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The cGAS-cGAMP-STING pathway connects DNA
damage to inflammation, senescence, and cancer

Tuo Li*? and Zhijian J. Chen?**@®

Detection of microbial DNA is an evolutionarily conserved mechanism that alerts the host immune system to mount a
defense response to microbial infections. However, this detection mechanism also poses a challenge to the host as to how
to distinguish foreign DNA from abundant self-DNA. Cyclic guanosine monophosphate (GMP)-adenosine monophosphate
(AMP) synthase (cGAS) is a DNA sensor that triggers innate immune responses through production of the second messenger
cyclic GMP-AMP (cGAMP), which binds and activates the adaptor protein STING. However, cGAS can be activated by double-
stranded DNA irrespective of the sequence, including self-DNA. Although how cGAS is normally kept inactive in cells is still

not well understood, recent research has provided strong evidence that genomic DNA damage leads to cGAS activation to
stimulate inflammatory responses. This review summarizes recent findings on how genomic instability and DNA damage
trigger cGAS activation and how cGAS serves as a link from DNA damage to inflammation, cellular senescence, and cancer.

Introduction

Genomic instability, a major driving force of cancer and age-
related diseases, poses an ominous threat to human health and
longevity. Nevertheless, several stringent and intricate cellular
programs maintain genome integrity and prevent cells from
becoming malignant. Cells may return to normal function if the
genetic lesions are successfully repaired, enter a state of per-
manent cell-cycle arrest known as senescence if the damage is
persistent but tolerable, or undergo programmed cell death to
destroy an intolerably damaged genome.

Although DNA damage response (DDR) was long thought
to mainly regulate genome integrity and cell fates, accumu-
lating evidence indicates that genomic instability also triggers
inflammatory response (Fig. 1). In tissue culture systems, DNA
damaging agents such as topoisomerase inhibitors and ionizing
irradiation induce the expression of type I IFNs and other cyto-
kines (Fenech and Morley, 1986; Schlegel et al., 1986; Coppé et
al., 2008; Rodier et al., 2009; Brzostek-Racine et al., 2011; Fenech
et al., 2011; Kondo et al., 2013; Ahn et al., 2014b; Lan et al., 2014;
Hirtlova et al., 2015; Xia et al., 2016a; Harding et al., 2017; Luthra
et al.,, 2017). The degree of inflammatory gene induction by
genomic DNA damage is usually lower than that induced by DNA
transfection or viral infection. Nonetheless, cells that sustain
nuclear DNA damage also become more resistant to viral infec-
tions (Mboko et al., 2012; Hartlova et al., 2015; Luthra et al., 2017).
Consistent with these in vitro findings, in vivo studies revealed

that chemotherapy (Sistigu et al., 2014) and radiation treatment
(Burnette et al., 2011; Lim et al., 2012; Deng et al., 2014) induce
type I IFN signaling in tumors to promote antitumor immunity.

In addition to inducing cytokines, DNA damage also enhances
the expression of ligands of natural killer (NK) cells such as
NKG2D ligands (Gasser et al., 2005; Lam et al., 2014). These sur-
face proteins attract NKG2D-positive NK cells and activated CD8
T lymphocytes to target damaged cells for elimination by the
immune system (Bauer et al., 1999). The expression of NKG2D
ligands is likely a result of type I IFN induction by DNA damage
(zhang et al., 2008; Lam et al., 2014).

Recent studies have provided mechanistic insights into how
DNA damage induces type I IFNs and other immune-regulatory
cytokines (Erdal etal., 2017; Gliick et al., 2017; Harding et al., 2017;
Mackenzie etal., 2017; Yang et al., 2017). A cytosolic DNA sensing
pathway has emerged as the majorlink between DNA damage and
innate immunity (Fig. 2). DNA normally resides in the nucleus
and mitochondria; hence, its presence in the cytoplasm serves
as a danger-associated molecular pattern (DAMP) to trigger
immune responses. Cyclic guanosine monophosphate (GMP)-
adenosine monophosphate (AMP) synthase (cGAS) is the sensor
that detects DNA as a DAMP and induces type I IFNs and other
cytokines (Sun et al., 2013). DNA binds to cGAS in a sequence-
independent manner; this binding induces a conformational
change of the catalytic center of cGAS such that this enzyme can
convert guanosine triphosphate (GTP) and ATP into the second
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Figure 1. Inflammatory response is another biological outcome of

genomic instability. Genotoxic stress leads to DNA damage repair, cellular
senescence, and cell death in a manner that depends on the severity of the
DNA damage. The cGAS-cGAMP-STING pathway is activated by DNA damage
to mediate antitumor immunity, senescence, and inflammatory responses.

messenger cyclic GMP-AMP (cGAMP; Wu et al., 2013). The
c¢GAMP produced by cGAS contains two phosphodiester bonds:
one between the 2’-hydroxyl group of GMP and 5'-phosphate
of AMP and the other between the 3'-hydroxyl of AMP and
5'-phosphate of GMP (Ablasser et al., 2013; Diner et al., 2013;
Gao et al., 2013a; Zhang et al., 2013). This cGAMP molecule,
termed 2'3'-cGAMP, is an endogenous high-affinity ligand for
the adaptor protein Stimulator of IFN Gene (STING, also known
as MITA, MPYS, and ERIS; Ishikawa and Barber, 2008; Jin et al.,
2008; Zhong et al., 2008; Sun et al., 2009).

