93&) Journal of
QP D Experimental
\’Qg Medicine

BRIEF DEFINITIVE REPORT

TAK1 restricts spontaneous NLRP3 activation and
cell death to control myeloid proliferation
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Thirumala-Devi Kanneganti'®

The NOD-like receptor (NLR)-P3 inflammasome is a global sensor of infection and stress. Elevated NLRP3 activation

levels are associated with human diseases, but the mechanisms controlling NLRP3 inflammasome activation are largely
unknown. Here, we show that TGF-B activated kinase-1(TAK1) is a central regulator of NLRP3 inflammasome activation
and spontaneous cell death. Absence of TAK1 in macrophages induced spontaneous activation of the NLRP3 inflammasome
without requiring toll-like receptor (TLR) priming and subsequent activating signals, suggesting a distinctive role for TAK1
in maintaining NLRP3 inflammasome homeostasis. Autocrine tumor necrosis factor (TNF) signaling in the absence of TAK1

induced spontaneous RIPK1-dependent NLRP3 inflammasome activation and cell death. We further showed that TAK1
suppressed homeostatic NF-kB and extracellular signal-related kinase (ERK) activation to limit spontaneous TNF production.
Moreover, the spontaneous inflammation resulting from TAK1-deficient macrophages drives myeloid proliferation in

mice, and was rescued by RIPK1 deficiency. Overall, these studies identify a critical role for TAK1 in maintaining NLRP3
inflammasome quiescence and preserving cellular homeostasis and survival.

Introduction

NOD-like receptor (NLR)-P3 inflammasome activation leads to
the maturation of proinflammatory cytokines IL-1B and IL-18,
and induction of pyroptotic cell death (Sharma and Kanneganti,
2016). Thus, NLRP3 is central in guarding the host against micro-
bial infections, including bacterial, viral, fungal, and protozoan
infections (Anand et al., 2011). Gain-of-function mutations in
the NLRP3 gene are associated with inflammatory syndromes
collectively known as cyropyrin-associated periodic syndromes
(CAPS; http://fmf.igh.cnrs.fr/ISSAID/infevers/; Gurung and
Kanneganti, 2016). Conventionally, activation of the NLRP3
inflammasome requires a priming signal and an activating
signal. Previous studies demonstrated that the first priming
signal —often provided by TLRs—serves to up-regulate NLRP3
and pro-IL-1B (Bauernfeind et al., 2009). Some of the proposed
mechanisms for regulating NLRP3 inflammasome activation
include potassium efflux, calcium mobilization, mitochondrial
damage, and production of ROS (Sharma and Kanneganti, 2016).
Molecularly, NEK7 (Schmid-Burgk et al., 2016), cardiolipin (Iyer
etal., 2013), and caspase-8/FADD (Gurung et al., 2014) have been
shown to directly regulate the NLRP3 inflammasome. Additional
studies suggested that deubiquitination of NLRP3 by IRAK pro-
teins is required to assemble the inflammasome complex after

receiving the second activation signal (Juliana et al., 2012; Py et
al., 2013). Herein, we sought to investigate the role of TAKL, a
central signaling molecule, in regulating NLRP3 inflammasome
activation and cell death.

