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Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a 
defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how 
to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)–adenosine monophosphate 
(AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger 
cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STI​NG. However, cGAS can be activated by double-
stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still 
not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to 
stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage 
trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.
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Introduction
Genomic instability, a major driving force of cancer and age- 
related diseases, poses an ominous threat to human health and 
longevity. Nevertheless, several stringent and intricate cellular 
programs maintain genome integrity and prevent cells from 
becoming malignant. Cells may return to normal function if the 
genetic lesions are successfully repaired, enter a state of per-
manent cell-cycle arrest known as senescence if the damage is 
persistent but tolerable, or undergo programmed cell death to 
destroy an intolerably damaged genome.

Although DNA damage response (DDR) was long thought 
to mainly regulate genome integrity and cell fates, accumu-
lating evidence indicates that genomic instability also triggers 
inflammatory response (Fig. 1). In tissue culture systems, DNA 
damaging agents such as topoisomerase inhibitors and ionizing 
irradiation induce the expression of type I IFNs and other cyto-
kines (Fenech and Morley, 1986; Schlegel et al., 1986; Coppé et 
al., 2008; Rodier et al., 2009; Brzostek-Racine et al., 2011; Fenech 
et al., 2011; Kondo et al., 2013; Ahn et al., 2014b; Lan et al., 2014; 
Härtlova et al., 2015; Xia et al., 2016a; Harding et al., 2017; Luthra 
et al., 2017). The degree of inflammatory gene induction by 
genomic DNA damage is usually lower than that induced by DNA 
transfection or viral infection. Nonetheless, cells that sustain 
nuclear DNA damage also become more resistant to viral infec-
tions (Mboko et al., 2012; Härtlova et al., 2015; Luthra et al., 2017). 
Consistent with these in vitro findings, in vivo studies revealed 

that chemotherapy (Sistigu et al., 2014) and radiation treatment 
(Burnette et al., 2011; Lim et al., 2012; Deng et al., 2014) induce 
type I IFN signaling in tumors to promote antitumor immunity.

In addition to inducing cytokines, DNA damage also enhances 
the expression of ligands of natural killer (NK) cells such as 
NKG2D ligands (Gasser et al., 2005; Lam et al., 2014). These sur-
face proteins attract NKG2D-positive NK cells and activated CD8 
T lymphocytes to target damaged cells for elimination by the 
immune system (Bauer et al., 1999). The expression of NKG2D 
ligands is likely a result of type I IFN induction by DNA damage 
(Zhang et al., 2008; Lam et al., 2014).

Recent studies have provided mechanistic insights into how 
DNA damage induces type I IFNs and other immune-regulatory 
cytokines (Erdal et al., 2017; Glück et al., 2017; Harding et al., 2017; 
Mackenzie et al., 2017; Yang et al., 2017). A cytosolic DNA sensing 
pathway has emerged as the major link between DNA damage and 
innate immunity (Fig. 2). DNA normally resides in the nucleus 
and mitochondria; hence, its presence in the cytoplasm serves 
as a danger-associated molecular pattern (DAMP) to trigger 
immune responses. Cyclic guanosine monophosphate (GMP)–
adenosine monophosphate (AMP) synthase (cGAS) is the sensor 
that detects DNA as a DAMP and induces type I IFNs and other 
cytokines (Sun et al., 2013). DNA binds to cGAS in a sequence-
independent manner; this binding induces a conformational 
change of the catalytic center of cGAS such that this enzyme can 
convert guanosine triphosphate (GTP) and ATP into the second 
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messenger cyclic GMP-AMP (cGAMP; Wu et al., 2013). The 
cGAMP produced by cGAS contains two phosphodiester bonds: 
one between the 2’-hydroxyl group of GMP and 5′-phosphate 
of AMP and the other between the 3′-hydroxyl of AMP and 
5′-phosphate of GMP (Ablasser et al., 2013; Diner et al., 2013; 
Gao et al., 2013a; Zhang et al., 2013). This cGAMP molecule, 
termed 2’3′-cGAMP, is an endogenous high-affinity ligand for 
the adaptor protein Stimulator of IFN Gene (STI​NG, also known 
as MITA, MPYS, and ERIS; Ishikawa and Barber, 2008; Jin et al., 
2008; Zhong et al., 2008; Sun et al., 2009).

STI​NG forms a transmembrane homodimer that localizes to 
the ER and binds cyclic dinucleotides (CDNs), such as cGAMP 
and the bacterial second messengers c-di-GMP and c-di-AMP 
(Burdette et al., 2011; Wu et al., 2013). cGAMP binding induces 
a conformational change in STI​NG (Gao et al., 2013b; Zhang et 
al., 2013), which subsequently translocates from the ER to the 
Golgi apparatus (Ishikawa and Barber, 2008; Saitoh et al., 2009). 
This process is thought to liberate the STI​NG carboxyl terminus 
to subsequently recruit and activate TANK-binding kinase 1 
(TBK1) and IFN regulatory factor 3 (IRF3) via a phosphorylation-
dependent mechanism (Tanaka and Chen, 2012; Liu et al., 2015). 
STI​NG also activates NF-κB, which functions together with IRF3 to 
turn on the transcription of type I IFNs and other cytokines (Fig. 2).