STING forms a transmembrane homodimer that localizes to
the ER and binds cyclic dinucleotides (CDNs), such as cGAMP
and the bacterial second messengers c-di-GMP and c-di-AMP
(Burdette et al., 2011; Wu et al., 2013). cGAMP binding induces
a conformational change in STING (Gao et al., 2013b; Zhang et
al., 2013), which subsequently translocates from the ER to the
Golgi apparatus (Ishikawa and Barber, 2008; Saitoh et al., 2009).
This process is thought to liberate the STING carboxyl terminus
to subsequently recruit and activate TANK-binding kinase 1
(TBK1) and IFN regulatory factor 3 (IRF3) via a phosphorylation-
dependent mechanism (Tanaka and Chen, 2012; Liu et al., 2015).
STING also activates NF-«B, which functions together with IRF3 to
turn on the transcription of type I IFNs and other cytokines (Fig. 2).

The molecular details of the cGAS-STING pathway and its
pivotal roles in eliciting effective immunity against various
microbial pathogens have been extensively reviewed elsewhere
(Xiao and Fitzgerald, 2013; Cai et al., 2014; Wu and Chen,
2014; Chen et al., 2016b; Ma and Damania, 2016; Tao et al.,
2016; Kato et al., 2017). In this review, we primarily focus on
its emerging function in mediating DNA damage-induced
inflammatory responses. We further discuss recent findings
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on how the cGAS-STING axis contributes to the outcome of
autoinflammatory diseases, senescence, and cancer.

cGAS senses cytoplasmic DNA as a consequence of

nuclear DNA damage

DNA damage in the nucleus results in the accumulation of
cytoplasmic DNA, notably in the form of micronuclei (Fig. 2).
Micronuclei are small, DNA-containing organelles that resemble
satellites to the primary nuclei (Fenech et al., 2011). They are
products of chromosome damage as a result of genotoxic stress
and chromosome missegregation in subsequent cell division. For
instance, centromere-deficient chromosome fragments may result
from the error-prone nonhomologous end-joining (NHE]J) repair
and are unable to segregate normally, thereby forming micronuclei
outside the newly formed nuclei. Similarly, whole chromosomes
left behind by the spindle because of centromere hypomethylation
or kinetochore dysfunction also end up as micronuclei after
mitosis (Fenech et al., 2011). Since their early identification as
“Howell-Jolly bodies” more than a century ago, micronuclei have
been strongly associated with DNA damage and were adopted as
a sensitive biomarker of genotoxicity (Fenech and Morley, 1985,
1986; Schlegel et al., 1986). The cytokinesis-block micronucleus
(CBMN) assay, which scores the frequency of micronuclei, has
been a widely used method to assess the genotoxicity of different
chemical or radioactive mutagens (Fenech, 2007).

Micronuclei are originally formed with a nuclear envelope (NE),
but more than half the micronuclei lose compartmentalization
after mitosis as their NE ruptures (Hatch et al., 2013). NE breaks
were found to negatively correlate with lamina integrity because
lamin networks critically contribute to NE structural resilience
(Vargas etal., 2012; Hatch etal., 2013). It was recently reported that
NE of the nucleus can be rapidly repaired by the endosomal sorting
complexes required for transport IIT (ESCRT-IIT) complex (Denais
et al., 2016; Raab et al., 2016), and this mechanism may provide
similar protection to NEs of micronuclei. These observations imply
that micronuclei NEs may have compromised lamina function or
membrane repair capacity so that it ruptures easily, although the
detailed mechanisms underlying NE rupture await further study.
A consequence of micronuclei rupture is that chromosomal DNA
become accessible to cGAS (Bartsch et al., 2017; Dou et al., 2017,
Gluck et al., 2017; Harding et al., 2017; Mackenzie et al., 2017;
Yang et al., 2017).

DNA damage also induces the accumulation of cytoplasmic
DNA into “speckles,” which are less aggregated than micronu-
clei (Ahn et al., 2014b; Lan et al., 2014; Hirtlova et al., 2015; Shen
et al., 2015; Erdal et al., 2017). Cytoplasmic DNA speckles con-
tain mostly single-stranded DNA (ssDNA; Hértlova et al., 2015;
Shen et al., 2015; Erdal et al., 2017), but may also contain small
amounts of double-stranded DNA (dsDNA; Shen et al., 2015).
ssDNA in general induces very little type I IFNs compared with
dsDNA (Ishii et al., 2006) because cGAS doesn’t bind ssDNA.
However, stem-loop-forming ssDNA sequences in HIV reverse
transcripts were shown to have a high potency of cGAS activa-
tion (Herzner et al., 2015). Accumulation of ssDNA in cells defi-
cientin the Trex1 exonuclease is also associated with chronic IFN
induction and autoinflammatory phenotypes (Yang et al., 2007;
Stetson et al., 2008; Gao et al., 2015; Wolf et al., 2016). Among
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Figure 2. The cGAS-cGAMP-STING pathway detects cytoplasmic DNA after DNA damage and activate type | IFNs and other cytokines. Like DDR, the
immune response is induced by various forms of genotoxic stress, ranging from ionizing radiation, DNA-damaging drugs, oxidative stress, oncogenic signaling,
telomere shortening, and chromosome missegregation to viral infections and activation of endogenous retroelements. Nuclear DNA damage can generate
cytoplasmic DNA in two possible ways. First, certain genomic damage causes chromosome to missegregate in subsequent cell division; the chromosome
failing to partition into the new nuclei will form micronuclei. When the nuclear evelope (NE) of micronuclei ruptures, the DNA content is exposed to cGAS
surveillance. Second, nuclear DNA damage can also generate ssDNA in the cytoplasm in a less understood process (dashed line and question mark). Such
cytoplasmic DNA is degraded by Trex1, the loss of which leads to cGAS activation. Active cGAS dimerizes to synthesize cGAMP from GTP and ATP. cGAMP acts
as a second messenger to activate STING on the ER surface. STING then activates transcription factors IRF3 and NF-kB via kinases TBK1 and IKK, respectively.
IRF3 and NF-kB translocate into the nucleus to elicit the expression of IFNs and other cytokines. Damage to mitochondria or mitochondrial DNA can also lead
to accumulation of mitochondrial DNA in the cytosol, resulting in cGAS activation and sterile inflammation (not depicted).
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the ssDNA species generated after DNA damage, those that form
double-stranded secondary structures may activate cGAS. Trexl
has also been shown to degrade nicked dsDNA (Chowdhury et
al., 2006), and such DNA may accumulate in Trex1-deficient cells
to activate cGAS.