Programmed cell death is central to homeostasis and orches-
trates normal organismal growth and development. Failure to
control cell death programs often results in devastating inflam-
matory pathologies and disease. TAKI is a quintessential kinase
that plays key roles in cellular homeostasis by positively regu-
lating cell survival and proinflammatory signaling pathways
(Yamaguchi et al., 1995; Wang et al., 2001; Ninomiya-Tsuji et
al., 2003; Sato et al., 2005; Shim et al., 2005; Wan et al., 2006;
Hayden and Ghosh, 2008; Zhang et al., 2017). Whereas inacti-
vation of TAK1 induces apoptosis or necroptosis (Sanna et al.,
2002; Mihaly et al., 2014; Guo et al., 2016), hyperactivation
of TAKI1 under conditions of its enforced expression or TAB2
deletion promotes necroptosis (Morioka et al., 2014). TAKI is
important for lysosomal rupture-induced inflammasome acti-
vation (Okada et al., 2014) and hypotonic stimulation (altering
cellular volume-induced inflammasome activation; Compan
et al., 2012). Currently, there is a tremendous interest in TAK1
inhibition as a therapeutic application for inflammatory disease
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management and cancer immunotherapy (Sakurai, 2012; Singh
et al., 2012; Huang et al., 2015; Kilty and Jones, 2015; Guan et
al., 2017). However, prolonged TAKI inactivation also results in
severe inflammation, bone disorders, and cancer development in
mice and humans (Shim et al., 2005; Omori et al., 2006; Kajino-
Sakamoto et al., 2008, 2010; Tang et al., 2008; Bettermann et al.,
2010; Inokuchi et al., 2010; Lamothe et al., 2013; Le Goff et al.,
2016; Wade et al., 2016). These findings are paradoxical because
TAKI1 is a well-accepted upstream kinase that drives inflamma-
tion through NF-kB and MAPK signaling cascades (Zhang et al.,
2017). Furthermore, inactivation of NF-kB by deletion of IKKp,
NEMO/IKKY, upstream TAKI-activating TAB proteins, or down-
stream antiapoptotic cIAP1/2 does not result in similar cell death
phenotypes, and often requires priming to induce cell death in
vitro (Shim et al., 2005; Vanlangenakker et al., 2011; Dondelinger
etal., 2013; Mihaly et al., 2014). Moreover, repression of the deu-
biquitinase CYLD protects cells from RIPK1-mediated apoptosis
in the absence of cIAP1/2 but not in TAKl1-inactivated conditions
(Dondelinger et al., 2013). Although TAK1 prosurvival function in
different cell types is well established, there are conflicting stud-
iesregarding the mechanism and nature of cell death observed in
TAK1 KO cells. In some studies, both RIPK1 and RIPK3 have been
shown to promote necrotic and apoptotic cell death in TAK1-defi-
cient cells (Vanlangenakker et al., 2011; Guo et al., 2016); however,
other studies report that RIPK1, RIPK3 or both are dispensable for
the cell death observed in TAK1 KO cells (Morioka et al., 2014;
Dondelinger et al., 2015; Mihaly et al., 2017). Overall, the molec-
ular mechanisms responsible for hyperactivation of the inflam-
matory immune response seen in conditions of TAK1 inactivation
remain poorly understood. Herein, we sought to investigate the
role of TAK], a central signaling molecule, in regulating NLRP3
inflammasome activation and cell death.

Here, we show that TAKI is a central regulator of NLRP3
inflammasome homeostasis. Absence of TAKI in macrophages
induced spontaneous activation of the NLRP3 inflammasome
without requiring the priming and activating signals, suggest-
ing a distinctive role for TAKI1 in maintaining NLRP3 inflam-
masome homeostasis. Autocrine TNF signaling in the absence of
TAK1 induced spontaneous RIPK1-dependent activation of the
NLRP3 inflammasome and cell death. Our data further suggested
that TAKI suppresses homeostatic NF-«B and ERK activation to
limit spontaneous TNF production. Moreover, the spontaneous
inflammation resulting from TAK1-deficient macrophages drove
myeloid proliferation in mice, which was rescued by RIPK1 defi-
ciency. Overall, these studies identify a critical paradigm for the
maintenance of inflammasome quiescence to preserve myeloid
cell homeostasis.

Results and discussion

TAK1 deficiency in myeloid cells results in spontaneous
inflammasome activation and secretion of IL-1B and IL-18