The molecular details of the cGAS–STI​NG pathway and its 
pivotal roles in eliciting effective immunity against various 
microbial pathogens have been extensively reviewed elsewhere 
(Xiao and Fitzgerald, 2013; Cai et al., 2014; Wu and Chen, 
2014; Chen et al., 2016b; Ma and Damania, 2016; Tao et al., 
2016; Kato et al., 2017). In this review, we primarily focus on 
its emerging function in mediating DNA damage–induced 
inflammatory responses. We further discuss recent findings 

on how the cGAS–STI​NG axis contributes to the outcome of 
autoinflammatory diseases, senescence, and cancer.

cGAS senses cytoplasmic DNA as a consequence of 
nuclear DNA damage
DNA damage in the nucleus results in the accumulation of 
cytoplasmic DNA, notably in the form of micronuclei (Fig.  2). 
Micronuclei are small, DNA-containing organelles that resemble 
satellites to the primary nuclei (Fenech et al., 2011). They are 
products of chromosome damage as a result of genotoxic stress 
and chromosome missegregation in subsequent cell division. For 
instance, centromere-deficient chromosome fragments may result 
from the error-prone nonhomologous end-joining (NHEJ) repair 
and are unable to segregate normally, thereby forming micronuclei 
outside the newly formed nuclei. Similarly, whole chromosomes 
left behind by the spindle because of centromere hypomethylation 
or kinetochore dysfunction also end up as micronuclei after 
mitosis (Fenech et al., 2011). Since their early identification as 
“Howell-Jolly bodies” more than a century ago, micronuclei have 
been strongly associated with DNA damage and were adopted as 
a sensitive biomarker of genotoxicity (Fenech and Morley, 1985, 
1986; Schlegel et al., 1986). The cytokinesis-block micronucleus 
(CBMN) assay, which scores the frequency of micronuclei, has 
been a widely used method to assess the genotoxicity of different 
chemical or radioactive mutagens (Fenech, 2007).

Micronuclei are originally formed with a nuclear envelope (NE), 
but more than half the micronuclei lose compartmentalization 
after mitosis as their NE ruptures (Hatch et al., 2013). NE breaks 
were found to negatively correlate with lamina integrity because 
lamin networks critically contribute to NE structural resilience 
(Vargas et al., 2012; Hatch et al., 2013). It was recently reported that 
NE of the nucleus can be rapidly repaired by the endosomal sorting 
complexes required for transport III (ESC​RT-III) complex (Denais 
et al., 2016; Raab et al., 2016), and this mechanism may provide 
similar protection to NEs of micronuclei. These observations imply 
that micronuclei NEs may have compromised lamina function or 
membrane repair capacity so that it ruptures easily, although the 
detailed mechanisms underlying NE rupture await further study. 
A consequence of micronuclei rupture is that chromosomal DNA 
become accessible to cGAS (Bartsch et al., 2017; Dou et al., 2017; 
Glück et al., 2017; Harding et al., 2017; Mackenzie et al., 2017; 
Yang et al., 2017).

DNA damage also induces the accumulation of cytoplasmic 
DNA into “speckles,” which are less aggregated than micronu-
clei (Ahn et al., 2014b; Lan et al., 2014; Härtlova et al., 2015; Shen 
et al., 2015; Erdal et al., 2017). Cytoplasmic DNA speckles con-
tain mostly single-stranded DNA (ssDNA; Härtlova et al., 2015; 
Shen et al., 2015; Erdal et al., 2017), but may also contain small 
amounts of double-stranded DNA (dsDNA; Shen et al., 2015). 
ssDNA in general induces very little type I IFNs compared with 
dsDNA (Ishii et al., 2006) because cGAS doesn’t bind ssDNA. 
However, stem-loop–forming ssDNA sequences in HIV reverse 
transcripts were shown to have a high potency of cGAS activa-
tion (Herzner et al., 2015). Accumulation of ssDNA in cells defi-
cient in the Trex1 exonuclease is also associated with chronic IFN 
induction and autoinflammatory phenotypes (Yang et al., 2007; 
Stetson et al., 2008; Gao et al., 2015; Wolf et al., 2016). Among 

Figure 1. Inflammatory response is another biological outcome of 
genomic instability. Genotoxic stress leads to DNA damage repair, cellular 
senescence, and cell death in a manner that depends on the severity of the 
DNA damage. The cGAS–cGAMP–STI​NG pathway is activated by DNA damage 
to mediate antitumor immunity, senescence, and inflammatory responses.
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Figure 2. The cGAS–cGAMP–STI​NG pathway detects cytoplasmic DNA after DNA damage and activate type I IFNs and other cytokines. Like DDR, the 
immune response is induced by various forms of genotoxic stress, ranging from ionizing radiation, DNA-damaging drugs, oxidative stress, oncogenic signaling, 
telomere shortening, and chromosome missegregation to viral infections and activation of endogenous retroelements. Nuclear DNA damage can generate 
cytoplasmic DNA in two possible ways. First, certain genomic damage causes chromosome to missegregate in subsequent cell division; the chromosome 
failing to partition into the new nuclei will form micronuclei. When the nuclear evelope (NE) of micronuclei ruptures, the DNA content is exposed to cGAS 
surveillance. Second, nuclear DNA damage can also generate ssDNA in the cytoplasm in a less understood process (dashed line and question mark). Such 
cytoplasmic DNA is degraded by Trex1, the loss of which leads to cGAS activation. Active cGAS dimerizes to synthesize cGAMP from GTP and ATP. cGAMP acts 
as a second messenger to activate STI​NG on the ER surface. STI​NG then activates transcription factors IRF3 and NF-κB via kinases TBK1 and IKK, respectively. 
IRF3 and NF-κB translocate into the nucleus to elicit the expression of IFNs and other cytokines. Damage to mitochondria or mitochondrial DNA can also lead 
to accumulation of mitochondrial DNA in the cytosol, resulting in cGAS activation and sterile inflammation (not depicted).
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the ssDNA species generated after DNA damage, those that form 
double-stranded secondary structures may activate cGAS. Trex1 
has also been shown to degrade nicked dsDNA (Chowdhury et 
al., 2006), and such DNA may accumulate in Trex1-deficient cells 
to activate cGAS.