Little is known about how DNA damage leads to DNA accu-
mulation in the cytosol. MUSS81 is an endonuclease that may
play a role in this process. The MUS81-EME1 complex belongs
to the family of structure-specific endonucleases that resolve
interstrand DNA structures such as stalled replication forks and
Holliday junctions (Dehé and Gaillard, 2017). MUSS1 is required
for genomic integrity and tumor suppression, as mus81~/~ mice
display increased chromosomal aberrations in T cells and are
predisposed to lymphomas and other cancers (McPherson et al.,
2004). It was found that MUS81 is required for the generation of
cytoplasmic DNA in prostate cancer cells (Ho et al., 2016). The
amount of cytoplasmic DNA positively correlates with MUS81
protein level and the number of MUS81 nuclear foci, suggesting
that MUS81 is engaged in the process that converts nuclear DNA
into cytoplasmic forms. Consistently, MUS81 promotes type IIFNs
and thus immune rejection of prostate tumor (Ho etal., 2016). In
contrast, however, it was also reported that MUS8]1 is a negative
regulator of spontaneous type I IFN production (Laguette et al.,
2014). Thus, the exact roles of MUSS81 in regulating cytoplasmic
DNA sensing remain to be elucidated. A recent study reported
that extracellular telomere repeat DNA (ECTR), generated by the
alternative lengthening of telomeres (ALT) mechanism, accumu-
lates in the cytoplasm of ALT cell lines and activates IFN-3 via the
cGAS-STING pathway (Chen et al., 2017). As MUS81 is necessary
for ALT (Zeng et al., 2009), the cytoplasmic DNA derived from
MUSS81 activity may include ECTR DNA.

Multiple studies have recently demonstrated that induction
of cytokines by DNA damage is mediated through the cGAS-
STING pathway (Lan et al., 2014; Hértlova et al., 2015; Bartsch
et al., 2017; Erdal et al., 2017; Gliick et al., 2017; Harding et al.,
2017; Mackenzie et al., 2017; Yang et al., 2017). After DNA damage,
cGAS is recruited to micronuclei (Gliick et al., 2017; Harding et
al., 2017; Mackenzie et al., 2017; Yang et al., 2017). NE rupture
of micronuclei appears to precede cGAS recruitment (Harding
et al., 2017; Mackenzie et al., 2017). cGAS in the micronuclei is
presumably activated by the chromosomal DNA fragments to
synthesize cGAMP, but direct evidence is still lacking. Inter-
estingly, although c¢GAS usually localizes in the cytoplasm of
nondividing cells, a majority of cGAS associates with chromatin
after nuclear membrane breakdown during mitosis (Harding et
al., 2017; Mackenzie et al., 2017; Yang et al., 2017). Because there
is no evidence of cGAS activation during cell division, it will be
interesting to determine how cGAS activity is modulated during
chromatin association. Similarly, it remains unclear what form
of chromatin DNA in the micronuclei may activate cGAS. Because
cGAS-associated micronuclei stain positive for phosphorylated
y-H2A, a DNA damage marker (Mackenzie et al., 2017; Yang et
al., 2017), DNA damage itself may contribute to cGAS sensing. In
this regard, a recent proteomic study showed that cGAS is asso-
ciated with a ribonuclear complex dubbed HEXIM1-DNA-protein
kinase (PK)-paraspeckle components-ribonucleoprotein com-
plex (HDP-RNP) that contains DNA-PK (Morchikh et al., 2017).

Liand Chen
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It will be interesting to determine whether this complex plays
a role in the regulation of cGAS activity by DNA damage in the
primary nucleus and in micronuclei.

Together, these new findings have demonstrated that the
cGAS-cGAMP-STING pathway connects genotoxic stress to
cytokine expression by sensing cytoplasmic DNA as a common
consequence of nuclear DNA damage.