TAK1 deficiency is embryonically lethal in mice (Sato et al.,
2005; Shim et al., 2005); thus, to study the function of TAKI, we
generated mice lacking TAKI specifically in the myeloid com-
partment (Lyz2<®* x TakI”f mice). We observed that TAK1-defi-
cient bone marrow-derived macrophages (BMDMs) underwent
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spontaneous cell death (Fig. 1, A and B). This was expected,
given the important role of TAKI in the survival of different
cell lineages including T cells, B cells, osteoclasts, and hemato-
poietic stem cells (Sato et al., 2005). Herein, we observed that
TAKI-deficient macrophages also induced spontaneous caspase-1
activation in the absence of both priming and activating signals
(Fig.1C). A two-hit (priming and activation) model is well estab-
lished and accepted for optimal activation of the inflammasomes
(Bauernfeind et al., 2009). However, in certain conditions where
the inflammasome sensors have gain-of-function mutations (as
observed with NLRP3 [CAPS; Hoffman et al., 2001a,b], NLRC4
[MAS, macrophage activation syndrome; Canna et al., 2014],
and Pyrin [FMF, familial Mediterranean fever; French FMF
Consortium, 1997; The International FMF Consortium, 1997]),
only a priming or an activating signal is sufficient to assemble and
activate the inflammasome. Given our data that caspase-1activa-
tion in the TAKI-deficient BMDMs did not require any external
stimuli (both priming and activation signals were not required),
this demonstrates a previously unknown central regulatory role
for TAK1 in maintaining inflammasome quiescence. In agree-
ment with our observations in TAK1-deficient BMDMs, chemi-
cal inhibition of TAKI kinase activity (5Z-7-oxozeaenol, herein
referred to as TAKI inhibitor or TAK1i) in WT macrophages also
induced spontaneous cell death and subsequent caspase-1activa-
tion (Fig. 1, D-F). One of the hallmarks of caspase-1 activation is
the production of processed cytokines IL-1B and IL-18 (Gurung et
al., 2015). Consistently, mature IL-1B and IL-18 were detected in
the supernatants from cultured TAK1-deficient macrophagesina
steady-state condition (Fig. 1, G and H). In addition, mRNA levels
of pro-IL-1P were also up-regulated at steady-state in TAK1-defi-
cient but not WT macrophages (Fig. S2 H), whereas mRNA levels
of pro-IL-18, which is constitutively expressed in macrophages,
were similarly expressed in both WT and TAK1-deficient mac-
rophages (Fig. S2 I). These data suggested that TAK1 is a central
homeostatic regulator of inflammasome activation in macro-
phages. More importantly, given that TAK1 deficiency promoted
spontaneous IL-1P release, which requires a priming signal, our
data suggested that TAKI restricts spontaneous inflammatory
signaling to promote cellular quiescence and homeostasis.

NLRP3 promotes spontaneous inflammasome activation
observed in TAK1-deficient macrophages

We next asked if this spontaneous caspase-1 activation was
dependent on ASC, a central adaptor molecule for inflam-
masome. We found that TAKli-induced caspase-1activation was
dependent on ASC (Fig. 2 A). To identify the upstream inflam-
masome sensor, NLRC4-, AIM2-, and NLRP3-deficient cells
were assessed for TAKli-induced caspase-1 activation. Contrary
to NLRC4 and AIM2, NLRP3 proved essential for TAKli-induced
inflammasome activation (Fig. 2, D, G, and ]). Given the spon-
taneous activation of caspase-1 in TAK1-deficient macrophages
(Fig. 1), we posited that the cells undergoing pyroptotic cell
death could be rescued by the deficiency of NLRP3 inflam-
masome components. However, TAKli-treatment induced
robust cell death in ASC-deficient BMDMs similar to that
observed in WT BMDMs (Fig. 2, B and C). To determine if the
inflammasome sensors were involved in the induction of cell
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Figure 1. TAK1 deficiency in myeloid cells results in spontaneous inflammasome activation and proinflammatory cytokine production. (A-C) Cell
death by Incucyte image analysis, (bar, 40 um; A), time course quantification of dead cells (B), and immunoblot analysis of pro-caspase-1 (p45) and the active
caspase-1 subunit p20 (p20; C) in unstimulated WT control (Lyz2"* x TakI?*) or TAK1-deficient BMDMs (Lyz2"* x TakI?) assessed in culture at the indicated
times after differentiation. (D-F) Cell death by Incucyte image analysis, (bar, 40 um; D), time course quantification of dead cells (E), and caspase-1 activation
(F) measured in BMDMs left unstimulated or treated with TAKIi for the indicated times in culture after differentiation. (G and H) Secretion of IL-1B (G) and
secretion of IL-18 (H) in unstimulated Lyz2"e* x TakI?f(TAK1KO) or WT BMDMs left untreated for the indicated times in culture. All data are presented as mean
+ SEM (G and H). “p” in Western blots denotes protein molecular weight. P < 0.05 is considered statistically significant. *, P < 0.05; **, P < 0.01; ***, P < 0.001
(two-tailed t test [G and H]). Data are representative of three independent experiments with n = 2 (A-F) and n = 3 in each repeat (G and H).