Little is known about how DNA damage leads to DNA accu-
mulation in the cytosol. MUS81 is an endonuclease that may 
play a role in this process. The MUS81-EME1 complex belongs 
to the family of structure-specific endonucleases that resolve 
interstrand DNA structures such as stalled replication forks and 
Holliday junctions (Dehé and Gaillard, 2017). MUS81 is required 
for genomic integrity and tumor suppression, as mus81−/− mice 
display increased chromosomal aberrations in T cells and are 
predisposed to lymphomas and other cancers (McPherson et al., 
2004). It was found that MUS81 is required for the generation of 
cytoplasmic DNA in prostate cancer cells (Ho et al., 2016). The 
amount of cytoplasmic DNA positively correlates with MUS81 
protein level and the number of MUS81 nuclear foci, suggesting 
that MUS81 is engaged in the process that converts nuclear DNA 
into cytoplasmic forms. Consistently, MUS81 promotes type I IFNs 
and thus immune rejection of prostate tumor (Ho et al., 2016). In 
contrast, however, it was also reported that MUS81 is a negative 
regulator of spontaneous type I IFN production (Laguette et al., 
2014). Thus, the exact roles of MUS81 in regulating cytoplasmic 
DNA sensing remain to be elucidated. A recent study reported 
that extracellular telomere repeat DNA (ECTR), generated by the 
alternative lengthening of telomeres (ALT) mechanism, accumu-
lates in the cytoplasm of ALT cell lines and activates IFN-β via the 
cGAS–STI​NG pathway (Chen et al., 2017). As MUS81 is necessary 
for ALT (Zeng et al., 2009), the cytoplasmic DNA derived from 
MUS81 activity may include ECTR DNA.

Multiple studies have recently demonstrated that induction 
of cytokines by DNA damage is mediated through the cGAS–
STI​NG pathway (Lan et al., 2014; Härtlova et al., 2015; Bartsch 
et al., 2017; Erdal et al., 2017; Glück et al., 2017; Harding et al., 
2017; Mackenzie et al., 2017; Yang et al., 2017). After DNA damage, 
cGAS is recruited to micronuclei (Glück et al., 2017; Harding et 
al., 2017; Mackenzie et al., 2017; Yang et al., 2017). NE rupture 
of micronuclei appears to precede cGAS recruitment (Harding 
et al., 2017; Mackenzie et al., 2017). cGAS in the micronuclei is 
presumably activated by the chromosomal DNA fragments to 
synthesize cGAMP, but direct evidence is still lacking. Inter-
estingly, although cGAS usually localizes in the cytoplasm of 
nondividing cells, a majority of cGAS associates with chromatin 
after nuclear membrane breakdown during mitosis (Harding et 
al., 2017; Mackenzie et al., 2017; Yang et al., 2017). Because there 
is no evidence of cGAS activation during cell division, it will be 
interesting to determine how cGAS activity is modulated during 
chromatin association. Similarly, it remains unclear what form 
of chromatin DNA in the micronuclei may activate cGAS. Because 
cGAS-associated micronuclei stain positive for phosphorylated 
γ-H2A, a DNA damage marker (Mackenzie et al., 2017; Yang et 
al., 2017), DNA damage itself may contribute to cGAS sensing. In 
this regard, a recent proteomic study showed that cGAS is asso-
ciated with a ribonuclear complex dubbed HEX​IM1-DNA–protein 
kinase (PK)–paraspeckle components–ribonucleoprotein com-
plex (HDP–RNP) that contains DNA-PK (Morchikh et al., 2017). 

It will be interesting to determine whether this complex plays 
a role in the regulation of cGAS activity by DNA damage in the 
primary nucleus and in micronuclei.

Together, these new findings have demonstrated that the 
cGAS–cGAMP–STI​NG pathway connects genotoxic stress to 
cytokine expression by sensing cytoplasmic DNA as a common 
consequence of nuclear DNA damage.

The cGAS–cGAMP–STI​NG axis connects DNA damage to 
autoinflammatory diseases
Genetic deficiencies that compromise DDR functions also induce 
cytokines and lead to autoinflammatory diseases. An underly-
ing mechanism is the aberrant activation of the cGAS–STI​NG 
pathway. For instance, Ataxia-Telangiectasia Mutated (ATM) 
is a critical kinase for DDR initiation. ATM mutations result in 
dysfunctional V(D)J recombination and ultimately the immuno-
deficiency syndrome Ataxia-Telangiectasia (A-T), because V(D)
J recombination is essential for antibody production and T cell 
development. A-T patients are also prone to autoinflammation. 
Elevated type I IFN signaling was associated with ATM deficiency 
in cultured cells (Siddoo-Atwal et al., 1996; Sugihara et al., 2011), 
as well as in sera of human A-T patients (Härtlova et al., 2015). 
The autoinflammatory phenotype of A-T is abrogated in atm−/− 
sting−/− double knockout mice and significantly reduced after 
cGAS knockdown, indicating that the cGAS–STI​NG pathway 
plays an essential role in this disease (Härtlova et al., 2015).

