 bp and calculate their density in
50-bp bins (Zhang et al., 2008). Read counts in 50-bp bins were
then normalized to the millions of mapped reads, giving reads
per million values.

ChIP-seq processing

Regions enriched in ChIP-seq signal, termed islands, were iden-
tified using SICER with corresponding control and parameters
-t 1 (reads with unique positions) -w 200 (window size 200 bp)
-g 200 (gap size 200 bp) -i 200 (read shift 200 bp) -t 0.74 (map-
pable genome) -p le-3 (island significance threshold; Zang et
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al., 2009). We used SICER over other peak callers to capture the
observed range in type/breadth of islands.

Read distribution in regions

To determine the preference of JDP2 to bind different types of
regions, we counted the reads from JDP2 ChIP-Seq in promot-
ers (TSS + 1,000 bp), gene bodies (TSS + 1,000 to transcription
end site [TES]), and enhancers (H3K27ac peaks). Only genes
greater than 1,000 bp were considered. Reads were first counted
in promoters; remaining reads were counted in bodies; remain-
ing reads were counted in enhancers. Counts were divided by
the total number of bases in these region types and displayed
as percentage stacked bar plots. The mean gene-centric profile
of JDP2 was determined using bamToGFF (https://github.com/
BradnerLab/pipeline) on three regions. The upstream 2,000 bp
was divided into 50 equally sized bins; the region TSS to TES was
divided into 150 equally sized bins; the downstream 2,000 bp was
divided into 50 equally sized bins. Each BamToGFF produced
matrices of RPM-normalized ChIP-Seq read counts in these bins
and used parameters -e 200 -f O -r. The mean value in each bin
was plotted using Matplot. ChIP-Seq signal around individual
genomic landmarks (promoters, JDP2 islands, and enhancers)
was calculated using BamToGFF and is displayed in Fig. 3 A. Pro-
moters (TSS + 5,000 bp), JDP2 islands (10,000 bp centered on
the middle of JDP2 islands from SICER), and enhancers (10,000
bp centered on the middle of H3K27ac islands) were partitioned
into 50, 50, and 150 bins, respectively. Heatmaps represent the
RPM-normalized read counts in these bins in each of 37,973 pro-
moters of RefSeq genes or 27,643 H3K27ac islands that do not con-
tact a promoter or 12,649 JDP2 islands. Each region is a row, and
rows are ordered by the sum of JDP2 signal in that row.

Motif analyses

To calculate the enrichment of JDP2 DNA-binding motifs in JDP2
islands, we used AME from the MEME suite (McLeay and Bailey,
2010). Position weight matrices were used to scan the genome
sequence in the JDP2 islands with parameters -method fisher
-scoring totalhits to calculate the count enrichment in these
motifs (Jolma et al., 2013). The corrected P value is reported.

Zebrafish models

Zebrafish maintenance and all animal experimental procedures
were approved by the Dana-Farber Cancer Institute Institutional
Animal Care and Use Committee-approved protocol #02-107 and
Massachusetts General Hospital Subcommittee on Research Ani-
mal Care, under protocol #2011N000127.

Mosaic coinjection experiments

DNA constructs used to generate mosaic transgenic zebrafish
included rag2:mCherry and rag2:mMyc (encoding murine Myc;
Langenau et al., 2003; Smith et al., 2010). Zebrafish jdp2b (cor-
responding to ENSDARG00000020133; zgc:92851) was ampli-
fied from zebrafish cDNA (primer forward: 5'-CACCATGATGCC
TGGTCAAATCCCTGATCC-3’; primer reverse: 5-TCAGTCTTC
GCGGGGCTCCAGC-3'), subcloned into pENTR gateway system
(Life Technologies) and transferred into the rag2 promoter des-
tination vector using LR clonase II (Life Technologies). Plasmids
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were linearized with NotlI or Xhol and purified. Mosaic transgenic
animals were generated as previously described (Langenau et al.,
2008). 40 ng/pl rag2:mCherry was mixed with 40 ng/pl rag2:
Myc, and 40 ng/pl rag2:jdp2 was microinjected into one-cell-
stage Tu/AB embryos. Mosaic transgenic animals were monitored
for T-ALL onset at day 21 and every 7 d thereafter by fluorescent
microscopy after tricaine anesthesia.

Generation of stable Tg(rag2:jdp2/rag2:mCherry) zebrafish line
To create a stable Tg(rag2:jdp2/rag2:mCherry) zebrafish line,
jdp2b (corresponding to zebrafish ENSDARG00000020133;
zgc:92851) was amplified from zebrafish cDNA (primer for-
ward: 5'-TATAGGATCCGCCCAAATCCCTGATC-3'; primer reverse
5'-TATAATCGATTCAGCGGGGCTCCAGC-3'), digested by BAMHI
and Clal, and cloned into the BAMHI/Clal sites downstream of
the zebrafish rag2 promoter in a modified pBluescript vector
containing flanked recognition sequences for I-Scel meganucle-
ase (Gutierrez et al., 2011). rag2:mCherry and rag2:jdp2 vectors
were digested by I-Scel and coinjected together into one-cell-
stage AB embryos using a previously described I-Scel coinjec-
tion strategy (Grabher and Wittbrodt, 2008). jdp2b expression
was quantified by isolating mCherry fluorescent cells by FACS,
extracting RNA, and performing qPCR with the following prim-
ers: zf-jdp2b-F 5-TTGCAGCTGCTCGCTGTC-3’; zf-jdp2b-R 5'-GCT
CCGACTTCAGCTCCTC-3'; zf-B-actin-F 5-TACAATGAGCTCCGT
GTTGC-3'; and zf-B-actin-R 5'-ACATACATGGCAGGGGTGTT-3').
Tg(rag2:mCherry) and Tg(rag2:jdp2/rag2:mCherry) zebrafish
were screened for tumors by fluorescence microscopy every
2 wk starting from the age of 10 wk. Fluorescence microscopy
was performed with a Leica M420 microscope equipped with
an X-Cite 120 Fluorescence Illumination System (EXFO). Kidney
and peripheral blood smears, as well as MGG staining, were per-
formed as previously described (Gjini et al., 2015).