death, we treated NLRC4-, AIM2-, and NLRP3-deficient BMDMs To further establish the role of NLRP3 in TAKI-regulated spon-
with TAK1i. TAKli-treatment induced similar cell death in both  taneous inflammasome activation, we generated BMDMs from
WT and the inflammasome sensor-deficient BMDMs (Fig. 2, E, mice thatlacked both TAK1and NLRP3 (Lyz2°* x Tak1f x Nlrp3~-
FH,I,K, andL). mice). Similar to the results obtained with TAKIi treatment,
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Figure 2. NLRP3 promotes spontaneous inflammasome activation observed in TAK1-deficient BMDMs. (A-L) WT or the indicated KO BMDMs were
treated with TAKIi for the indicated times. Immunoblot analysis of pro-caspase-1 (p45) and the active caspase-1 subunit p20 (p20; A, D, G, and J), analysis of
cell death by microscopy (bars, 20 um; B, E, H, and K), or LDH secretion (C, F, I, and L) in TAK1i-treated BMDMs assessed at the indicated times after treat-
ment in Asc”” (A-C), Nlrc4” (D-F), Aim27 (G-1), and Nirp3” (J-L). Arrows indicate dead cells (B, E, H, and K). Data are representative of three independent
experiments with n = 3 (A-L). Error bars indicate SEM (C, F, |, and L). “p” in Western blots denotes protein molecular weight. P < 0.05 is considered statistically
significant (two-tailed t test [C, F, I, and L]).

B-Actin

NLRP3 deficiency prevented spontaneous caspase-1 activation =~ NLRP3 inflammasome) prevented spontaneous caspase-1 activa-
in TAK1-deficient BMDMs (Fig. 3 A). Consistently, treatment of ~ tion (Fig. 3 C). Similar to the observation in TAKIli-treated WT
TAK!-deficient BMDMs with MCC950 (a specific inhibitor of the ~ and NLRP3-deficient cells (Fig. 2, K and L), genetic deficiency or

Malireddi et al. Journal of Experimental Medicine
TAK1 regulates inflammasome homeostasis https://doi.org/10.1084/jem.20171922

920z Areniged 20 uo 1senb Aq 4pd'zz61 210z Wel/gL06G.L/€201/v/GLz/pd-eonie/wal/Bio sseidni//:dpy woy papeojumoq

1026



pharmacological inhibition of NLRP3 did not rescue cell death
observed in TAK1-deficient BMDMs (Fig. 3, B and D).

These results showed that although NLRP3 and ASC defi-
ciency reversed TAKli-induced spontaneous caspase-1 activa-
tion, TAKli-induced cell death could not be rescued. We have
recently shown that IAV-induced cell death consists of all three
forms of cell death that include apoptosis, pyroptosis, and
necroptosis (Kuriakose et al., 2016). Given that the cells lacking
NLRP3 and ASC (and thus pyroptosis) still underwent cell death,
we hypothesized that TAK1 deficiency in BMDMSs may induce
all major forms of cell death that include apoptosis, pyroptosis,
and necroptosis. Western blot data for caspase-3, caspase-7, and
phospho-MLKL demonstrated that TAK1-deficient macrophages
also exhibited the features of apoptotic and necroptotic cell death
(Fig. S2, A-C). To this end, we used a combination of inhibitors
that specifically block apoptosis, pyroptosis, and necroptosis
to rescue spontaneous cell death observed in TAKI1-deficient
BMDMs. In accordance, we showed that inhibition of apoptosis,
pyroptosis, or necroptosis individually was not sufficient to pre-
vent cell death of TAK1-deficient BMDMs (Fig. S1, A-C). Also, the
combined inhibition of apoptosis/pyroptosis, pyroptosis/necro-
ptosis, and apoptosis/necroptosis did not completely rescue cell
death in TAK1-deficient BMDMs (Fig. S1 D). However, when all
cell death pathways were inhibited, TAK1-deficient cells were
protected from cell death (Fig. S1E), suggesting a redundant role
for apoptosis, pyroptosis, and necroptosis in inducing cell death
in TAKl1-deficient BMDMs. Conversely, these data demonstrate
that TAK1 plays an essential regulatory role in inhibiting cell
death pathways and maintaining cellular homeostasis.

RIPK1 is upstream of spontaneous NLRP3 inflammasome
activation and cell death in TAK1-deficient macrophages
Receptor interacting protein kinase (RIPK) 3 has been shown
to be involved in regulating NLRP3 inflammasome activation
under specific circumstances (Kang et al., 2013; Wang et al., 2014;
Lawlor et al., 2015). Our results showed that TAKIi treatment of
Ripk3”- BMDMs results in normal NLRP3 inflammasome activa-
tion and cell death, similar to WT cells (Fig. 3, E and F). MLKL is
a pseudokinase that upon activation intercalates in the plasma
membrane to promote necroptosis (Wang et al., 2014). To test
the role for MLKL, we treated WT or MIkl”~ BMDMs with TAKIi.
MLKL deficiency did not rescue TAKli-induced caspase-1activa-
tion or cell death (Fig. 3, I and J). To complement these studies,
we treated TAK1-deficient BMDMs with RIPK3 or MLKL inhibitor
(Fig. 3, G, H, K, and L), and our results showed that RIPK3 and
MLKL are dispensable for spontaneous NLRP3 inflammasome
activation. Concurrently, the cell death was also not rescued by
RIPK3 or MLKL deficiency in TAK1-deficient BMDMs (Fig. 3,
F H,J,and L).