Aicardi-Goutières syndrome (AGS) is an inheritable neuro-
logical disease that leads to microcephaly, intellectual retardation, 
and childhood death (Crow and Rehwinkel, 2009). This debilitat-
ing disease is driven by chronic IFN signaling caused by recessive 
mutation in one of a few genes involved in nucleic acid metab-
olism, such as trex1, rnaseH2a, rnaseH2b, and samhd1 (Crow 
and Rehwinkel, 2009). For instance, the trex1 gene encodes a 
3′–5′ exonuclease that salvages DNA fragments generated from 
nuclear DNA damage (Yang et al., 2007; Erdal et al., 2017). Similar 
to human AGS patients with trex1 deficiency, trex1−/− mice also 
develop life-shortening inflammatory phenotypes (Crow et al., 
2006a), which can be rescued by genetic ablation of either cGas 
or sting (Gall et al., 2012; Ahn et al., 2014a; Gao et al., 2015; Gray 
et al., 2015). In tissues from trex1−/− mice, elevated cGAMP was 
detected by mass spectrometry; cGAMP detection in these mice 
was also dependent on wild-type cGAS, directly demonstrating 
that cGAS is activated in trex1−/− mice (Gao et al., 2015).

RNaseH2 is a nuclear enzyme responsible for removing 
ribonucleotides that are misincorporated into genomic DNA 
(Reijns et al., 2012). Genetic defects in any of the three subunits 
of RNaseH2 leads to chronic DNA damage, elevated type I IFNs 
and perinatal lethality in mice (Hiller et al., 2012; Reijns et al., 
2012; Mackenzie et al., 2016; Pokatayev et al., 2016), and the AGS 
phenotypes in humans (Crow et al., 2006b). In RnaseH2b−/− cells, 
persistent genome instability promotes the formation of micro-
nuclei, which recruit cGAS and activate type I IFN signaling 
(Bartsch et al., 2017; Mackenzie et al., 2017). Genetic removal of 
cGAS or STI​NG can experimentally reverse the ensuing inflam-
mation and autoimmune phenotypes in RNaseH2-deficient 
mice (Mackenzie et al., 2016; Pokatayev et al., 2016). AGS is also 
caused by mutations in human SAM​HD1 (Rice et al., 2009), a 
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deoxyribonucleotide triphosphate triphosphatase that balances 
nuclear levels of deoxyribonucleotide triphosphates (Franzolin 
et al., 2013) and genome stability (Kretschmer et al., 2015). 
Although SAM​HD1-deficient mice do not show any overt auto
inflammatory phenotype, their myeloid cells express elevated 
levels of IFN-stimulated genes that are dependent on cGAS 
and STI​NG (Maelfait et al., 2016). Together, these observations 
demonstrate the central role of the DNA-sensing pathway in 
mediating DNA damage–induced inflammatory diseases.

ERCC1-XPF is a structure-specific endonuclease critical for 
multiple genome maintenance mechanisms such as nucleotide 
excision repair and dsDNA break repair. Mice lacking ERCC1 
display increased genome instability and chronic expression of 
inflammatory cytokines, leading to premature aging and early 
death (Melton et al., 1998; Niedernhofer et al., 2006; Karakasilioti 
et al., 2013). Notably, ERCC1 deficiency in humans causes the severe 
developmental disorder Cerebro-Oculo-Facio-Skeletal syndrome 
(COFS). Key features of the COFS syndrome, such as microcephaly 
with calcification, are similar to those of AGS and the Cockayne 
syndrome, the latter being caused by mutations in ercc8 or ercc6 
(Troelstra et al., 1992; Henning et al., 1995). While the aging phe-
notype of ERCC1 deficiency requires NF-κB in mice (Tilstra et al., 
2012), it remains to be determined whether aberrant cGAS–STI​NG 
activity may also underpin these inheritable disorders.

Recent studies have shown that cGAS activation by self DNA 
is also linked to more common and complex diseases such as 
myocardial infarction (MI) and age-related macular degenera-
tion (AMD). MI is known to drive inflammation and exacerbate 
lethality. The massive death of cardiomyocytes activates in heart 
macrophages strong type I IFN signaling that is mediated by the 
cGAS–STI​NG pathway (King et al., 2017; Cao et al., 2018). Mice 
lacking components of the pathway, including cGAS, IRF3, and 
IFN​AR1, had significantly improved early survival in experimen-
tal MI model, compared with wild-type animals. Similarly, cGAS 
also facilitates inflammation in the eyes (Kerur et al., 2017). In an 
Alu-RNA–induced model of macular degeneration in mice, reti-
nal pigment epithelium (RPE) degeneration was shown to rely 
on caspase 4/11 and Gasdermin D of the inflammasome pathway, 
as well as cGAS, STI​NG, IRF3, and IFN​AR1. Although it is unclear 
how the cGAS–STI​NG pathway leads to inflammasome activation 
in RPE cells, it has been recently reported that STI​NG-mediated 
cell death can activate the NLRP3 inflammasome in some human 
myeloid cells (Gaidt et al., 2017).

While accumulation of cytosolic DNA through nuclear DNA 
damage, loss-of-function mutations of DNA degrading enzymes, 
or tissue damage leads to autoinflammatory diseases, gain-of-
function mutations in STI​NG are sufficient to cause an auto
inflammatory disorder termed STI​NG-associated vasculopathy 
with onset in infancy (SAVI; Liu et al., 2014; Melki et al., 2017). 
These mutations lead to constitutive STI​NG activation and type 
I IFN signaling. Interestingly, the resulting vascular and pulmo-
nary syndrome of SAVI resemble those of some DDR deficiency–
associated autoinflammation, such as A-T and Artemis deficiency 
(Gul et al., 2017), consistent with the notion that these genetic 
disorders affect the same signaling pathway.