The cGAS-cGAMP-STING axis connects DNA damage to
autoinflammatory diseases
Genetic deficiencies that compromise DDR functions also induce
cytokines and lead to autoinflammatory diseases. An underly-
ing mechanism is the aberrant activation of the cGAS-STING
pathway. For instance, Ataxia-Telangiectasia Mutated (ATM)
is a critical kinase for DDR initiation. ATM mutations result in
dysfunctional V(D)] recombination and ultimately the immuno-
deficiency syndrome Ataxia-Telangiectasia (A-T), because V(D)
] recombination is essential for antibody production and T cell
development. A-T patients are also prone to autoinflammation.
Elevated type I IFN signaling was associated with ATM deficiency
in cultured cells (Siddoo-Atwal et al., 1996; Sugihara et al., 2011),
as well as in sera of human A-T patients (Hartlova et al., 2015).
The autoinflammatory phenotype of A-T is abrogated in atm~/~
sting™/~ double knockout mice and significantly reduced after
cGAS knockdown, indicating that the cGAS-STING pathway
plays an essential role in this disease (Hartlova et al., 2015).
Aicardi-Goutiéres syndrome (AGS) is an inheritable neuro-
logical disease that leads to microcephaly, intellectual retardation,
and childhood death (Crow and Rehwinkel, 2009). This debilitat-
ing disease is driven by chronic IFN signaling caused by recessive
mutation in one of a few genes involved in nucleic acid metab-
olism, such as trexl, rnaseH2a, rnaseH2b, and samhdl (Crow
and Rehwinkel, 2009). For instance, the trexI gene encodes a
3'-5’ exonuclease that salvages DNA fragments generated from
nuclear DNA damage (Yang etal., 2007; Erdal et al., 2017). Similar
to human AGS patients with trex1 deficiency, trexl”/~ mice also
develop life-shortening inflammatory phenotypes (Crow et al.,
2006a), which can be rescued by genetic ablation of either cGas
or sting (Gall et al., 2012; Ahn et al., 2014a; Gao et al., 2015; Gray
et al., 2015). In tissues from trexI~~ mice, elevated cGAMP was
detected by mass spectrometry; cGAMP detection in these mice
was also dependent on wild-type cGAS, directly demonstrating
that cGAS is activated in trexI~~ mice (Gao et al., 2015).
RNaseH2 is a nuclear enzyme responsible for removing
ribonucleotides that are misincorporated into genomic DNA
(Reijns et al., 2012). Genetic defects in any of the three subunits
of RNaseH2 leads to chronic DNA damage, elevated type I IFNs
and perinatal lethality in mice (Hiller et al., 2012; Reijns et al.,
2012; Mackenzie et al., 2016; Pokatayev et al., 2016), and the AGS
phenotypes in humans (Crow et al., 2006b). In RnaseH2b™/ cells,
persistent genome instability promotes the formation of micro-
nuclei, which recruit cGAS and activate type I IFN signaling
(Bartsch et al., 2017; Mackenzie et al., 2017). Genetic removal of
cGAS or STING can experimentally reverse the ensuing inflam-
mation and autoimmune phenotypes in RNaseH2-deficient
mice (Mackenzie et al., 2016; Pokatayev et al., 2016). AGS is also
caused by mutations in human SAMHDI (Rice et al., 2009), a
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deoxyribonucleotide triphosphate triphosphatase that balances
nuclear levels of deoxyribonucleotide triphosphates (Franzolin
et al., 2013) and genome stability (Kretschmer et al., 2015).
Although SAMHDI-deficient mice do not show any overt auto-
inflammatory phenotype, their myeloid cells express elevated
levels of IFN-stimulated genes that are dependent on cGAS
and STING (Maelfait et al., 2016). Together, these observations
demonstrate the central role of the DNA-sensing pathway in
mediating DNA damage-induced inflammatory diseases.

ERCCI-XPF is a structure-specific endonuclease critical for
multiple genome maintenance mechanisms such as nucleotide
excision repair and dsDNA break repair. Mice lacking ERCC1
display increased genome instability and chronic expression of
inflammatory cytokines, leading to premature aging and early
death (Melton et al., 1998; Niedernhofer et al., 2006; Karakasilioti
etal.,2013). Notably, ERCC1deficiencyin humans causes the severe
developmental disorder Cerebro-Oculo-Facio-Skeletal syndrome
(COFS). Key features of the COFS syndrome, such as microcephaly
with calcification, are similar to those of AGS and the Cockayne
syndrome, the latter being caused by mutations in ercc8 or erccé
(Troelstra et al., 1992; Henning et al., 1995). While the aging phe-
notype of ERCC1 deficiency requires NF-«B in mice (Tilstraetal.,
2012), it remains to be determined whether aberrant cGAS-STING
activity may also underpin these inheritable disorders.

Recent studies have shown that cGAS activation by self DNA
is also linked to more common and complex diseases such as
myocardial infarction (MI) and age-related macular degenera-
tion (AMD). MI is known to drive inflammation and exacerbate
lethality. The massive death of cardiomyocytes activates in heart
macrophages strong type I IFN signaling that is mediated by the
cGAS-STING pathway (King et al., 2017; Cao et al., 2018). Mice
lacking components of the pathway, including cGAS, IRF3, and
IFNAR], had significantly improved early survival in experimen-
tal MI model, compared with wild-type animals. Similarly, cGAS
also facilitates inflammation in the eyes (Kerur et al., 2017). In an
Alu-RNA-induced model of macular degeneration in mice, reti-
nal pigment epithelium (RPE) degeneration was shown to rely
on caspase 4/11 and Gasdermin D of the inflammasome pathway,
as well as cGAS, STING, IRF3, and IFNARI. Although it is unclear
how the cGAS-STING pathway leads to inflammasome activation
in RPE cells, it has been recently reported that STING-mediated
cell death can activate the NLRP3 inflammasome in some human
myeloid cells (Gaidt et al., 2017).