Next, we investigated whether RIPKI, an upstream kinase,
was involved in spontaneous NLRP3 inflammasome activation
and cell death induction. TAK1 inhibition of WT, but not Ripkl”~
macrophages (derived from fetal liver cells because the RIPK1
deficiency in mice causes day 1 postnatal lethality; Kelliher et al.,
1998) induced spontaneous NLRP3 inflammasome activation and
cell death (Fig. 3, Mand N). Furthermore, TAK1-deficient BMDMs
lacking RIPK1 kinase activity (Lyz2¢* x TakI7f x Ripk1¥454) did
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not exhibit spontaneous caspase-1 cleavage or cell death (Fig. 3,
0 and P). Consistently, the levels of spontaneous IL-18 and IL-18
cytokines observed in Lyz2¢** x TakIf macrophages were res-
cued in Lyz2ee* x TakI’f x RipkI¥*5* macrophages (Fig. S2, F
and G). These results altogether suggest that TAKI negatively
regulates RIPK1 kinase activity independently of RIPK3 and
MLKL to control spontaneous NLRP3 inflammasome activation
and cell death.

RIPK1 is a well-established regulator of TNF signaling. Thus,
we hypothesized that TAKI deficiency or inhibition may trigger
spontaneous activation of the TNF signaling pathway. Indeed, we
observed a significant amount of spontaneous TNF secretion in
the culture by TAK1-deficient BMDMs (Fig. S2 D) and in the serum
of Lyz2¢e* x TakI"f mice (Fig. S2 E). To evaluate whether auto-
crine TNF was the upstream event that induced NLRP3 inflam-
masome activation and cell death in TAKI-deficient BMDMs, anti-
TNF neutralizing antibody was used to block TNF signaling (Fig.
S3, A-F). TNF neutralization rescued aberrant caspase-1 activa-
tion and cell death in both TAK1-deficient BMDMs and TAKIi-
treated WT cells (Fig. S3, A-F). In addition, TNF neutralization
also rescued the spontaneous production of IL-1f and IL-18 from
TAKI1-deficient macrophages (Fig. S2 G). To further examine the
role of TNF signaling, we used TNF-deficient and TNFR-defi-
cient BMDMs that were treated with TAKIi. Genetic deficiency
of either TNF or TNFR rescued spontaneous caspase-1activation
and cell death responses in TAK1i-treated BMDMs (Fig. S3, G-L).
However, TAK1 inhibition-induced caspase-1 activation from
Trif/~ and Ifnarl~- BMDMs was comparable to that observed in
the WT BMDMs (Fig. S1 F). Altogether, these data demonstrated
that the TNF signaling axes promote NLRP3 inflammasome acti-
vation and cell death in TAK1-deficient BMDMs.

TAK1 restricts RIPK1 kinase-dependent spontaneous

NF-kB and ERK activation in macrophages and myeloid
proliferation in mice

In addressing the mechanisms by which TAK1 promotes cellular
quiescence, we posited that TAK1 deficiency activates inflamma-
tory signaling pathways in the absence of exogenous stimuli, con-
current with our detection of spontaneous NLRP3 inflammasome
activation and TNF production by TAK1-deficient BMDMs. In
agreement with our hypothesis, we observed increased activa-
tion of ERK and NF-«B in TAK1-deficient BMDMs under homeo-
static conditions (Fig. 4 A). Similarly, phospho-IKKa/pB, upstream
regulators of ERK and NF-«B, were also increased basally in
TAKI-deficient BMDMs (Fig. 4 A). In concurrence with increased
activation, basal protein expression of NLRP3 was also slightly
increased in TAKl1-deficient BMDMs (Fig. 4 A). These results
were unexpected given the established role of TAK1 in promoting
ERK and NF-«B activation. More importantly, this aberrant sig-
naling in TAK1-deficient BMDMs was rescued when RIPK1 kinase
activity was absent (Fig. 4 B). These data demonstrate that under
homeostatic conditions, TAK1 restricts RIPK1-dependent sponta-
neous NF-kB and ERK activation.