Besides damaged nuclear DNA, cGAS also responds to 
other self-DNA that mislocalizes to the cytoplasm and drives 

autoinflammation. Haplodeficiency of TFAM (transcription 
factor A, mitochondria), a protein that packages mitochondria 
DNA (mtDNA) into nucleoid, was reported to promote releases of 
mtDNA into the cytosol, which activate cGAS to confer IFN-me-
diated viral resistance (West et al., 2015). In response to apop-
totic stimuli, mitochondria not only releases cytochrome c to 
activate caspases to execute apoptosis, but also mtDNA to the 
cytosol, which could have otherwise activated cGAS to trigger 
inflammation if there were no concurrent activation of caspases 
(Rongvaux et al., 2014; White et al., 2014). Through an unknown 
mechanism caspase activation in apoptotic cells inactivate the 
cGAS–STI​NG pathway, thereby suppressing sterile inflamma-
tion. DNaseII is a lysosomal endonuclease that is responsible 
for degrading phagocytosed exogenous DNA from dead cells or 
expelled nuclei of developing red blood cells. Mice lacking DNa-
seII are embryonically lethal as a result of type I IFN–driven cell 
death (Kawane et al., 2003), which can be partially rescued by 
genetically ablating type I IFN receptor (Yoshida et al., 2005) and 
nearly completely rescued by deleting STI​NG (Ahn et al., 2012) or 
cGAS (Gao et al., 2015). In DNaseII-deficient but not normal fetal 
livers, cGAMP can be detected by mass spectrometry (Gao et al., 
2015). Therefore, cGAS also senses phagocytosed DNA that are 
inadequately digested in the lysosome. Human patients with loss 
of function mutations of DNaseII have recently been identified, 
and these patients exhibit symptoms of type I interferonopathy, 
including tissue inflammation and elevated anti-DNA antibod-
ies (Rodero et al., 2017). Together, these findings strongly sup-
port the central role of the cGAS–cGAMP–STI​NG pathway in the 
pathogenesis of a variety of type I IFN–mediated monogenic dis-
eases. Therefore, components of this pathway represent promis-
ing targets for developing pharmacological intervention for AGS 
and other autoinflammatory disorders.

cGAS is essential for DNA damage–induced cellular senescence
Cellular senescence is a state of irreversible cell cycle arrest, 
induced by a variety of external or internal stress such as telo-
mere shortening, oxidative damage, and oncogenic signaling. 
Although the causes of and phenotypes generated by cellular 
senescence are manifold, persistent DDR is thought to be the com-
mon mechanism that is critical for the establishment and main-
tenance of senescence phenotypes (d’Adda di Fagagna, 2008).  
Specifically, DDR activates the p53–p21 and p16 INK4a–Rb pathways 
to block the cell cycle and implement senescence programs.

Recent research has provided strong evidence that cGAS also 
has an essential role in promoting cellular senescence (Dou et 
al., 2017; Glück et al., 2017; Yang et al., 2017). The initial clue 
came from spontaneous immortalization of murine embryonic 
fibroblasts (MEFs). When primary MEFs are serially passaged, 
the majority of cells gradually senesce, and only a small fraction 
overcome the growth crisis and become immortalized. Compared 
with wild-type MEFs, the cGas−/− MEFs are immortalized more 
rapidly, suggesting that cGAS inhibits cell proliferation (Glück 
et al., 2017; Yang et al., 2017). Oxidative DNA damage was pre-
viously shown to limit spontaneous immortalization (Parrinello 
et al., 2003). The antiproliferative effect of cGAS is ameliorated 
at lower oxygen levels, suggesting cGAS functions downstream 
of oxidative DNA damage (Glück et al., 2017). Consistent with 
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its role in limiting cell replication, cGAS is also required for the 
expression of senescence markers, such as p16INK4a and senes-
cence-associated β-galactosidase (SA-β-Gal) during MEF immor-
talization. Therefore, cGAS plays an indispensable role in cellular 
senescence in response to oxidative stress. Similarly, irradiation, 
DNA-damaging drugs, or oncogene activation all induce cellular 
senescence in a cGAS-dependent manner. The activation of onco-
genes, such as NRasV12, leads to DNA hyperreplication, increased 
replication errors, and initiation of the DNA damage response (Di 
Micco et al., 2006). In cells under these genotoxic stresses, cGAS 
is recruited to micronuclei. In oncogene-induced senescent cells, 
cGAMP is detectable by LC-MS (Dou et al., 2017). Therefore, cGAS 
senses micronuclei as the result of genomic DNA damage to pro-
mote senescent phenotypes.

How does the cGAS–STI​NG pathway regulate cellular senes-
cence, given that it is not an integral component of either the 
p53–p21 or the p16 INK4a–Rb pathway? A mechanism is likely 
through the senescence-associated secretory phenotype (SASP), 
which refers to the phenomenon that senescent cells produce 
and release a range of cytokines, chemokines, and proteases to 
the extracellular milieu to modulate senescent cells themselves 
and their microenvironment (Kuilman and Peeper, 2009). After 
various forms of senescing stimuli, such as oxidation, radiation, 
chemotherapeutic drugs, or mitogenic stress, cells produce in a 
cGAS-dependent manner a range of cytokines and chemokines, 
such as IFN-β, IL-1β, IL-6, and IL-8 (Dou et al., 2017; Glück et al., 
2017; Yang et al., 2017). Some of these cytokines, namely IL-8 
and IL-6, are known to feedback to the secreting cells to rein-
force senescence signaling (Acosta et al., 2008; Kuilman et al., 
2008). Type I IFNs are also prosenescence and antiproliferative, 
as they induce DNA damage and elevate the p53 level (Takaoka 
et al., 2003; Moiseeva et al., 2006). Therefore, the cGAS–STI​NG 
pathway provides a critical paracrine signal that is necessary for 
sustaining cellular senescence.