Imaging and quantification

For in vivo steroid sensitivity testing, 5-dpf larvae were sorted
for thymic fluorescence, treated with dexamethasone (25 pg/
ml, 0.25% ethanol) or ethanol vehicle alone (0.25%) in standard
egg water, and imaged by fluorescent and light microscopy. For
bright-field DIC images, a Zeiss Axio Imager.Z1 compound micro-
scope equipped with an AxioCam HRc was used. For live imaging,
zebrafish and larvae were anaesthetized using 0.016% tricaine
(Sigma) and mounted in 4% methylcellulose (Sigma). A Nikon
SMZ1500 microscope equipped with a Nikon digital sight DS-U1
camera was used for capturing both bright-field and fluorescent
images from live zebrafish and larvae. For thymic fluorescence
quantification, all animals in the same experiments were imaged
at the same condition, and the acquired fluorescent images were
quantified in ImageJ (NIH) by measuring the fluorescent-covered
areas. To account for variation in fish size, the thymic fluorescent
area was normalized against the bright-field area of the fish head.
Overlays were created using Image] and Adobe Photoshop 7.0.1.

RNA-seq data processing

The RNA-seq data were processed using Tophat and Cufflinks
package according the RNA-seq experiments protocol (Trapnell
et al.,, 2012). First, RNA-seq raw reads were filtered using
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Fastx-toolkit (FASTX-Toolkit, 2018), the reads with n > 5% or
with low-quality bases (Q <20) >20% were removed, and the
remaining low-quality bases (Q <20) were trimmed. The clean
reads were aligned using Tophat2 (Kim et al., 2013), zebrafish
genome release version Zv9, and the Ensembl annotated version
73 was used as the transcript model reference for the alignment
as well as the isoform quantifications. After alignment, the gene
and isoform expression levels were produced using Cufflinks
in fragments per kilobase of transcript per million fragments
mapped. RNA-seq in Loucy and KOPTKI1 cells were aligned to
the hgl9 version of the human reference genome using tophat
with parameters -library-type fr-firststrand -no-novel-juncs
and -G set to human RefSeq genes downloaded on July 5, 2017.
Per-RefSeq-gene expression was calculated using htseq-count
with parameters -i gene_id -stranded=reverse -f bam -m inter-
section-strict (Anders et al., 2015). Differential expression was
determined using DESeq2 (Love et al., 2014). Genes were con-
sidered significantly differentially expressed if they had a
DESeq2-normalized log2 fold-change greater or less than 1 (2
linear fold) and a DESeq2 adjusted P value < 0.05.

Datasets, accession numbers, and data analyses

The following GEO gene expression datasets were analyzed:
GSE14618 (COG P9404 trial), GSE26713 (COALL/DCOG trials),
GSE42328 (ECOG2993), and GSE13159 (MILE study; Gutierrez
et al., 2010; Haferlach et al., 2010; Homminga et al., 2011; Van
Vlierberghe et al., 2013). Loucy input control and H3K27ac ChIP-
seq are available under GSM2311760 and GSM2037788, respec-
tively. JDP2 ChIP-seq and RNA-seq datasets are available under
GSE115465 and GSE115464, respectively.

Statistical analysis

Differences in overall survival for patients on the COG P9404
trial, and differences in time to tumor formation in zebrafish,
were assessed by the log-rank test, and time-to-event distribu-
tions were estimated and plotted via the Kaplan-Meier method in
Prism. For survival data, patients were determined as JDP2 posi-
tive if their expression value was in the top quartile. Our use of the
top quartile to define T-ALLs with aberrant JDP2 expression lev-
els is consistent with data from qPCR showing that the top quar-
tile of patients overexpress JDP2 compared with the ISP thymic
subset (Fig. 1 B), which expresses the highest JDP2 levels among
all normal thymic subsets. Differences in JDP2 mRNA expression
between ETP versus non-ETP subgroups were calculated using
the Student’s t test. Correlation analysis was performed using
the R2 database (R2: Genomics Analysis and Visualization Plat-
form; http://r2.amc.nl) from 165 T-ALL patients recruited onto
the MILE study (Haferlach et al., 2010), using JDP2 Affymetrix
probe 226267_at and a P value cutoff of <0.001 adjusted for mul-
tiple testing using the false discovery rate. Waterfall plots were
generated in Excel with R value cutoffs of +0.3.

Online supplemental material

Fig. S1 shows cell growth kinetics after lentivirus-mediated
shRNA depletion of JDP2 with two independent shRNAs in
Loucy cells and KOPT-K1 T-ALL cells. Fig. S2 shows specificity
of selected JDP2 shRNAs through lack of toxicity across a panel
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of cell lines, lack of effect in non-JDP2-expressing DND-41 cells,
and rescue of cell growth with JDP2 reexpression. Fig. S3 shows
that JDP2 depletion initiates apoptosis as determined by flow
cytometry for annexin V and Western blotting for PARP1 and
caspase-3 cleavage. Fig. S4 shows positive correlation of JDP2
and MCLI expression in different T-ALL patient cohorts. Fig. S5
shows delayed involution of thymus in sections from 23-wk-old
Tg(rag2:jdp2) zebrafish, as well as expression of CD3 by qPCR.
Table S1shows correlation analysis of genes most negatively and
positively associated with JDP2 expression in T-ALL patients
from the MILE study.
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