While accumulation of cytosolic DNA through nuclear DNA
damage, loss-of-function mutations of DNA degrading enzymes,
or tissue damage leads to autoinflammatory diseases, gain-of-
function mutations in STING are sufficient to cause an auto-
inflammatory disorder termed STING-associated vasculopathy
with onset in infancy (SAVT; Liu et al., 2014; Melki et al., 2017).
These mutations lead to constitutive STING activation and type
I IFN signaling. Interestingly, the resulting vascular and pulmo-
nary syndrome of SAVI resemble those of some DDR deficiency-
associated autoinflammation, such as A-T and Artemis deficiency
(Gul et al., 2017), consistent with the notion that these genetic
disorders affect the same signaling pathway.

Besides damaged nuclear DNA, cGAS also responds to
other self-DNA that mislocalizes to the cytoplasm and drives
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autoinflammation. Haplodeficiency of TFAM (transcription
factor A, mitochondria), a protein that packages mitochondria
DNA (mtDNA) into nucleoid, was reported to promote releases of
mtDNA into the cytosol, which activate cGAS to confer IFN-me-
diated viral resistance (West et al., 2015). In response to apop-
totic stimuli, mitochondria not only releases cytochrome c to
activate caspases to execute apoptosis, but also mtDNA to the
cytosol, which could have otherwise activated cGAS to trigger
inflammation if there were no concurrent activation of caspases
(Rongvaux et al., 2014; White et al., 2014). Through an unknown
mechanism caspase activation in apoptotic cells inactivate the
cGAS-STING pathway, thereby suppressing sterile inflamma-
tion. DNasell is a lysosomal endonuclease that is responsible
for degrading phagocytosed exogenous DNA from dead cells or
expelled nuclei of developing red blood cells. Mice lacking DNa-
sell are embryonically lethal as a result of type I IFN-driven cell
death (Kawane et al., 2003), which can be partially rescued by
genetically ablating type I IFN receptor (Yoshida et al., 2005) and
nearly completely rescued by deleting STING (Ahn et al., 2012) or
cGAS (Gao et al., 2015). In DNaselI-deficient but not normal fetal
livers, cGAMP can be detected by mass spectrometry (Gao et al.,
2015). Therefore, cGAS also senses phagocytosed DNA that are
inadequately digested in the lysosome. Human patients with loss
of function mutations of DNasell have recently been identified,
and these patients exhibit symptoms of type I interferonopathy,
including tissue inflammation and elevated anti-DNA antibod-
ies (Rodero et al., 2017). Together, these findings strongly sup-
port the central role of the cGAS-cGAMP-STING pathway in the
pathogenesis of a variety of type I IFN-mediated monogenic dis-
eases. Therefore, components of this pathway represent promis-
ing targets for developing pharmacological intervention for AGS
and other autoinflammatory disorders.

cGAS is essential for DNA damage-induced cellular senescence
Cellular senescence is a state of irreversible cell cycle arrest,
induced by a variety of external or internal stress such as telo-
mere shortening, oxidative damage, and oncogenic signaling.
Although the causes of and phenotypes generated by cellular
senescence are manifold, persistent DDR is thought to be the com-
mon mechanism that is critical for the establishment and main-
tenance of senescence phenotypes (d’Adda di Fagagna, 2008).
Specifically, DDR activates the p53-p21 and p16 N¥42_Rb pathways
to block the cell cycle and implement senescence programs.
Recent research has provided strong evidence that cGAS also
has an essential role in promoting cellular senescence (Dou et
al., 2017; Gliick et al., 2017; Yang et al., 2017). The initial clue
came from spontaneous immortalization of murine embryonic
fibroblasts (MEFs). When primary MEFs are serially passaged,
the majority of cells gradually senesce, and only a small fraction
overcome the growth crisis and become immortalized. Compared
with wild-type MEFs, the cGas~ MEFs are immortalized more
rapidly, suggesting that cGAS inhibits cell proliferation (Gliick
et al., 2017; Yang et al., 2017). Oxidative DNA damage was pre-
viously shown to limit spontaneous immortalization (Parrinello
etal., 2003). The antiproliferative effect of cGAS is ameliorated
at lower oxygen levels, suggesting cGAS functions downstream
of oxidative DNA damage (Gliick et al., 2017). Consistent with
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its role in limiting cell replication, cGAS is also required for the
expression of senescence markers, such as p16™¥4* and senes-
cence-associated B-galactosidase (SA-B-Gal) during MEF immor-
talization. Therefore, cGAS plays an indispensable role in cellular
senescence in response to oxidative stress. Similarly, irradiation,
DNA-damaging drugs, or oncogene activation all induce cellular
senescence in a cGAS-dependent manner. The activation of onco-
genes, such as NRasV12, leads to DNA hyperreplication, increased
replication errors, and initiation of the DNA damage response (Di
Micco et al., 2006). In cells under these genotoxic stresses, cGAS
isrecruited to micronuclei. In oncogene-induced senescent cells,
cGAMP is detectable by LC-MS (Dou et al., 2017). Therefore, cGAS
senses micronuclei as the result of genomic DNA damage to pro-
mote senescent phenotypes.