Mice with myeloid specific deficiency of TAK1 develop pro-
gressive accumulation of neutrophils ultimately displaying signs
of myeloid proliferation and death. Consistently, we also observed
increased CD11b* populations (myeloid cells) in the peripheral
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blood (PBL) of Lyz2¢"e* x TakIf mice (Fig. 4 C). A closer examina-
tion of CD11b* cells revealed that whereas neutrophil frequency
was increased, monocyte frequency was decreased in Lyz2°* x
Tak1”f mice when compared with littermate WT controls (Fig. 4,
D and E). Importantly, the increased neutrophil and reduced
monocyte populations in the PBL from Lyz2<®* x TakIf mice
were rescued in Lyz2¢¢* x Tak1f x RipkI¥P/XP mice (Fig. 4, F-H).
To further corroborate these findings, we studied the TAKIi-in-
duced acute neutrophilia and monocytopenia in mice (Fig. 4).
TAKli-treatment of WT mice significantly increased the fre-
quency of CD11b* cells and neutrophils, whereas the frequency of
the monocyte population was significantly reduced (Fig. 4, I-K),
similar to the mice genetically lacking TAKI in myeloid compart-
ment (Fig. 4, C-H). Importantly, TAKli-induced differences in
neutrophil and monocyte populations were also dependent on
RIPK1 kinase activity (Fig. 4, I-K). Collectively, these data demon-
strate a critical role for RIPK1kinase activity in regulating NLRP3
inflammasome activation and cell death to promote myeloid pro-
liferation in the absence of TAKI1 signaling.

The conventional role of TAKI in propagating NF-kB and
MAPK signaling events downstream of several PRR, growth, and
cytokine receptors is well established (Ajibade etal., 2013; Zhang
et al., 2017). Herein, we describe a previously uncharacterized,
paradoxical role for TAKI in regulating cellular quiescence and
homeostasis by inhibiting spontaneous activation of IKKa/p.
Early studies demonstrated that inhibition or deletion of IKKa/[
activates NLRP3 inflammasome in the presence of priming signal
alone (Greten et al., 2007; Zhong et al., 2016). Given these stud-
ies that show IKKp deficiency or inhibition activated the NLRP3
inflammasome, which requires LPS priming, our study is funda-
mentally different because we demonstrate that TAK1 deficiency
leads to enhanced basal activation of IKKa/P to promote TNF
release and spontaneous inflammasome activation. This result is
completely unexpected given the established role of TAK1 in pro-
moting receptor-induced signaling events (Ajibade et al., 2013;
Zhang et al., 2017). The absence of TAK! in macrophages also
induced spontaneous activation of the NLRP3 inflammasome
without the requirement for exogenous priming and activation
signals, which has not been reported before. Mechanistically, we
have clearly demonstrated the role for TNF, TNFR, and RIPK1 in
regulating spontaneous NLRP3 inflammasome activation and
cell death. Physiologically, enhanced cell death and inflamma-
tion resulting from loss-of-function mutations of TAK1 drives
myeloid proliferation in mice and humans (Ajibade et al., 2012;
Lamothe etal., 2012). TAK1loss-of-function mutations also cause
death of a range of immune and nonimmune cells and disrupt
tissue and bone homeostasis (Mihaly et al., 2014; Swarnkar et al.,
2015; Le Goff et al., 2016; Wade et al., 2016). Our study identi-
fied several important effector molecules driving this cell death

and inflammation downstream of TAKl-inactivation and hence
potential therapeutic targets. Increased cell death of TAKI1-
deficeint resident macrophages has also been observed in in
vivo mouse models with hematopoietic specific deletion of TAK1
(Sakamachi et al., 2017). Future studies will test whether similar
pathways of cell death and inflammasome activation, as estab-
lished in our study, are at work in these resident macrophages.
These findings corroborate and provide a mechanistic expla-
nation for the severe spontaneous inflammatory pathologies in
TAK1 KO compared with the mice deficient for other NF-«B fam-
ily members (Shim et al., 2005; Mihaly et al., 2014). More impor-
tantly, we have provided in vivo data targeting RIPK1 kinase
activity to rescue the myeloid proliferation phenotype associated
with TAK1 deficiency in mice. Our study uncovered previously
unidentified functions of TAK1 with potential applications for
therapeutically activating the innate immune system and man-
aging myeloid proliferation in specific situations in which TAK1
functions are impaired.