Besides promoting senescence cell-autonomously, SASP can 
signal to the immune system and modulate the tissue micro-
environment. Previously, it was demonstrated in a liver cancer 
model that senescent liver cells attract via SASP a variety of 
immune cells, specifically NK lymphocytes and neutrophils, to 
clear tumor cells (Xue et al., 2007). In a liver fibrosis model, SASP 
was shown to recruit and activate NK cells to eliminate senescent 
cells and resolve fibrosis (Krizhanovsky et al., 2008). The cGAS–
STI​NG pathway is also required for SASP-mediated antitumor 
effect. Dou et al. used an NRasV12-expressing vector to induce 
liver tumors and found in the STI​NG null mice attenuated infil-
tration of immune cells, reduced clearance of senescent cells at 
the early stage, and increased tumor growth at later stages (Dou 
et al., 2017). Therefore, senescence can promote immune surveil-
lance to suppress malignancy via SASP.

Although evidence cited above illustrates SASP as an anti-
tumor component of senescence, it should be noted that SASP 
can also promote tumorigenesis (Coppé et al., 2010). SASP from 
senescent fibroblasts can strongly induce epithelium cells to pro-
liferate, transform, and metastasize (Krtolica et al., 2001; Coppé 
et al., 2008). Particularly, IL-6 and IL-8 can induce invasiveness 
of epithelium cells (Coppé et al., 2008); matrix metalloprotease 
can remodel tissue microenvironment to increase the availability 

of growth factors (Liu and Hornsby, 2007); and vasculature 
endothelium growth factor (VEGF) can promote endothelium 
cell migration and tumor angiogenesis (Coppé et al., 2006). 
Therefore, SASP can mediate both positive and negative effects 
of senescence on cancer. Such dichotomous functions of senes-
cence and the role of the cGAS–STI​NG pathway in these functions 
should be further clarified in future studies.

Senescence also regulates stem cell functions and aging. Previ-
ously, type I IFN signaling was shown to mediate a variety of stem 
cell defects in telomerase-deficient mice as the result of persistent 
DNA damage (Yu et al., 2015). Deletion of the IFN α/β receptor 1 
(IFN​AR1) rescues the senescence phenotypes in Terc−/− mice. As 
the role of IFN-β in stress-induced senescence is reminiscent of 
the roles of cGAS and STI​NG (Katlinskaya et al., 2016), it would 
be interesting to investigate the cGAS–STI​NG pathway in the pro-
cess of stem cell senescence under stress conditions. Recent evi-
dence shows that STI​NG null mice display remarkably less hair 
graying months after irradiation (Dou et al., 2017). Radiation- 
induced genomic damage was previously shown to cause a loss of 
renewal of melanocyte stem cells (Inomata et al., 2009); there-
fore, STI​NG-mediated SASP may contribute to regulating these 
stem cells. Remarkably, experimental elimination of p16INK4a- 
positive senescent cells in mice can attenuate aging phenotypes 
in organs such as the kidney and the heart, significantly prolong-
ing mouse life span and health span (Baker et al., 2016). Given 
that the cGAS–STI​NG pathway plays critical roles in cellular 
senescence, inhibitors of cGAS or STI​NG may offer similar bene-
fits to treat senescence and age-related diseases.

DNA damage activates the cGAS–cGAMP–STI​NG 
pathway in cancer
Crucial links between DNA damage and cancer have long been 
recognized. On one hand, DNA damage can promote antitumor 
immunity in both natural rejection and therapies. On the other 
hand, genome instability is a hallmark as well as an important 
driving force of cancer. As the cGAS–cGAMP–STI​NG pathway 
critically determines the immunological outcomes of DNA dam-
age, it also plays prominent roles in both aspects of cancer.

Effective antitumor immunity relies on cross-presentation of 
tumor antigens by APCs to CD8 T lymphocytes. The activation of 
APCs requires type I IFN signaling initiated by innate immune 
sensors (Diamond et al., 2011; Fuertes et al., 2011). Recent evi-
dence has shown that the cGAS–STI​NG pathway, activated in 
APCs by cytosolic DNA, provides a critical source of such a prim-
ing signal. It was shown that the STI​NG-deficient mice fail to 
reject the growth of inoculated tumor cells spontaneously (Woo 
et al., 2014) after local radiation therapy (Deng et al., 2014) or 
after immune checkpoint blockades using antibodies against 
PD-L1 (Wang et al., 2017) or CD47 (Xu et al., 2017). Similarly, 
cGas−/− mice also show defective tumor rejection (Wang et al., 
2017; Xu et al., 2017). In line with these findings, the cGAS–STI​
NG pathway in dendritic cells (DCs) is required to prime DCs in 
coculture with tumor cells for cross-presentation to activate CD8 
T cells (Deng et al., 2014; Wang et al., 2017; Xu et al., 2017). Consis-
tent with tumor suppression by the cGAS–STI​NG pathway, treat-
ment with exogenous cGAMP or other STI​NG agonists can also 
enhance immunity and promote tumor regression (Li et al., 2013; 
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Chandra et al., 2014; Corrales et al., 2015; Demaria et al., 2015). 
Importantly, cGAMP therapy can further enhance the antitumor 
effect of ionizing irradiation (Deng et al., 2014) or chemotherapy 
(Li et al., 2016) and synergize with immune checkpoint blockade 
(Demaria et al., 2015; Wang et al., 2017).