How does the cGAS-STING pathway regulate cellular senes-
cence, given that it is not an integral component of either the
p53-p21 or the pl6 NK4_Rb pathway? A mechanism is likely
through the senescence-associated secretory phenotype (SASP),
which refers to the phenomenon that senescent cells produce
and release a range of cytokines, chemokines, and proteases to
the extracellular milieu to modulate senescent cells themselves
and their microenvironment (Kuilman and Peeper, 2009). After
various forms of senescing stimuli, such as oxidation, radiation,
chemotherapeutic drugs, or mitogenic stress, cells produce in a
cGAS-dependent manner a range of cytokines and chemokines,
such as IFN-B, IL-1B, IL-6, and IL-8 (Dou et al., 2017; Gliick et al.,
2017; Yang et al., 2017). Some of these cytokines, namely IL-8
and IL-6, are known to feedback to the secreting cells to rein-
force senescence signaling (Acosta et al., 2008; Kuilman et al.,
2008). Type I IFNs are also prosenescence and antiproliferative,
as they induce DNA damage and elevate the p53 level (Takaoka
et al., 2003; Moiseeva et al., 2006). Therefore, the cGAS-STING
pathway provides a critical paracrine signal that is necessary for
sustaining cellular senescence.

Besides promoting senescence cell-autonomously, SASP can
signal to the immune system and modulate the tissue micro-
environment. Previously, it was demonstrated in a liver cancer
model that senescent liver cells attract via SASP a variety of
immune cells, specifically NK lymphocytes and neutrophils, to
clear tumor cells (Xue et al., 2007). In aliver fibrosis model, SASP
was shown to recruit and activate NK cells to eliminate senescent
cells and resolve fibrosis (Krizhanovsky et al., 2008). The cGAS-
STING pathway is also required for SASP-mediated antitumor
effect. Dou et al. used an NRasV12-expressing vector to induce
liver tumors and found in the STING null mice attenuated infil-
tration of immune cells, reduced clearance of senescent cells at
the early stage, and increased tumor growth at later stages (Dou
etal., 2017). Therefore, senescence can promote immune surveil-
lance to suppress malignancy via SASP.

Although evidence cited above illustrates SASP as an anti-
tumor component of senescence, it should be noted that SASP
can also promote tumorigenesis (Coppé et al., 2010). SASP from
senescent fibroblasts can strongly induce epithelium cells to pro-
liferate, transform, and metastasize (Krtolica et al., 2001; Coppé
etal., 2008). Particularly, IL-6 and IL-8 can induce invasiveness
of epithelium cells (Coppé et al., 2008); matrix metalloprotease
can remodel tissue microenvironment to increase the availability
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of growth factors (Liu and Hornsby, 2007); and vasculature
endothelium growth factor (VEGF) can promote endothelium
cell migration and tumor angiogenesis (Coppé et al., 2006).
Therefore, SASP can mediate both positive and negative effects
of senescence on cancer. Such dichotomous functions of senes-
cence and the role of the cGAS-STING pathway in these functions
should be further clarified in future studies.

Senescence also regulates stem cell functions and aging. Previ-
ously, type I IFN signaling was shown to mediate a variety of stem
cell defects in telomerase-deficient mice as the result of persistent
DNA damage (Yu et al., 2015). Deletion of the IFN /B receptor 1
(IFNARI) rescues the senescence phenotypes in Terc”~ mice. As
the role of IFN-B in stress-induced senescence is reminiscent of
the roles of cGAS and STING (Katlinskaya et al., 2016), it would
be interesting to investigate the cGAS-STING pathway in the pro-
cess of stem cell senescence under stress conditions. Recent evi-
dence shows that STING null mice display remarkably less hair
graying months after irradiation (Dou et al., 2017). Radiation-
induced genomic damage was previously shown to cause aloss of
renewal of melanocyte stem cells (Inomata et al., 2009); there-
fore, STING-mediated SASP may contribute to regulating these
stem cells. Remarkably, experimental elimination of pl6™NK4a-
positive senescent cells in mice can attenuate aging phenotypes
in organs such as the kidney and the heart, significantly prolong-
ing mouse life span and health span (Baker et al., 2016). Given
that the cGAS-STING pathway plays critical roles in cellular
senescence, inhibitors of cGAS or STING may offer similar bene-
fits to treat senescence and age-related diseases.

DNA damage activates the cGAS-cGAMP-STING
pathway in cancer
Crucial links between DNA damage and cancer have long been
recognized. On one hand, DNA damage can promote antitumor
immunity in both natural rejection and therapies. On the other
hand, genome instability is a hallmark as well as an important
driving force of cancer. As the cGAS-cGAMP-STING pathway
critically determines the immunological outcomes of DNA dam-
age, it also plays prominent roles in both aspects of cancer.
Effective antitumor immunity relies on cross-presentation of
tumor antigens by APCs to CD8 T lymphocytes. The activation of
APCs requires type I IFN signaling initiated by innate immune
sensors (Diamond et al., 2011; Fuertes et al., 2011). Recent evi-
dence has shown that the cGAS-STING pathway, activated in
APCs by cytosolic DNA, provides a critical source of such a prim-
ing signal. It was shown that the STING-deficient mice fail to
reject the growth of inoculated tumor cells spontaneously (Woo
et al., 2014) after local radiation therapy (Deng et al., 2014) or
after immune checkpoint blockades using antibodies against
PD-L1 (Wang et al., 2017) or CD47 (Xu et al., 2017). Similarly,
cGas™~ mice also show defective tumor rejection (Wang et al.,
2017; Xu et al., 2017). In line with these findings, the cGAS-STI
NG pathway in dendritic cells (DCs) is required to prime DCs in
coculture with tumor cells for cross-presentation to activate CD8
T cells (Deng et al., 2014; Wang et al., 2017; Xu et al., 2017). Consis-
tent with tumor suppression by the cGAS-STING pathway, treat-
ment with exogenous cGAMP or other STING agonists can also
enhance immunity and promote tumor regression (Li et al., 2013;
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Chandra et al., 2014; Corrales et al., 2015; Demaria et al., 2015).
Importantly, cGAMP therapy can further enhance the antitumor
effect of ionizing irradiation (Deng et al., 2014) or chemotherapy
(Lietal., 2016) and synergize with immune checkpoint blockade
(Demaria et al., 2015; Wang et al., 2017).