Materials and methods

Mice

RipkI®*5* (RipkIXP/XD; Berger et al., 2014), Ripk3”~ (Newton et
al., 2004), Nirp3~- (Kanneganti et al., 2006), Asc”~ (Mariathasan
et al., 2004), Caspl”~ x Caspll”~ (Kayagaki et al., 2011), Tnf”-
(Pasparakis et al., 1996), Tnfr”~ (Pfeffer et al., 1993), and MIkl"-
(Murphy et al., 2013) were all described previously. TakIf mice
were bred with Lyz2ee* (B6.129P2-Lyz2tmi(cre)ifo/J. Jackson) mice
to generate conditional Takl KO mice. C57BL/6 WT (Jackson)
and littermate controls were bred at St. Jude Children’s Research
Hospital. Animal studies were conducted under protocols
approved by St. Jude Children’s Research Hospital on the Use and
Care of Animals.

Macrophage differentiation and stimulation
BMDMs were prepared as described previously (Gurung et al.,
2012). In brief, bone marrow cells were grown in L cell-condi-
tioned IMDM medium supplemented with 10% FBS, 1% nones-
sential amino acid, and 1% penicillin-streptomycin for 5 d to dif-
ferentiate into macrophages. On day 5, BMDMs were counted,
and 106 cells were seeded in 12-well cell culture plates in IMDM
media containing 10% FBS, 1% nonessential amino acids, and 1%
penicillin-streptomycin. For BIDMs generated from Lyz2°e*
x Tak1”f mice, as the precursor cells differentiate into macro-
phages, they will express Cre recombinase (under the control
of myeloid-specific Lyz2 gene) and delete the floxed TakI gene,
resulting in TAK1-deficient macrophages.

Where indicated, for pharmacological inhibition, BMDMs
were pretreated with chemical inhibitors of apoptosis,

at the times indicated. (K and L) Lyz2"¢* x TakI”’f BMDMs were treated with vehicle or GW806742X (MLKL inhibitor) and probed for caspase-1 activation (K)
and cell death (L). (M and N) Caspase-1 immunoblot (M) and cell death analysis (N) in WT and Ripk1”~ (generated from fetal liver cells) BMDMs treated with
TAKIi and assessed at the indicated times. (O and P) Caspase-1immunoblot (O) and cell death analysis (P) in Lyz2"e* x Tak1fand Lyz2"e* x TakI?f x RipkI<P/KD

«_

BMDMs and assessed at the indicated times. Arrows indicate dead cells. Bars, 20 um. “p” in Western blots denotes protein molecular weight. Data are repre-

sentative of three independent experiments with n = 3 in each repeat (A-P).
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Figure 4. RIPK1 kinase-dead mouse partially rescues the myeloid phenotype observed in TAK1-deficient mice in vivo. (A) Immunoblot analysis of
phospho-IkBa, phospho-ERK, NLRP3, phospho-IKKa/B, and B-actin (loading control) in untreated TakI?* x Lyz2"e* (HT ctrl) and Tak1"f x Lyz2e* (TAK1 KO)
BMDMs assessed at the indicated times after differentiation in culture. (B) Immunoblot analysis as in A in untreated BMDMs from Lyz2"¢* x Tak1"f (TAK1 KO)
and Lyz2ee* x Tak1f x RipkI<C/KP (TAK1 KO with kinase-dead RIPK1) mutant mice. (C-H) Flow cytometry analysis of peripheral blood from control (n = 7), Tak1%f
x Lyz2"* (n = 6, C-E; n = 8, F-H) and TakI/f x Lyz2¢"e* x RipkI*P/ (n = 8) mice. Littermate controls were used for the experiments, which included TakIfand
Tak1* x Lyz2e"®* mice. (C and F) Cumulative dot plots of representing frequencies of CD11b* cells analyzed by flow cytometry from blood. (D and G) Cumula-
tive dot plots representing frequency of neutrophil population in the CD11b*-gated cells. (E and H) Cumulative dot plots representing frequency of monocyte
population in the CD11b*-gated cells. (I-K) Flow cytometry analysis of peripheral blood from control (n = 4) and TAK1i-treated WT (n = 5) and RipkIK?/KP (n = 5)
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pyroptosis, and necroptosis. In other experiments, BMDMs were
treated with TAKIi 5Z-7-Oxozeaenol at 0.1 uM to study inflam-
masome activation and cell death.