How is cGAS activated in APCs? Cell death is known to occur 
commonly in tumors as a consequence of genomic instability, 
hypoxia, or other tumor-associated stresses (Lowe and Lin, 
2000), providing ample DNA that may activate cGAS in APCs 
(Xu et al., 2017). As infiltrating APCs sample tumor tissue by 
phagocytosis, they also pick up tumor DNA. Through an unde-
fined mechanism, tumor DNA may escape phagosomes and enter 
the cytoplasm to activate cGAS and STI​NG (Woo et al., 2014). 
Together, the data suggest that cytoplasmic DNA sensing is an 
early and critical step in APC activation that determines the out-
come of antitumor immunity.

Besides APCs, the cGAS pathway is also active in some tumor 
cells to promote antitumor immunity. The activity is likely trig-
gered by increased genome instability in tumor cells. For instance, 
genome-derived DNA was shown to accumulate in the cytoplasm 
of prostate cancer cells as the result of nuclear MUS81 activity, 
inducing STI​NG-dependent type I IFNs and tumor rejection (Ho 
et al., 2016). Radiation further promotes DNA damage and DNA 
sensing in tumor cells. It was shown that irradiated B16 cells can 
be used as a cancer vaccine to promote systematic tumor rejec-
tion in combination with immune checkpoint blockade. How-
ever, STI​NG deficiency in the irradiated tumor cells was found 
to abolish the efficacy of this combination therapy (Harding 
et al., 2017). Therefore, DNA damage intrinsically engages the 
cGAS–STI​NG pathway in tumor cells to prevent malignancy. In 
addition to elevating antitumor immunity, this pathway is also 
implicated in shaping the tumor microenvironment. Sting−/− 
mice are more susceptible to colitis-associated cancer induced by 
chronic DNA damage and inflammation (Zhu et al., 2014; Ahn et 
al., 2015). Persistent activation of the cGAS–STI​NG pathway also 
lead to cell death, adding another layer of resistance to tumori-
genesis (Li et al., 2016; Tang et al., 2016; Gaidt et al., 2017; Gulen 
et al., 2017; Larkin et al., 2017). For example, 5,6-dimethylxan-
thenon-4-acetic acid (DMX​AA), a potent agonist of mouse STI​NG 
(Conlon et al., 2013), can effectively induce tumor hemorrhagic 
necrosis and promote tumor regression in mice (Zwi et al., 1994). 
Moreover, cGAMP treatment can also trigger the activation of 
NLRP3 inflammasome (Gaidt et al., 2017; Swanson et al., 2017). In 
summary, the cGAS–STI​NG pathway acts as an intrinsic barrier 
to tumorigenesis by linking DNA damage to several antitumor 
mechanisms: immune surveillance, cellular senescence, and cell 
death. Therefore, this pathway represents an attractive pharma-
ceutical target to harness these intrinsic antitumor mechanisms 
for cancer therapy.

In response to the tumor suppressive functions of cGAS and 
STI​NG, cancer cells frequently adapt to down-regulate these pro-
teins to promote malignancy (Xia et al., 2016a,b). Likewise, onco-
genic DNA viruses, such as human papilloma virus and adenovi-
rus, evolved specific viral proteins to directly antagonize STI​NG 
(Lau et al., 2015). As a counter measure to these immune evasive 
mechanisms, engineered oncolytic viruses, which preferentially 
replicate in tumor cells defective in type I IFN signaling, can be 

exploited to treat late-stage malignant cancer (Xia et al., 2016b; 
de Queiroz et al., 2017).

On the other side of the dichotomous relationship between 
DNA damage and cancer are protumor functions of the cGAS–STI​
NG pathway induced by genotoxic stress. 7,12-dimethylbenz(a)
anthracene (DMBA) is a strong DNA-damaging agent that induces 
inflammation-driven skin carcinogenesis. As DMBA activates 
the cGAS–STI​NG pathway, DMBA-treated sting−/− mice, unlike 
other cancer models, are actually more resistant to the growth of 
DMBA-induced skin cancer (Ahn et al., 2014b). Adoptive transfer 
assays implicated STI​NG in both hematopoietic and nonhemato-
poietic cells for tumorigenesis in the DMBA model. Another study 
shows that cancer cells metastasizing to the brain can also use the 
cGAS–STI​NG pathway to promote tumor progression (Chen et al., 
2016a). These cancer cells transfer cGAMP via gap junctions into 
astrocytes; subsequent paracrine signaling from astrocytes feed-
back to cancer cells to promote malignancy (Chen et al., 2016a). 
It is possible that the protumor effect of the cGAS–STI​NG path-
way may be linked in part to inflammatory cytokines, such as 
TNF-α. Although TNF-α can induce potent necrosis in tumors, 
it is also an important driver of inflammatory carcinogenesis 
(Balkwill, 2009). TNF-α can promote epithelium cells to survive 
under stress, induce blood vessel growth (Leibovich et al., 1987), 
and enhance metastasis (Malik et al., 1990; Orosz et al., 1993). 
tnf-α−/− mice were shown to be resistant to carcinogen-induced 
skin cancer (Moore et al., 1999). Therefore, an active cGAS–STI​
NG axis can exacerbate certain cancers. Such findings add a note 
of caution to the development of anticancer strategies that aim 
to activate the cGAS–STI​NG pathway.