How is cGAS activated in APCs? Cell death is known to occur
commonly in tumors as a consequence of genomic instability,
hypoxia, or other tumor-associated stresses (Lowe and Lin,
2000), providing ample DNA that may activate cGAS in APCs
(Xu et al., 2017). As infiltrating APCs sample tumor tissue by
phagocytosis, they also pick up tumor DNA. Through an unde-
fined mechanism, tumor DNA may escape phagosomes and enter
the cytoplasm to activate cGAS and STING (Woo et al., 2014).
Together, the data suggest that cytoplasmic DNA sensing is an
early and critical step in APC activation that determines the out-
come of antitumor immunity.

Besides APCs, the cGAS pathway is also active in some tumor
cells to promote antitumor immunity. The activity is likely trig-
gered by increased genome instability in tumor cells. For instance,
genome-derived DNA was shown to accumulate in the cytoplasm
of prostate cancer cells as the result of nuclear MUS81 activity,
inducing STING-dependent type I IFNs and tumor rejection (Ho
et al,, 2016). Radiation further promotes DNA damage and DNA
sensing in tumor cells. It was shown that irradiated B16 cells can
be used as a cancer vaccine to promote systematic tumor rejec-
tion in combination with immune checkpoint blockade. How-
ever, STING deficiency in the irradiated tumor cells was found
to abolish the efficacy of this combination therapy (Harding
et al., 2017). Therefore, DNA damage intrinsically engages the
cGAS-STING pathway in tumor cells to prevent malignancy. In
addition to elevating antitumor immunity, this pathway is also
implicated in shaping the tumor microenvironment. Sting™/~
mice are more susceptible to colitis-associated cancer induced by
chronic DNA damage and inflammation (Zhu et al., 2014; Ahn et
al., 2015). Persistent activation of the cGAS-STING pathway also
lead to cell death, adding another layer of resistance to tumori-
genesis (Li et al., 2016; Tang et al., 2016; Gaidt et al., 2017; Gulen
et al., 2017; Larkin et al., 2017). For example, 5,6-dimethylxan-
thenon-4-acetic acid (DMXAA), a potent agonist of mouse STING
(Conlon et al., 2013), can effectively induce tumor hemorrhagic
necrosis and promote tumor regression in mice (Zwi et al., 1994).
Moreover, cGAMP treatment can also trigger the activation of
NLRP3 inflammasome (Gaidt et al., 2017; Swanson et al., 2017). In
summary, the cGAS-STING pathway acts as an intrinsic barrier
to tumorigenesis by linking DNA damage to several antitumor
mechanisms: immune surveillance, cellular senescence, and cell
death. Therefore, this pathway represents an attractive pharma-
ceutical target to harness these intrinsic antitumor mechanisms
for cancer therapy.

In response to the tumor suppressive functions of cGAS and
STING, cancer cells frequently adapt to down-regulate these pro-
teins to promote malignancy (Xia etal., 2016a,b). Likewise, onco-
genic DNA viruses, such as human papilloma virus and adenovi-
rus, evolved specific viral proteins to directly antagonize STING
(Lau et al., 2015). As a counter measure to these immune evasive
mechanisms, engineered oncolytic viruses, which preferentially
replicate in tumor cells defective in type I IFN signaling, can be
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exploited to treat late-stage malignant cancer (Xia et al., 2016b;
de Queiroz et al., 2017).

On the other side of the dichotomous relationship between
DNA damage and cancer are protumor functions of the cGAS-STI
NG pathway induced by genotoxic stress. 7,12-dimethylbenz(a)
anthracene (DMBA) is a strong DNA-damaging agent that induces
inflammation-driven skin carcinogenesis. As DMBA activates
the cGAS-STING pathway, DMBA-treated sting™/~ mice, unlike
other cancer models, are actually more resistant to the growth of
DMBA-induced skin cancer (Ahn et al., 2014b). Adoptive transfer
assays implicated STING in both hematopoietic and nonhemato-
poietic cells for tumorigenesis in the DMBA model. Another study
shows that cancer cells metastasizing to the brain can also use the
cGAS-STING pathway to promote tumor progression (Chen etal.,
2016a). These cancer cells transfer cGAMP via gap junctions into
astrocytes; subsequent paracrine signaling from astrocytes feed-
back to cancer cells to promote malignancy (Chen et al., 2016a).
It is possible that the protumor effect of the cGAS-STING path-
way may be linked in part to inflammatory cytokines, such as
TNF-a. Although TNF-a can induce potent necrosis in tumors,
it is also an important driver of inflammatory carcinogenesis
(Balkwill, 2009). TNF-a can promote epithelium cells to survive
under stress, induce blood vessel growth (Leibovich et al., 1987),
and enhance metastasis (Malik et al., 1990; Orosz et al., 1993).
tnf-a~/- mice were shown to be resistant to carcinogen-induced
skin cancer (Moore et al., 1999). Therefore, an active cGAS-STI
NG axis can exacerbate certain cancers. Such findings add a note
of caution to the development of anticancer strategies that aim
to activate the cGAS-STING pathway.