Analysis of myeloid proliferation and TAK1i-induced PBL
changes in vivo

All flow-cytometric analysis of in vivo myeloid phenotypes was
conducted from Lyz2ere* x TakI/f (TAK1KO) and Lyz2°re* x Tak1/
x RipkIKP/KD (TAK1 KO with kinase-dead RIPK1) mutant mice.
For all in vivo TAKIi treatments, WT or genetically manipulated
RIPK1 kinase-dead mice were i.p. injected with DMSO control or
TAKIi at 50 mg/kg body weight. Blood samples were collected at
6 h after TAKIi treatment from mouse orbital sinus. PBLs were
isolated using standard ACK RBC lysis protocol and stained for
flow-cytometric analysis with the indicated antibodies.

Western blotting

Samples for immunoblotting were prepared by combining cell
lysates with culture supernatants. Samples were denatured in
loading buffer containing SDS and 100 mM DTT and boiled for
5 min. SDS-PAGE-separated proteins were transferred to PVDF
membranes and immunoblotted with primary antibodies against
caspase-1 (AG-20B-0042; Adipogen), Nlrp3 (AG-20B-0014; Adi-
pogen), GAPDH (D16H11), and B-Actin (13E5; Cell Signaling Tech-
nology) followed by secondary anti-rabbit or anti-mouse HRP
antibodies (Jackson ImmunoResearch Laboratories), as previ-
ously described (Kanneganti et al., 2006).

Lactate dehydrogenase assay

Secreted levels of lactate dehydrogenase from cell supernatants
were determined using the CytoTox 96 Non-Radioactive Cyto-
toxicity Assay according to the manufacturer’s instructions
(G1780; Promega).

Flow cytometry
CD11b (M1/70), and Gr-1 (RB6-8C5) antibodies were purchased
from eBioscience. LY6C (HK1.4), CD45.2 (104), and LY6G (1A8)
were from BioLegend. Flow cytometry data were acquired on an
upgraded eight-color FACScan and analyzed using FlowJo soft-
ware (Tree Star).

Cytokine analysis

Concentrations of cytokines and chemokines were determined
by multiplex ELISA (Millipore), or classical ELISA for IL-1B (eBio-
science) or IL-18 (MBL International).

Microscope image acquisition

Light microscopy

Differentiated WT and mutant macrophages seeded in 12-well
cell culture plates were either left untreated (control) or treated

with TAK1i or different cell death inhibitors for the indicated
times. Light microscopic images were obtained using an Olym-
pus CKX41 microscope with a 40x objective lens. Digital image
recording and image analysis were performed with the INFINITY
ANALYZE Software (Lumenera Corp.). The images were pro-
cessed and analyzed with Image]J software.

Real-time cell death analysis

Real-time cell death assays were performed using a two-color
IncuCyte Zoom in-incubator imaging system (Essen Biosci-
ences). In brief, BMDMs were seeded in 24-well tissue culture
vessels (250,000 cells/well) in the presence of 100 nM of the
cell-impermeable DNA-binding fluorescent dye Sytox Green
(S7020; Life Technologies), which rapidly enter dying cells on
membrane permeabilization. Resulting images were analyzed
using the software package supplied with the IncuCyte imager,
which allows precise analysis of the number of Sytox Green-pos-
itive cells present in each image. Experiments were conducted
using a minimum of three separate wells for each experimental
condition and a minimum of four image fields per well. Dead cell
events for each line of BMDMs were acquired via Sytox Green
and plotted using GraphPad Prism software.

Statistical analysis

GraphPad Prism 5.0 software was used for data analysis. Data
are shown as mean + SEM. Statistical significance was deter-
mined by ¢ tests (two-tailed) for two groups or one-way ANOVA
(with Dunnett’s or Tukey’s multiple comparisons tests) for three
or more groups.

Online supplemental material

Fig. S1 shows a combination of inhibitors that specifically block
apoptosis, necroptosis, and pyroptosis rescue TAKI-deficient
BMDMs from cell death. Fig. S2 shows TAKI deficiency resulting
in spontaneous TNF secretion in BMDMs. Fig. S3 shows the crit-
ical role of TNF signaling in spontaneous NLRP3 inflammasome
activation in TAK1-deficient BMDMs.
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