In summary, genomic instability engages the cGAS–cGAMP–
STI​NG pathway on both sides of cancer. On the bright side, this 
pathway is instrumental for antitumor immunity and is an 
intrinsic barrier in tumor cells that blocks malignancy. On the 
dark side, this pathway can promote inflammation-driven car-
cinogenesis and metastasis. As mounting evidence suggests that 
the cGAS–cGAMP–STI​NG pathway makes fundamental contri-
butions to at least three major cancer therapies, radiation ther-
apy, chemotherapy, and immunotherapy, it represents a prom-
ising pharmaceutical target to enhance our current treatment 
regimens. A major task in cancer therapies is to develop new 
approaches to maximize the bright side while minimizing the 
dark side of the contributions of the cGAS pathway in cancer.

Closing remarks and future directions
It is now well established that cGAS is a major sensor of micro-
bial pathogens that contain DNA or generate DNA in their life 
cycles. New studies have illuminated an equally critical role of 
cGAS in the surveillance of self-DNA that mislocalizes to the 
cytoplasm under pathological conditions. Although decades of 
research have led to a good understanding of how genotoxic 
stress and genomic instability regulate DNA damage repair, cell 
cycle checkpoints, and programmed cell death, the mechanism 
by which DNA damage leads to inflammation and autoimmunity 
was not well understood until recently. In retrospect, it is logical 
that cGAS is well positioned to connect nuclear DNA damage to 
immune responses because cGAS can be activated by any dsDNA 
that enters the cytoplasm. It is interesting to note that in addition 
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to chemical and radiation damage to DNA, many other biologi-
cal processes such as oncogene activation, telomere shortening, 
and cell division errors all impinge on DNA. Although NF-κB is 
well known to play an important role in mediating inflammatory 
responses to DNA damage (Janssens and Tschopp, 2006), the link 
between DNA and NF-κB was not clear. Now cGAS has emerged as 
an important link between DNA damage and activation of NF-κB, 
IRF3, and likely other transcription factors.

Many important questions remain. For example, it is not 
clear how cytoplasmic DNA is generated from damaged nuclear 
genome. Although MUS81 has been shown to regulate genera-
tion of cytoplasmic DNA from genomic DNA (Ho et al., 2016), 
additional factors may be required for this process. The exact 
cellular mechanism responsible for transporting genomic DNA 
fragments from the nucleus to the cytoplasm remains to be 
elucidated. Also unclear is how GAS is activated in micronu-
clei. Although cGAS was found to associate with the chromatin 
during mitosis (Yang et al., 2017), there is no evidence that cGAS 
is activated during cell cycle transition. Thus, it is important to 
determine how cGAS is kept inactive when it is associated with 
the chromosome during mitosis and how cGAS is activated by 
chromatin fragments within the micronuclei. How cGAS is acti-
vated in APCs by tumor DNA also requires further investigation. 
After APCs phagocytose tumor cells, tumor antigens are deliv-
ered from the phagosome to the cytosol for proteasomal process-
ing and cross-presentation of antigenic peptides. It is possible 
that tumor cell DNA enters the cytosol along with tumor protein 
antigens, but details regarding the cytosolic delivery of tumor 
proteins and DNA remain to be delineated. As tumor DNA is also 
chromatinized, it is unknown whether it requires any further 
processing to become an active cGAS ligand.

The knowledge gained from understanding the cGAS–STI​NG 
pathway in DDRs may be translated into innovative therapies for 
a variety of human diseases. Antagonists of cGAS or STI​NG are 
potentially useful in blocking uncontrolled cytokine expression 
that leads to inflammation and autoimmune diseases. Because 
these antagonists may inhibit cellular senescence, they may 
also be used for treating senescence-associated diseases. Sev-
eral attempts have been reported to find compounds that inhibit 
cGAS. So far the reported molecules are active against cGAS in 
vitro, but haven’t demonstrated desirable potency in vivo (An et 
al., 2015; Hall et al., 2017; Vincent et al., 2017). A concern about 
using antagonists of cGAS or STI​NG in treatments of inflamma-
tion or senescence-associated diseases is a potential increase 
of susceptibility to infectious diseases as well as cancer. Hope-
fully, redundancy in the human immune system and selection of 
appropriate doses of drugs that partially inhibit the cGAS–STI​NG 
pathway would allow these drugs to provide therapeutic benefits 
to the patients without compromising their immunity to infec-
tions and tumorigenesis.

Agonists of the cGAS–STI​NG pathway such as cGAMP and its 
analogues, on the other hand, can be applied to enhance antitu-
mor immunity in conjunction with other cancer therapies. These 
small molecules can be further improved by preventing hydroly-
sis of the phosphodiester bonds (Li et al., 2014). Several STI​NG 
agonists have already entered clinical trials in human, and more 
potent and selective agonists of STI​NG are expected in the next 

few years. Although these STI​NG agonists will strongly enhance 
antitumor responses, including in those “cold” tumors that are so 
far refractory to immune checkpoint blockade, a major concern 
of using these compounds systemically is the cytokine “storm,” 
the acute production of multiple inflammatory cytokines that 
could cause severe toxicity and even death. Thus, it remains to 
be seen whether there is a sufficient therapeutic window that 
allows STI​NG agonists to be used at certain doses to provide effi-
cacious antitumor activity while minimizing immunotoxicity to 
patients. Innovative approaches, such as nanoparticles (Hanson 
et al., 2015; Luo et al., 2017; Wilson et al., 2018), viral particles 
(Bridgeman et al., 2015; Gentili et al., 2015), or targeted deliv-
eries, could allow precise delivery of STI​NG agonists to tumors 
to generate localized and specific antitumor immune responses 
and significantly improve the therapeutic window of using these 
compounds for cancer immunotherapies.
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