In summary, genomic instability engages the cGAS-cGAMP-
STING pathway on both sides of cancer. On the bright side, this
pathway is instrumental for antitumor immunity and is an
intrinsic barrier in tumor cells that blocks malignancy. On the
dark side, this pathway can promote inflammation-driven car-
cinogenesis and metastasis. As mounting evidence suggests that
the cGAS-cGAMP-STING pathway makes fundamental contri-
butions to at least three major cancer therapies, radiation ther-
apy, chemotherapy, and immunotherapy, it represents a prom-
ising pharmaceutical target to enhance our current treatment
regimens. A major task in cancer therapies is to develop new
approaches to maximize the bright side while minimizing the
dark side of the contributions of the cGAS pathway in cancer.

Closing remarks and future directions

It is now well established that cGAS is a major sensor of micro-
bial pathogens that contain DNA or generate DNA in their life
cycles. New studies have illuminated an equally critical role of
cGAS in the surveillance of self-DNA that mislocalizes to the
cytoplasm under pathological conditions. Although decades of
research have led to a good understanding of how genotoxic
stress and genomic instability regulate DNA damage repair, cell
cycle checkpoints, and programmed cell death, the mechanism
by which DNA damage leads to inflammation and autoimmunity
was not well understood until recently. In retrospect, it is logical
that cGAS is well positioned to connect nuclear DNA damage to
immune responses because cGAS can be activated by any dsDNA
that enters the cytoplasm. It is interesting to note that in addition
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to chemical and radiation damage to DNA, many other biologi-
cal processes such as oncogene activation, telomere shortening,
and cell division errors all impinge on DNA. Although NF-«B is
well known to play an important role in mediating inflammatory
responses to DNA damage (Janssens and Tschopp, 2006), the link
between DNA and NF-«B was not clear. Now cGAS has emerged as
animportant link between DNA damage and activation of NF-«B,
IRF3, and likely other transcription factors.

Many important questions remain. For example, it is not
clear how cytoplasmic DNA is generated from damaged nuclear
genome. Although MUS81 has been shown to regulate genera-
tion of cytoplasmic DNA from genomic DNA (Ho et al., 2016),
additional factors may be required for this process. The exact
cellular mechanism responsible for transporting genomic DNA
fragments from the nucleus to the cytoplasm remains to be
elucidated. Also unclear is how GAS is activated in micronu-
clei. Although cGAS was found to associate with the chromatin
during mitosis (Yang et al., 2017), there is no evidence that cGAS
is activated during cell cycle transition. Thus, it is important to
determine how cGAS is kept inactive when it is associated with
the chromosome during mitosis and how cGAS is activated by
chromatin fragments within the micronuclei. How cGAS is acti-
vated in APCs by tumor DNA also requires further investigation.
After APCs phagocytose tumor cells, tumor antigens are deliv-
ered from the phagosome to the cytosol for proteasomal process-
ing and cross-presentation of antigenic peptides. It is possible
that tumor cell DNA enters the cytosol along with tumor protein
antigens, but details regarding the cytosolic delivery of tumor
proteins and DNA remain to be delineated. As tumor DNA is also
chromatinized, it is unknown whether it requires any further
processing to become an active cGAS ligand.

The knowledge gained from understanding the cGAS-STING
pathway in DDRs may be translated into innovative therapies for
a variety of human diseases. Antagonists of cGAS or STING are
potentially useful in blocking uncontrolled cytokine expression
that leads to inflammation and autoimmune diseases. Because
these antagonists may inhibit cellular senescence, they may
also be used for treating senescence-associated diseases. Sev-
eral attempts have been reported to find compounds that inhibit
cGAS. So far the reported molecules are active against cGAS in
vitro, but haven’t demonstrated desirable potency in vivo (An et
al., 2015; Hall et al., 2017; Vincent et al., 2017). A concern about
using antagonists of cGAS or STING in treatments of inflamma-
tion or senescence-associated diseases is a potential increase
of susceptibility to infectious diseases as well as cancer. Hope-
fully, redundancy in the human immune system and selection of
appropriate doses of drugs that partially inhibit the cGAS-STING
pathway would allow these drugs to provide therapeutic benefits
to the patients without compromising their immunity to infec-
tions and tumorigenesis.

Agonists of the cGAS-STING pathway such as cGAMP and its
analogues, on the other hand, can be applied to enhance antitu-
mor immunity in conjunction with other cancer therapies. These
small molecules can be further improved by preventing hydroly-
sis of the phosphodiester bonds (Li et al., 2014). Several STING
agonists have already entered clinical trials in human, and more
potent and selective agonists of STING are expected in the next
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few years. Although these STING agonists will strongly enhance
antitumor responses, including in those “cold” tumors that are so
far refractory to immune checkpoint blockade, a major concern
of using these compounds systemically is the cytokine “storm,”
the acute production of multiple inflammatory cytokines that
could cause severe toxicity and even death. Thus, it remains to
be seen whether there is a sufficient therapeutic window that
allows STING agonists to be used at certain doses to provide effi-
cacious antitumor activity while minimizing immunotoxicity to
patients. Innovative approaches, such as nanoparticles (Hanson
et al., 2015; Luo et al., 2017; Wilson et al., 2018), viral particles
(Bridgeman et al., 2015; Gentili et al., 2015), or targeted deliv-
eries, could allow precise delivery of STING agonists to tumors
to generate localized and specific antitumor immune responses
and significantly improve the therapeutic window of using these
compounds for cancer immunotherapies.
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